rustc_borrowck/type_check/liveness/trace.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_index::bit_set::DenseBitSet;
use rustc_index::interval::IntervalSet;
use rustc_infer::infer::canonical::QueryRegionConstraints;
use rustc_infer::infer::outlives::for_liveness;
use rustc_middle::mir::{BasicBlock, Body, ConstraintCategory, Local, Location};
use rustc_middle::traits::query::DropckOutlivesResult;
use rustc_middle::ty::relate::Relate;
use rustc_middle::ty::{Ty, TyCtxt, TypeVisitable, TypeVisitableExt};
use rustc_mir_dataflow::ResultsCursor;
use rustc_mir_dataflow::impls::MaybeInitializedPlaces;
use rustc_mir_dataflow::move_paths::{HasMoveData, MoveData, MovePathIndex};
use rustc_mir_dataflow::points::{DenseLocationMap, PointIndex};
use rustc_span::DUMMY_SP;
use rustc_trait_selection::traits::query::type_op::{DropckOutlives, TypeOp, TypeOpOutput};
use tracing::debug;
use crate::polonius;
use crate::region_infer::values::{self, LiveLoans};
use crate::type_check::liveness::local_use_map::LocalUseMap;
use crate::type_check::{NormalizeLocation, TypeChecker};
/// This is the heart of the liveness computation. For each variable X
/// that requires a liveness computation, it walks over all the uses
/// of X and does a reverse depth-first search ("trace") through the
/// MIR. This search stops when we find a definition of that variable.
/// The points visited in this search is the USE-LIVE set for the variable;
/// of those points is added to all the regions that appear in the variable's
/// type.
///
/// We then also walks through each *drop* of those variables and does
/// another search, stopping when we reach a use or definition. This
/// is the DROP-LIVE set of points. Each of the points in the
/// DROP-LIVE set are to the liveness sets for regions found in the
/// `dropck_outlives` result of the variable's type (in particular,
/// this respects `#[may_dangle]` annotations).
pub(super) fn trace<'a, 'tcx>(
typeck: &mut TypeChecker<'_, 'tcx>,
body: &Body<'tcx>,
location_map: &DenseLocationMap,
flow_inits: ResultsCursor<'a, 'tcx, MaybeInitializedPlaces<'a, 'tcx>>,
move_data: &MoveData<'tcx>,
relevant_live_locals: Vec<Local>,
boring_locals: Vec<Local>,
) {
let local_use_map = &LocalUseMap::build(&relevant_live_locals, location_map, body);
// When using `-Zpolonius=next`, compute the set of loans that can reach a given region.
if typeck.tcx().sess.opts.unstable_opts.polonius.is_next_enabled() {
let borrow_set = &typeck.borrow_set;
let mut live_loans = LiveLoans::new(borrow_set.len());
let outlives_constraints = &typeck.constraints.outlives_constraints;
let graph = outlives_constraints.graph(typeck.infcx.num_region_vars());
let region_graph =
graph.region_graph(outlives_constraints, typeck.universal_regions.fr_static);
// Traverse each issuing region's constraints, and record the loan as flowing into the
// outlived region.
for (loan, issuing_region_data) in borrow_set.iter_enumerated() {
for succ in rustc_data_structures::graph::depth_first_search(
®ion_graph,
issuing_region_data.region,
) {
// We don't need to mention that a loan flows into its issuing region.
if succ == issuing_region_data.region {
continue;
}
live_loans.inflowing_loans.insert(succ, loan);
}
}
// Store the inflowing loans in the liveness constraints: they will be used to compute live
// loans when liveness data is recorded there.
typeck.constraints.liveness_constraints.loans = Some(live_loans);
};
let cx = LivenessContext {
typeck,
body,
flow_inits,
location_map,
local_use_map,
move_data,
drop_data: FxIndexMap::default(),
};
let mut results = LivenessResults::new(cx);
results.add_extra_drop_facts(&relevant_live_locals);
results.compute_for_all_locals(relevant_live_locals);
results.dropck_boring_locals(boring_locals);
}
/// Contextual state for the type-liveness coroutine.
struct LivenessContext<'a, 'typeck, 'b, 'tcx> {
/// Current type-checker, giving us our inference context etc.
typeck: &'a mut TypeChecker<'typeck, 'tcx>,
/// Defines the `PointIndex` mapping
location_map: &'a DenseLocationMap,
/// MIR we are analyzing.
body: &'a Body<'tcx>,
/// Mapping to/from the various indices used for initialization tracking.
move_data: &'a MoveData<'tcx>,
/// Cache for the results of `dropck_outlives` query.
