rustc_middle/mir/query.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
//! Values computed by queries that use MIR.
use std::cell::Cell;
use std::fmt::{self, Debug};
use derive_where::derive_where;
use rustc_abi::{FieldIdx, VariantIdx};
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def_id::LocalDefId;
use rustc_index::bit_set::BitMatrix;
use rustc_index::{Idx, IndexVec};
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_span::Span;
use rustc_span::symbol::Symbol;
use smallvec::SmallVec;
use super::{ConstValue, SourceInfo};
use crate::mir;
use crate::ty::{self, CoroutineArgsExt, OpaqueHiddenType, Ty, TyCtxt};
rustc_index::newtype_index! {
#[derive(HashStable)]
#[encodable]
#[debug_format = "_{}"]
pub struct CoroutineSavedLocal {}
}
#[derive(Clone, Debug, PartialEq, Eq)]
#[derive(TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct CoroutineSavedTy<'tcx> {
pub ty: Ty<'tcx>,
/// Source info corresponding to the local in the original MIR body.
pub source_info: SourceInfo,
/// Whether the local should be ignored for trait bound computations.
pub ignore_for_traits: bool,
}
/// The layout of coroutine state.
#[derive(Clone, PartialEq, Eq)]
#[derive(TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct CoroutineLayout<'tcx> {
/// The type of every local stored inside the coroutine.
pub field_tys: IndexVec<CoroutineSavedLocal, CoroutineSavedTy<'tcx>>,
/// The name for debuginfo.
pub field_names: IndexVec<CoroutineSavedLocal, Option<Symbol>>,
/// Which of the above fields are in each variant. Note that one field may
/// be stored in multiple variants.
pub variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>>,
/// The source that led to each variant being created (usually, a yield or
/// await).
pub variant_source_info: IndexVec<VariantIdx, SourceInfo>,
/// Which saved locals are storage-live at the same time. Locals that do not
/// have conflicts with each other are allowed to overlap in the computed
/// layout.
#[type_foldable(identity)]
#[type_visitable(ignore)]
pub storage_conflicts: BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
}
impl Debug for CoroutineLayout<'_> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// Prints an iterator of (key, value) tuples as a map.
struct MapPrinter<'a, K, V>(Cell<Option<Box<dyn Iterator<Item = (K, V)> + 'a>>>);
impl<'a, K, V> MapPrinter<'a, K, V> {
fn new(iter: impl Iterator<Item = (K, V)> + 'a) -> Self {
Self(Cell::new(Some(Box::new(iter))))
}
}
impl<'a, K: Debug, V: Debug> Debug for MapPrinter<'a, K, V> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_map().entries(self.0.take().unwrap()).finish()
}
}
/// Prints the coroutine variant name.
struct GenVariantPrinter(VariantIdx);
impl From<VariantIdx> for GenVariantPrinter {
fn from(idx: VariantIdx) -> Self {
GenVariantPrinter(idx)
}
}
impl Debug for GenVariantPrinter {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let variant_name = ty::CoroutineArgs::variant_name(self.0);
if fmt.alternate() {
write!(fmt, "{:9}({:?})", variant_name, self.0)
} else {
write!(fmt, "{variant_name}")
}
}
}
/// Forces its contents to print in regular mode instead of alternate mode.
struct OneLinePrinter<T>(T);
impl<T: Debug> Debug for OneLinePrinter<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "{:?}", self.0)
}
}
fmt.debug_struct("CoroutineLayout")
.field("field_tys", &MapPrinter::new(self.field_tys.iter_enumerated()))
.field(
"variant_fields",
&MapPrinter::new(
self.variant_fields
.iter_enumerated()
.map(|(k, v)| (GenVariantPrinter(k), OneLinePrinter(v))),
),
)
.field("storage_conflicts", &self.storage_conflicts)
.finish()
}
}
#[derive(Debug, TyEncodable, TyDecodable, HashStable)]
pub struct BorrowCheckResult<'tcx> {
/// All the opaque types that are restricted to concrete types
/// by this function. Unlike the value in `TypeckResults`, this has
/// unerased regions.
pub concrete_opaque_types: FxIndexMap<LocalDefId, OpaqueHiddenType<'tcx>>,
pub closure_requirements: Option<ClosureRegionRequirements<'tcx>>,
pub used_mut_upvars: SmallVec<[FieldIdx; 8]>,
pub tainted_by_errors: Option<ErrorGuaranteed>,
}
/// The result of the `mir_const_qualif` query.
