miri/shims/windows/
sync.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use std::time::Duration;

use rustc_abi::Size;

use crate::concurrency::init_once::InitOnceStatus;
use crate::concurrency::sync::FutexRef;
use crate::*;

#[derive(Copy, Clone)]
struct WindowsInitOnce {
    id: InitOnceId,
}

struct WindowsFutex {
    futex: FutexRef,
}

impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
    // Windows sync primitives are pointer sized.
    // We only use the first 4 bytes for the id.

    fn init_once_get_data<'a>(
        &'a mut self,
        init_once_ptr: &OpTy<'tcx>,
    ) -> InterpResult<'tcx, &'a WindowsInitOnce>
    where
        'tcx: 'a,
    {
        let this = self.eval_context_mut();

        let init_once = this.deref_pointer(init_once_ptr)?;
        let init_offset = Size::ZERO;

        this.lazy_sync_get_data(
            &init_once,
            init_offset,
            || throw_ub_format!("`INIT_ONCE` can't be moved after first use"),
            |this| {
                // TODO: check that this is still all-zero.
                let id = this.machine.sync.init_once_create();
                interp_ok(WindowsInitOnce { id })
            },
        )
    }

    /// Returns `true` if we were succssful, `false` if we would block.
    fn init_once_try_begin(
        &mut self,
        id: InitOnceId,
        pending_place: &MPlaceTy<'tcx>,
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx, bool> {
        let this = self.eval_context_mut();
        interp_ok(match this.init_once_status(id) {
            InitOnceStatus::Uninitialized => {
                this.init_once_begin(id);
                this.write_scalar(this.eval_windows("c", "TRUE"), pending_place)?;
                this.write_scalar(this.eval_windows("c", "TRUE"), dest)?;
                true
            }
            InitOnceStatus::Complete => {
                this.init_once_observe_completed(id);
                this.write_scalar(this.eval_windows("c", "FALSE"), pending_place)?;
                this.write_scalar(this.eval_windows("c", "TRUE"), dest)?;
                true
            }
            InitOnceStatus::Begun => false,
        })
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
#[allow(non_snake_case)]
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    fn InitOnceBeginInitialize(
        &mut self,
        init_once_op: &OpTy<'tcx>,
        flags_op: &OpTy<'tcx>,
        pending_op: &OpTy<'tcx>,
        context_op: &OpTy<'tcx>,
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        let id = this.init_once_get_data(init_once_op)?.id;
        let flags = this.read_scalar(flags_op)?.to_u32()?;
        let pending_place = this.deref_pointer(pending_op)?;
        let context = this.read_pointer(context_op)?;

        if flags != 0 {
            throw_unsup_format!("unsupported `dwFlags` {flags} in `InitOnceBeginInitialize`");
        }

        if !this.ptr_is_null(context)? {
            throw_unsup_format!("non-null `lpContext` in `InitOnceBeginInitialize`");
        }

        if this.init_once_try_begin(id, &pending_place, dest)? {
            // Done!
            return interp_ok(());
        }

        // We have to block, and then try again when we are woken up.
        let dest = dest.clone();
        this.init_once_enqueue_and_block(
            id,
            callback!(
                @capture<'tcx> {
                    id: InitOnceId,
                    pending_place: MPlaceTy<'tcx>,
                    dest: MPlaceTy<'tcx>,
                }
                @unblock = |this| {
                    let ret = this.init_once_try_begin(id, &pending_place, &dest)?;
                    assert!(ret, "we were woken up but init_once_try_begin still failed");
                    interp_ok(())
                }
            ),
        );
        interp_ok(())
    }

    fn InitOnceComplete(
        &mut self,
        init_once_op: &OpTy<'tcx>,
        flags_op: &OpTy<'tcx>,
        context_op: &OpTy<'tcx>,
    ) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let id = this.init_once_get_data(init_once_op)?.id;
        let flags = this.read_scalar(flags_op)?.to_u32()?;
        let context = this.read_pointer(context_op)?;

        let success = if flags == 0 {
            true
        } else if flags == this.eval_windows_u32("c", "INIT_ONCE_INIT_FAILED") {
            false
        } else {
            throw_unsup_format!("unsupported `dwFlags` {flags} in `InitOnceBeginInitialize`");
        };