drop_data: FxIndexMap<Ty<'tcx>, DropData<'tcx>>,
/// Results of dataflow tracking which variables (and paths) have been
/// initialized.
flow_inits: ResultsCursor<'b, 'tcx, MaybeInitializedPlaces<'b, 'tcx>>,
/// Index indicating where each variable is assigned, used, or
/// dropped.
local_use_map: &'a LocalUseMap,
}
struct DropData<'tcx> {
dropck_result: DropckOutlivesResult<'tcx>,
region_constraint_data: Option<&'tcx QueryRegionConstraints<'tcx>>,
}
struct LivenessResults<'a, 'typeck, 'b, 'tcx> {
cx: LivenessContext<'a, 'typeck, 'b, 'tcx>,
/// Set of points that define the current local.
defs: DenseBitSet<PointIndex>,
/// Points where the current variable is "use live" -- meaning
/// that there is a future "full use" that may use its value.
use_live_at: IntervalSet<PointIndex>,
/// Points where the current variable is "drop live" -- meaning
/// that there is no future "full use" that may use its value, but
/// there is a future drop.
drop_live_at: IntervalSet<PointIndex>,
/// Locations where drops may occur.
drop_locations: Vec<Location>,
/// Stack used when doing (reverse) DFS.
stack: Vec<PointIndex>,
}
impl<'a, 'typeck, 'b, 'tcx> LivenessResults<'a, 'typeck, 'b, 'tcx> {
fn new(cx: LivenessContext<'a, 'typeck, 'b, 'tcx>) -> Self {
let num_points = cx.location_map.num_points();
LivenessResults {
cx,
defs: DenseBitSet::new_empty(num_points),
use_live_at: IntervalSet::new(num_points),
drop_live_at: IntervalSet::new(num_points),
drop_locations: vec![],
stack: vec![],
}
}
fn compute_for_all_locals(&mut self, relevant_live_locals: Vec<Local>) {
for local in relevant_live_locals {
self.reset_local_state();
self.add_defs_for(local);
self.compute_use_live_points_for(local);
self.compute_drop_live_points_for(local);
let local_ty = self.cx.body.local_decls[local].ty;
if !self.use_live_at.is_empty() {
self.cx.add_use_live_facts_for(local_ty, &self.use_live_at);
}
if !self.drop_live_at.is_empty() {
self.cx.add_drop_live_facts_for(
local,
local_ty,
&self.drop_locations,
&self.drop_live_at,
);
}
}
}
/// Runs dropck for locals whose liveness isn't relevant. This is
/// necessary to eagerly detect unbound recursion during drop glue computation.
///
/// These are all the locals which do not potentially reference a region local
/// to this body. Locals which only reference free regions are always drop-live
/// and can therefore safely be dropped.
fn dropck_boring_locals(&mut self, boring_locals: Vec<Local>) {
for local in boring_locals {
let local_ty = self.cx.body.local_decls[local].ty;
let drop_data = self.cx.drop_data.entry(local_ty).or_insert_with({
let typeck = &self.cx.typeck;
move || LivenessContext::compute_drop_data(typeck, local_ty)
});
drop_data.dropck_result.report_overflows(
self.cx.typeck.infcx.tcx,
self.cx.body.local_decls[local].source_info.span,
local_ty,
);
}
}
/// Add extra drop facts needed for Polonius.
///
/// Add facts for all locals with free regions, since regions may outlive
/// the function body only at certain nodes in the CFG.
fn add_extra_drop_facts(&mut self, relevant_live_locals: &[Local]) {
// This collect is more necessary than immediately apparent
// because these facts go into `add_drop_live_facts_for()`,
// which also writes to `polonius_facts`, and so this is genuinely
// a simultaneous overlapping mutable borrow.
// FIXME for future hackers: investigate whether this is
// actually necessary; these facts come from Polonius
// and probably maybe plausibly does not need to go back in.
// It may be necessary to just pick out the parts of
// `add_drop_live_facts_for()` that make sense.
let Some(facts) = self.cx.typeck.polonius_facts.as_ref() else { return };
let facts_to_add: Vec<_> = {
let relevant_live_locals: FxIndexSet<_> =
relevant_live_locals.iter().copied().collect();
facts
.var_dropped_at
.iter()
.filter_map(|&(local, location_index)| {
let local_ty = self.cx.body.local_decls[local].ty;
if relevant_live_locals.contains(&local) || !local_ty.has_free_regions() {
return None;
}
let location = self.cx.typeck.location_table.to_location(location_index);
Some((local, local_ty, location))
})
.collect()
};
let live_at = IntervalSet::new(self.cx.location_map.num_points());
for (local, local_ty, location) in facts_to_add {
self.cx.add_drop_live_facts_for(local, local_ty, &[location], &live_at);
}
}
/// Clear the value of fields that are "per local variable".
