1use std::fmt;
23use itertools::Either;
4use rustc_abias abi;
5use rustc_abi::{
6Align, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, TagEncoding, VariantIdx, Variants,
7};
8use rustc_hir::LangItem;
9use rustc_middle::mir::interpret::{Pointer, Scalar, alloc_range};
10use rustc_middle::mir::{self, ConstValue};
11use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
12use rustc_middle::ty::{self, Ty};
13use rustc_middle::{bug, span_bug};
14use rustc_session::config::{AnnotateMoves, DebugInfo, OptLevel};
15use tracing::{debug, instrument};
1617use super::place::{PlaceRef, PlaceValue};
18use super::rvalue::transmute_scalar;
19use super::{FunctionCx, LocalRef};
20use crate::MemFlags;
21use crate::common::IntPredicate;
22use crate::traits::*;
2324/// The representation of a Rust value. The enum variant is in fact
25/// uniquely determined by the value's type, but is kept as a
26/// safety check.
27#[derive(#[automatically_derived]
impl<V: ::core::marker::Copy> ::core::marker::Copy for OperandValue<V> { }Copy, #[automatically_derived]
impl<V: ::core::clone::Clone> ::core::clone::Clone for OperandValue<V> {
#[inline]
fn clone(&self) -> OperandValue<V> {
match self {
OperandValue::Ref(__self_0) =>
OperandValue::Ref(::core::clone::Clone::clone(__self_0)),
OperandValue::Immediate(__self_0) =>
OperandValue::Immediate(::core::clone::Clone::clone(__self_0)),
OperandValue::Pair(__self_0, __self_1) =>
OperandValue::Pair(::core::clone::Clone::clone(__self_0),
::core::clone::Clone::clone(__self_1)),
OperandValue::ZeroSized => OperandValue::ZeroSized,
}
}
}Clone, #[automatically_derived]
impl<V: ::core::fmt::Debug> ::core::fmt::Debug for OperandValue<V> {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
OperandValue::Ref(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Ref",
&__self_0),
OperandValue::Immediate(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"Immediate", &__self_0),
OperandValue::Pair(__self_0, __self_1) =>
::core::fmt::Formatter::debug_tuple_field2_finish(f, "Pair",
__self_0, &__self_1),
OperandValue::ZeroSized =>
::core::fmt::Formatter::write_str(f, "ZeroSized"),
}
}
}Debug)]
28pub enum OperandValue<V> {
29/// A reference to the actual operand. The data is guaranteed
30 /// to be valid for the operand's lifetime.
31 /// The second value, if any, is the extra data (vtable or length)
32 /// which indicates that it refers to an unsized rvalue.
33 ///
34 /// An `OperandValue` *must* be this variant for any type for which
35 /// [`LayoutTypeCodegenMethods::is_backend_ref`] returns `true`.
36 /// (That basically amounts to "isn't one of the other variants".)
37 ///
38 /// This holds a [`PlaceValue`] (like a [`PlaceRef`] does) with a pointer
39 /// to the location holding the value. The type behind that pointer is the
40 /// one returned by [`LayoutTypeCodegenMethods::backend_type`].
41Ref(PlaceValue<V>),
42/// A single LLVM immediate value.
43 ///
44 /// An `OperandValue` *must* be this variant for any type for which
45 /// [`LayoutTypeCodegenMethods::is_backend_immediate`] returns `true`.
46 /// The backend value in this variant must be the *immediate* backend type,
47 /// as returned by [`LayoutTypeCodegenMethods::immediate_backend_type`].
48Immediate(V),
49/// A pair of immediate LLVM values. Used by wide pointers too.
50 ///
51 /// # Invariants
52 /// - For `Pair(a, b)`, `a` is always at offset 0, but may have `FieldIdx(1..)`
53 /// - `b` is not at offset 0, because `V` is not a 1ZST type.
54 /// - `a` and `b` will have a different FieldIdx, but otherwise `b`'s may be lower
55 /// or they may not be adjacent, due to arbitrary numbers of 1ZST fields that
56 /// will not affect the shape of the data which determines if `Pair` will be used.
57 /// - An `OperandValue` *must* be this variant for any type for which
58 /// [`LayoutTypeCodegenMethods::is_backend_scalar_pair`] returns `true`.
59 /// - The backend values in this variant must be the *immediate* backend types,
60 /// as returned by [`LayoutTypeCodegenMethods::scalar_pair_element_backend_type`]
61 /// with `immediate: true`.
62Pair(V, V),
63/// A value taking no bytes, and which therefore needs no LLVM value at all.
64 ///
65 /// If you ever need a `V` to pass to something, get a fresh poison value
66 /// from [`ConstCodegenMethods::const_poison`].
67 ///
68 /// An `OperandValue` *must* be this variant for any type for which
69 /// `is_zst` on its `Layout` returns `true`. Note however that
70 /// these values can still require alignment.
71ZeroSized,
72}
7374impl<V: CodegenObject> OperandValue<V> {
75/// Return the data pointer and optional metadata as backend values
76 /// if this value can be treat as a pointer.
77pub(crate) fn try_pointer_parts(self) -> Option<(V, Option<V>)> {
78match self {
79 OperandValue::Immediate(llptr) => Some((llptr, None)),
80 OperandValue::Pair(llptr, llextra) => Some((llptr, Some(llextra))),
81 OperandValue::Ref(_) | OperandValue::ZeroSized => None,
82 }
83 }
8485/// Treat this value as a pointer and return the data pointer and
86 /// optional metadata as backend values.