///
/// Each field (except `tainted_by_errors`) corresponds to an implementer of the `Qualif` trait in
/// `rustc_const_eval/src/transform/check_consts/qualifs.rs`. See that file for more information on each
/// `Qualif`.
#[derive(Clone, Copy, Debug, Default, TyEncodable, TyDecodable, HashStable)]
pub struct ConstQualifs {
pub has_mut_interior: bool,
pub needs_drop: bool,
pub needs_non_const_drop: bool,
pub tainted_by_errors: Option<ErrorGuaranteed>,
}
/// After we borrow check a closure, we are left with various
/// requirements that we have inferred between the free regions that
/// appear in the closure's signature or on its field types. These
/// requirements are then verified and proved by the closure's
/// creating function. This struct encodes those requirements.
///
/// The requirements are listed as being between various `RegionVid`. The 0th
/// region refers to `'static`; subsequent region vids refer to the free
/// regions that appear in the closure (or coroutine's) type, in order of
/// appearance. (This numbering is actually defined by the `UniversalRegions`
/// struct in the NLL region checker. See for example
/// `UniversalRegions::closure_mapping`.) Note the free regions in the
/// closure's signature and captures are erased.
///
/// Example: If type check produces a closure with the closure args:
///
/// ```text
/// ClosureArgs = [
/// 'a, // From the parent.
/// 'b,
/// i8, // the "closure kind"
/// for<'x> fn(&'<erased> &'x u32) -> &'x u32, // the "closure signature"
/// &'<erased> String, // some upvar
/// ]
/// ```
///
/// We would "renumber" each free region to a unique vid, as follows:
///
/// ```text
/// ClosureArgs = [
/// '1, // From the parent.
/// '2,
/// i8, // the "closure kind"
/// for<'x> fn(&'3 &'x u32) -> &'x u32, // the "closure signature"
/// &'4 String, // some upvar
/// ]
/// ```
///
/// Now the code might impose a requirement like `'1: '2`. When an
/// instance of the closure is created, the corresponding free regions
/// can be extracted from its type and constrained to have the given
/// outlives relationship.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct ClosureRegionRequirements<'tcx> {
/// The number of external regions defined on the closure. In our
/// example above, it would be 3 -- one for `'static`, then `'1`
/// and `'2`. This is just used for a sanity check later on, to
/// make sure that the number of regions we see at the callsite
/// matches.
pub num_external_vids: usize,
/// Requirements between the various free regions defined in
/// indices.
pub outlives_requirements: Vec<ClosureOutlivesRequirement<'tcx>>,
}
/// Indicates an outlives-constraint between a type or between two
/// free regions declared on the closure.
#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct ClosureOutlivesRequirement<'tcx> {
// This region or type ...
pub subject: ClosureOutlivesSubject<'tcx>,
// ... must outlive this one.
pub outlived_free_region: ty::RegionVid,
// If not, report an error here ...
pub blame_span: Span,
// ... due to this reason.
pub category: ConstraintCategory<'tcx>,
}
// Make sure this enum doesn't unintentionally grow
#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(ConstraintCategory<'_>, 16);
/// Outlives-constraints can be categorized to determine whether and why they
/// are interesting (for error reporting). Order of variants indicates sort
/// order of the category, thereby influencing diagnostic output.
///
/// See also `rustc_const_eval::borrow_check::constraints`.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[derive(TyEncodable, TyDecodable, HashStable, TypeVisitable, TypeFoldable)]
#[derive_where(PartialOrd, Ord)]
pub enum ConstraintCategory<'tcx> {
Return(ReturnConstraint),
Yield,
UseAsConst,
UseAsStatic,
TypeAnnotation,
Cast {
/// Whether this cast is a coercion that was automatically inserted by the compiler.
is_implicit_coercion: bool,
/// Whether this is an unsizing coercion and if yes, this contains the target type.
/// Region variables are erased to ReErased.
#[derive_where(skip)]
unsize_to: Option<Ty<'tcx>>,
},
/// A constraint that came from checking the body of a closure.
///
/// We try to get the category that the closure used when reporting this.