fn reset_local_state(&mut self) {
self.defs.clear();
self.use_live_at.clear();
self.drop_live_at.clear();
self.drop_locations.clear();
assert!(self.stack.is_empty());
}
/// Adds the definitions of `local` into `self.defs`.
fn add_defs_for(&mut self, local: Local) {
for def in self.cx.local_use_map.defs(local) {
debug!("- defined at {:?}", def);
self.defs.insert(def);
}
}
/// Computes all points where local is "use live" -- meaning its
/// current value may be used later (except by a drop). This is
/// done by walking backwards from each use of `local` until we
/// find a `def` of local.
///
/// Requires `add_defs_for(local)` to have been executed.
fn compute_use_live_points_for(&mut self, local: Local) {
debug!("compute_use_live_points_for(local={:?})", local);
self.stack.extend(self.cx.local_use_map.uses(local));
while let Some(p) = self.stack.pop() {
// We are live in this block from the closest to us of:
//
// * Inclusively, the block start
// * Exclusively, the previous definition (if it's in this block)
// * Exclusively, the previous live_at setting (an optimization)
let block_start = self.cx.location_map.to_block_start(p);
let previous_defs = self.defs.last_set_in(block_start..=p);
let previous_live_at = self.use_live_at.last_set_in(block_start..=p);
let exclusive_start = match (previous_defs, previous_live_at) {
(Some(a), Some(b)) => Some(std::cmp::max(a, b)),
(Some(a), None) | (None, Some(a)) => Some(a),
(None, None) => None,
};
if let Some(exclusive) = exclusive_start {
self.use_live_at.insert_range(exclusive + 1..=p);
// If we have a bound after the start of the block, we should
// not add the predecessors for this block.
continue;
} else {
// Add all the elements of this block.
self.use_live_at.insert_range(block_start..=p);
// Then add the predecessors for this block, which are the
// terminators of predecessor basic blocks. Push those onto the
// stack so that the next iteration(s) will process them.
let block = self.cx.location_map.to_location(block_start).block;
self.stack.extend(
self.cx.body.basic_blocks.predecessors()[block]
.iter()
.map(|&pred_bb| self.cx.body.terminator_loc(pred_bb))
.map(|pred_loc| self.cx.location_map.point_from_location(pred_loc)),
);
}
}
}
/// Computes all points where local is "drop live" -- meaning its
/// current value may be dropped later (but not used). This is
/// done by iterating over the drops of `local` where `local` (or
/// some subpart of `local`) is initialized. For each such drop,
/// we walk backwards until we find a point where `local` is
/// either defined or use-live.
///
/// Requires `compute_use_live_points_for` and `add_defs_for` to
/// have been executed.
fn compute_drop_live_points_for(&mut self, local: Local) {
debug!("compute_drop_live_points_for(local={:?})", local);
let Some(mpi) = self.cx.move_data.rev_lookup.find_local(local) else { return };
debug!("compute_drop_live_points_for: mpi = {:?}", mpi);
// Find the drops where `local` is initialized.
for drop_point in self.cx.local_use_map.drops(local) {
let location = self.cx.location_map.to_location(drop_point);
debug_assert_eq!(self.cx.body.terminator_loc(location.block), location,);
if self.cx.initialized_at_terminator(location.block, mpi)
&& self.drop_live_at.insert(drop_point)
{
self.drop_locations.push(location);
self.stack.push(drop_point);
}
}
debug!("compute_drop_live_points_for: drop_locations={:?}", self.drop_locations);
// Reverse DFS. But for drops, we do it a bit differently.
// The stack only ever stores *terminators of blocks*. Within
// a block, we walk back the statements in an inner loop.
while let Some(term_point) = self.stack.pop() {
self.compute_drop_live_points_for_block(mpi, term_point);
}
}
/// Executes one iteration of the drop-live analysis loop.
///
/// The parameter `mpi` is the `MovePathIndex` of the local variable
/// we are currently analyzing.
///
/// The point `term_point` represents some terminator in the MIR,
/// where the local `mpi` is drop-live on entry to that terminator.