        if !this.ptr_is_null(context)? {
            throw_unsup_format!("non-null `lpContext` in `InitOnceBeginInitialize`");
        }

        if this.init_once_status(id) != InitOnceStatus::Begun {
            // The docs do not say anything about this case, but it seems better to not allow it.
            throw_ub_format!(
                "calling InitOnceComplete on a one time initialization that has not begun or is already completed"
            );
        }

        if success {
            this.init_once_complete(id)?;
        } else {
            this.init_once_fail(id)?;
        }

        interp_ok(this.eval_windows("c", "TRUE"))
    }

    fn WaitOnAddress(
        &mut self,
        ptr_op: &OpTy<'tcx>,
        compare_op: &OpTy<'tcx>,
        size_op: &OpTy<'tcx>,
        timeout_op: &OpTy<'tcx>,
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        let ptr = this.read_pointer(ptr_op)?;
        let compare = this.read_pointer(compare_op)?;
        let size = this.read_target_usize(size_op)?;
        let timeout_ms = this.read_scalar(timeout_op)?.to_u32()?;

        if size > 8 || !size.is_power_of_two() {
            let invalid_param = this.eval_windows("c", "ERROR_INVALID_PARAMETER");
            this.set_last_error(invalid_param)?;
            this.write_scalar(Scalar::from_i32(0), dest)?;
            return interp_ok(());
        };
        let size = Size::from_bytes(size);

        let timeout = if timeout_ms == this.eval_windows_u32("c", "INFINITE") {
            None
        } else {
            let duration = Duration::from_millis(timeout_ms.into());
            Some((TimeoutClock::Monotonic, TimeoutAnchor::Relative, duration))
        };

        // See the Linux futex implementation for why this fence exists.
        this.atomic_fence(AtomicFenceOrd::SeqCst)?;

        let layout = this.machine.layouts.uint(size).unwrap();
        let futex_val =
            this.read_scalar_atomic(&this.ptr_to_mplace(ptr, layout), AtomicReadOrd::Acquire)?;
        let compare_val = this.read_scalar(&this.ptr_to_mplace(compare, layout))?;

        if futex_val == compare_val {
            // If the values are the same, we have to block.

            // This cannot fail since we already did an atomic acquire read on that pointer.
            let futex_ref = this
                .get_sync_or_init(ptr, |_| WindowsFutex { futex: Default::default() })
                .unwrap()
                .futex
                .clone();

            this.futex_wait(
                futex_ref,
                u32::MAX, // bitset
                timeout,
                Scalar::from_i32(1), // retval_succ
                Scalar::from_i32(0), // retval_timeout
                dest.clone(),
                IoError::WindowsError("ERROR_TIMEOUT"), // errno_timeout
            );
        }

        this.write_scalar(Scalar::from_i32(1), dest)?;

        interp_ok(())
    }

    fn WakeByAddressSingle(&mut self, ptr_op: &OpTy<'tcx>) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        let ptr = this.read_pointer(ptr_op)?;

        // See the Linux futex implementation for why this fence exists.
        this.atomic_fence(AtomicFenceOrd::SeqCst)?;

        let Some(futex_ref) =
            this.get_sync_or_init(ptr, |_| WindowsFutex { futex: Default::default() })
        else {
            // Seems like this cannot return an error, so we just wake nobody.
            return interp_ok(());
        };
        let futex_ref = futex_ref.futex.clone();

        this.futex_wake(&futex_ref, u32::MAX)?;

        interp_ok(())
    }
    fn WakeByAddressAll(&mut self, ptr_op: &OpTy<'tcx>) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        let ptr = this.read_pointer(ptr_op)?;

        // See the Linux futex implementation for why this fence exists.
        this.atomic_fence(AtomicFenceOrd::SeqCst)?;

        let Some(futex_ref) =
            this.get_sync_or_init(ptr, |_| WindowsFutex { futex: Default::default() })
        else {
            // Seems like this cannot return an error, so we just wake nobody.
            return interp_ok(());
        };
        let futex_ref = futex_ref.futex.clone();

        while this.futex_wake(&futex_ref, u32::MAX)? {}

        interp_ok(())
    }
}