ClosureBounds,
/// Contains the function type if available.
CallArgument(#[derive_where(skip)] Option<Ty<'tcx>>),
CopyBound,
SizedBound,
Assignment,
/// A constraint that came from a usage of a variable (e.g. in an ADT expression
/// like `Foo { field: my_val }`)
Usage,
OpaqueType,
ClosureUpvar(FieldIdx),
/// A constraint from a user-written predicate
/// with the provided span, written on the item
/// with the given `DefId`
Predicate(Span),
/// A "boring" constraint (caused by the given location) is one that
/// the user probably doesn't want to see described in diagnostics,
/// because it is kind of an artifact of the type system setup.
Boring,
// Boring and applicable everywhere.
BoringNoLocation,
/// A constraint that doesn't correspond to anything the user sees.
Internal,
/// An internal constraint derived from an illegal universe relation.
IllegalUniverse,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash)]
#[derive(TyEncodable, TyDecodable, HashStable, TypeVisitable, TypeFoldable)]
pub enum ReturnConstraint {
Normal,
ClosureUpvar(FieldIdx),
}
/// The subject of a `ClosureOutlivesRequirement` -- that is, the thing
/// that must outlive some region.
#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub enum ClosureOutlivesSubject<'tcx> {
/// Subject is a type, typically a type parameter, but could also
/// be a projection. Indicates a requirement like `T: 'a` being
/// passed to the caller, where the type here is `T`.
Ty(ClosureOutlivesSubjectTy<'tcx>),
/// Subject is a free region from the closure. Indicates a requirement
/// like `'a: 'b` being passed to the caller; the region here is `'a`.
Region(ty::RegionVid),
}
/// Represents a `ty::Ty` for use in [`ClosureOutlivesSubject`].
///
/// This abstraction is necessary because the type may include `ReVar` regions,
/// which is what we use internally within NLL code, and they can't be used in
/// a query response.
///
/// DO NOT implement `TypeVisitable` or `TypeFoldable` traits, because this
/// type is not recognized as a binder for late-bound region.
#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct ClosureOutlivesSubjectTy<'tcx> {
inner: Ty<'tcx>,
}
impl<'tcx> ClosureOutlivesSubjectTy<'tcx> {
/// All regions of `ty` must be of kind `ReVar` and must represent
/// universal regions *external* to the closure.
pub fn bind(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Self {
let inner = tcx.fold_regions(ty, |r, depth| match r.kind() {
ty::ReVar(vid) => {
let br = ty::BoundRegion {
var: ty::BoundVar::new(vid.index()),
kind: ty::BoundRegionKind::Anon,
};
ty::Region::new_bound(tcx, depth, br)
}
_ => bug!("unexpected region in ClosureOutlivesSubjectTy: {r:?}"),
});
Self { inner }
}
pub fn instantiate(
self,
tcx: TyCtxt<'tcx>,
mut map: impl FnMut(ty::RegionVid) -> ty::Region<'tcx>,
) -> Ty<'tcx> {
tcx.fold_regions(self.inner, |r, depth| match r.kind() {
ty::ReBound(debruijn, br) => {
debug_assert_eq!(debruijn, depth);
map(ty::RegionVid::new(br.var.index()))
}
_ => bug!("unexpected region {r:?}"),
})
}
}
/// The constituent parts of a mir constant of kind ADT or array.
#[derive(Copy, Clone, Debug, HashStable)]
pub struct DestructuredConstant<'tcx> {
pub variant: Option<VariantIdx>,
pub fields: &'tcx [(ConstValue<'tcx>, Ty<'tcx>)],
}
/// Summarizes coverage IDs inserted by the `InstrumentCoverage` MIR pass
/// (for compiler option `-Cinstrument-coverage`), after MIR optimizations
/// have had a chance to potentially remove some of them.
///
/// Used by the `coverage_ids_info` query.
#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable)]
pub struct CoverageIdsInfo {
/// Coverage codegen needs to know the highest counter ID that is ever
/// incremented within a function, so that it can set the `num-counters`
/// argument of the `llvm.instrprof.increment` intrinsic.
///
/// This may be less than the highest counter ID emitted by the
/// InstrumentCoverage MIR pass, if the highest-numbered counter increments
/// were removed by MIR optimizations.
pub max_counter_id: mir::coverage::CounterId,
}