///
/// This method adds all drop-live points within the block and --
/// where applicable -- pushes the terminators of preceding blocks
/// onto `self.stack`.
fn compute_drop_live_points_for_block(&mut self, mpi: MovePathIndex, term_point: PointIndex) {
debug!(
"compute_drop_live_points_for_block(mpi={:?}, term_point={:?})",
self.cx.move_data.move_paths[mpi].place,
self.cx.location_map.to_location(term_point),
);
// We are only invoked with terminators where `mpi` is
// drop-live on entry.
debug_assert!(self.drop_live_at.contains(term_point));
// Otherwise, scan backwards through the statements in the
// block. One of them may be either a definition or use
// live point.
let term_location = self.cx.location_map.to_location(term_point);
debug_assert_eq!(self.cx.body.terminator_loc(term_location.block), term_location,);
let block = term_location.block;
let entry_point = self.cx.location_map.entry_point(term_location.block);
for p in (entry_point..term_point).rev() {
debug!(
"compute_drop_live_points_for_block: p = {:?}",
self.cx.location_map.to_location(p)
);
if self.defs.contains(p) {
debug!("compute_drop_live_points_for_block: def site");
return;
}
if self.use_live_at.contains(p) {
debug!("compute_drop_live_points_for_block: use-live at {:?}", p);
return;
}
if !self.drop_live_at.insert(p) {
debug!("compute_drop_live_points_for_block: already drop-live");
return;
}
}
let body = self.cx.body;
for &pred_block in body.basic_blocks.predecessors()[block].iter() {
debug!("compute_drop_live_points_for_block: pred_block = {:?}", pred_block,);
// Check whether the variable is (at least partially)
// initialized at the exit of this predecessor. If so, we
// want to enqueue it on our list. If not, go check the
// next block.
//
// Note that we only need to check whether `live_local`
// became de-initialized at basic block boundaries. If it
// were to become de-initialized within the block, that
// would have been a "use-live" transition in the earlier
// loop, and we'd have returned already.
//
// NB. It's possible that the pred-block ends in a call
// which stores to the variable; in that case, the
// variable may be uninitialized "at exit" because this
// call only considers the *unconditional effects* of the
// terminator. *But*, in that case, the terminator is also
// a *definition* of the variable, in which case we want
// to stop the search anyhow. (But see Note 1 below.)
if !self.cx.initialized_at_exit(pred_block, mpi) {
debug!("compute_drop_live_points_for_block: not initialized");
continue;
}
let pred_term_loc = self.cx.body.terminator_loc(pred_block);
let pred_term_point = self.cx.location_map.point_from_location(pred_term_loc);
// If the terminator of this predecessor either *assigns*
// our value or is a "normal use", then stop.
if self.defs.contains(pred_term_point) {
debug!("compute_drop_live_points_for_block: defined at {:?}", pred_term_loc);
continue;
}
if self.use_live_at.contains(pred_term_point) {
debug!("compute_drop_live_points_for_block: use-live at {:?}", pred_term_loc);
continue;
}
// Otherwise, we are drop-live on entry to the terminator,
// so walk it.
if self.drop_live_at.insert(pred_term_point) {
debug!("compute_drop_live_points_for_block: pushed to stack");
self.stack.push(pred_term_point);
}
}
// Note 1. There is a weird scenario that you might imagine
// being problematic here, but which actually cannot happen.
// The problem would be if we had a variable that *is* initialized
// (but dead) on entry to the terminator, and where the current value
// will be dropped in the case of unwind. In that case, we ought to
// consider `X` to be drop-live in between the last use and call.
// Here is the example:
//
// ```
// BB0 {
// X = ...
// use(X); // last use
// ... // <-- X ought to be drop-live here
// X = call() goto BB1 unwind BB2
// }
//
// BB1 {
// DROP(X)
// }
//
// BB2 {
// DROP(X)
// }
// ```
//
// However, the current code would, when walking back from BB2,
// simply stop and never explore BB0. This seems bad! But it turns
// out this code is flawed anyway -- note that the existing value of
// `X` would leak in the case where unwinding did *not* occur.
//
// What we *actually* generate is a store to a temporary
// for the call (`TMP = call()...`) and then a
// `Drop(X)` followed by `X = TMP` to swap that with `X`.
}
}
impl<'tcx> LivenessContext<'_, '_, '_, 'tcx> {
/// Returns `true` if the local variable (or some part of it) is initialized at the current
/// cursor position. Callers should call one of the `seek` methods immediately before to point
/// the cursor to the desired location.
fn initialized_at_curr_loc(&self, mpi: MovePathIndex) -> bool {
let state = self.flow_inits.get();
if state.contains(mpi) {
return true;
}
let move_paths = &self.flow_inits.analysis().move_data().move_paths;
move_paths[mpi].find_descendant(move_paths, |mpi| state.contains(mpi)).is_some()
}
/// Returns `true` if the local variable (or some part of it) is initialized in
/// the terminator of `block`. We need to check this to determine if a
/// DROP of some local variable will have an effect -- note that
/// drops, as they may unwind, are always terminators.
fn initialized_at_terminator(&mut self, block: BasicBlock, mpi: MovePathIndex) -> bool {
self.flow_inits.seek_before_primary_effect(self.body.terminator_loc(block));
self.initialized_at_curr_loc(mpi)
}
/// Returns `true` if the path `mpi` (or some part of it) is initialized at
/// the exit of `block`.
///
/// **Warning:** Does not account for the result of `Call`
/// instructions.
fn initialized_at_exit(&mut self, block: BasicBlock, mpi: MovePathIndex) -> bool {
self.flow_inits.seek_after_primary_effect(self.body.terminator_loc(block));
self.initialized_at_curr_loc(mpi)
}
/// Stores the result that all regions in `value` are live for the
/// points `live_at`.
fn add_use_live_facts_for(&mut self, value: Ty<'tcx>, live_at: &IntervalSet<PointIndex>) {
debug!("add_use_live_facts_for(value={:?})", value);
Self::make_all_regions_live(self.location_map, self.typeck, value, live_at);
}
/// Some variable with type `live_ty` is "drop live" at `location`
/// -- i.e., it may be dropped later. This means that *some* of
/// the regions in its type must be live at `location`. The
/// precise set will depend on the dropck constraints, and in
/// particular this takes `#[may_dangle]` into account.
fn add_drop_live_facts_for(
&mut self,
dropped_local: Local,
dropped_ty: Ty<'tcx>,
drop_locations: &[Location],
live_at: &IntervalSet<PointIndex>,
) {
debug!(
"add_drop_live_constraint(\
dropped_local={:?}, \
dropped_ty={:?}, \
drop_locations={:?}, \
live_at={:?})",
dropped_local,
dropped_ty,
drop_locations,
values::pretty_print_points(self.location_map, live_at.iter()),
);
let drop_data = self.drop_data.entry(dropped_ty).or_insert_with({
let typeck = &self.typeck;
move || Self::compute_drop_data(typeck, dropped_ty)
});
if let Some(data) = &drop_data.region_constraint_data {
for &drop_location in drop_locations {
self.typeck.push_region_constraints(
drop_location.to_locations(),
ConstraintCategory::Boring,
data,
);
}
}
drop_data.dropck_result.report_overflows(
self.typeck.infcx.tcx,
self.body.source_info(*drop_locations.first().unwrap()).span,
dropped_ty,
);
// All things in the `outlives` array may be touched by
// the destructor and must be live at this point.
for &kind in &drop_data.dropck_result.kinds {
Self::make_all_regions_live(self.location_map, self.typeck, kind, live_at);
polonius::legacy::emit_drop_facts(
self.typeck.tcx(),
dropped_local,
&kind,
self.typeck.universal_regions,
self.typeck.polonius_facts,
);
}
}
fn make_all_regions_live(
location_map: &DenseLocationMap,
typeck: &mut TypeChecker<'_, 'tcx>,
value: impl TypeVisitable<TyCtxt<'tcx>> + Relate<TyCtxt<'tcx>>,
live_at: &IntervalSet<PointIndex>,
) {
debug!("make_all_regions_live(value={:?})", value);
debug!(
"make_all_regions_live: live_at={}",
values::pretty_print_points(location_map, live_at.iter()),
);
value.visit_with(&mut for_liveness::FreeRegionsVisitor {
tcx: typeck.tcx(),
param_env: typeck.infcx.param_env,
op: |r| {
let live_region_vid = typeck.universal_regions.to_region_vid(r);
typeck.constraints.liveness_constraints.add_points(live_region_vid, live_at);
},
});
// When using `-Zpolonius=next`, we record the variance of each live region.
if let Some(polonius_context) = typeck.polonius_context {
polonius_context.record_live_region_variance(
typeck.infcx.tcx,
typeck.universal_regions,
value,
);
}
}
fn compute_drop_data(typeck: &TypeChecker<'_, 'tcx>, dropped_ty: Ty<'tcx>) -> DropData<'tcx> {
debug!("compute_drop_data(dropped_ty={:?})", dropped_ty,);
match typeck
.infcx
.param_env
.and(DropckOutlives { dropped_ty })
.fully_perform(typeck.infcx, DUMMY_SP)
{
Ok(TypeOpOutput { output, constraints, .. }) => {
DropData { dropck_result: output, region_constraint_data: constraints }
}
Err(_) => DropData { dropck_result: Default::default(), region_constraint_data: None },
}
}
}