87 ///
88 /// If you're making a place, use [`Self::deref`] instead.
89pub(crate) fn pointer_parts(self) -> (V, Option<V>) {
90self.try_pointer_parts()
91 .unwrap_or_else(|| ::rustc_middle::util::bug::bug_fmt(format_args!("OperandValue cannot be a pointer: {0:?}",
self))bug!("OperandValue cannot be a pointer: {self:?}"))
92 }
9394/// Treat this value as a pointer and return the place to which it points.
95 ///
96 /// The pointer immediate doesn't inherently know its alignment,
97 /// so you need to pass it in. If you want to get it from a type's ABI
98 /// alignment, then maybe you want [`OperandRef::deref`] instead.
99 ///
100 /// This is the inverse of [`PlaceValue::address`].
101pub(crate) fn deref(self, align: Align) -> PlaceValue<V> {
102let (llval, llextra) = self.pointer_parts();
103PlaceValue { llval, llextra, align }
104 }
105106pub(crate) fn is_expected_variant_for_type<'tcx, Cx: LayoutTypeCodegenMethods<'tcx>>(
107&self,
108 cx: &Cx,
109 ty: TyAndLayout<'tcx>,
110 ) -> bool {
111match self {
112 OperandValue::ZeroSized => ty.is_zst(),
113 OperandValue::Immediate(_) => cx.is_backend_immediate(ty),
114 OperandValue::Pair(_, _) => cx.is_backend_scalar_pair(ty),
115 OperandValue::Ref(_) => cx.is_backend_ref(ty),
116 }
117 }
118}
119120/// An `OperandRef` is an "SSA" reference to a Rust value, along with
121/// its type.
122///
123/// NOTE: unless you know a value's type exactly, you should not
124/// generate LLVM opcodes acting on it and instead act via methods,
125/// to avoid nasty edge cases. In particular, using `Builder::store`
126/// directly is sure to cause problems -- use `OperandRef::store`
127/// instead.
128#[derive(#[automatically_derived]
impl<'tcx, V: ::core::marker::Copy> ::core::marker::Copy for
OperandRef<'tcx, V> {
}Copy, #[automatically_derived]
impl<'tcx, V: ::core::clone::Clone> ::core::clone::Clone for
OperandRef<'tcx, V> {
#[inline]
fn clone(&self) -> OperandRef<'tcx, V> {
OperandRef {
val: ::core::clone::Clone::clone(&self.val),
layout: ::core::clone::Clone::clone(&self.layout),
move_annotation: ::core::clone::Clone::clone(&self.move_annotation),
}
}
}Clone)]
129pub struct OperandRef<'tcx, V> {
130/// The value.
131pub val: OperandValue<V>,
132133/// The layout of value, based on its Rust type.
134pub layout: TyAndLayout<'tcx>,
135136/// Annotation for profiler visibility of move/copy operations.
137 /// When set, the store operation should appear as an inlined call to this function.
138pub move_annotation: Option<ty::Instance<'tcx>>,
139}
140141impl<V: CodegenObject> fmt::Debugfor OperandRef<'_, V> {
142fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
143f.write_fmt(format_args!("OperandRef({0:?} @ {1:?})", self.val, self.layout))write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)144 }
145}
146147impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
148pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
149if !layout.is_zst() {
::core::panicking::panic("assertion failed: layout.is_zst()")
};assert!(layout.is_zst());
150OperandRef { val: OperandValue::ZeroSized, layout, move_annotation: None }
151 }
152153pub(crate) fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
154 bx: &mut Bx,
155 val: mir::ConstValue,
156 ty: Ty<'tcx>,
157 ) -> Self {
158let layout = bx.layout_of(ty);
159160let val = match val {
161 ConstValue::Scalar(x) => {
162let BackendRepr::Scalar(scalar) = layout.backend_repr else {
163::rustc_middle::util::bug::bug_fmt(format_args!("from_const: invalid ByVal layout: {0:#?}",
layout));bug!("from_const: invalid ByVal layout: {:#?}", layout);
164 };
165let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
166 OperandValue::Immediate(llval)
167 }
168 ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
169 ConstValue::Slice { alloc_id, meta } => {
170let BackendRepr::ScalarPair(a_scalar, _) = layout.backend_repr else {
171::rustc_middle::util::bug::bug_fmt(format_args!("from_const: invalid ScalarPair layout: {0:#?}",
layout));bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
172 };
173let a = Scalar::from_pointer(Pointer::new(alloc_id.into(), Size::ZERO), &bx.tcx());
174let a_llval = bx.scalar_to_backend(
175a,
176a_scalar,
177bx.scalar_pair_element_backend_type(layout, 0, true),
178 );
179let b_llval = bx.const_usize(meta);
180 OperandValue::Pair(a_llval, b_llval)
181 }
182 ConstValue::Indirect { alloc_id, offset } => {
183let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
184return Self::from_const_alloc(bx, layout, alloc, offset);
185 }
186 };
187188OperandRef { val, layout, move_annotation: None }
189 }
190191fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
192 bx: &mut Bx,
193 layout: TyAndLayout<'tcx>,
194 alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
195 offset: Size,
196 ) -> Self {
197let alloc_align = alloc.inner().align;
198if !(alloc_align >= layout.align.abi) {
{
::core::panicking::panic_fmt(format_args!("{1:?} < {0:?}",
layout.align.abi, alloc_align));
}
};assert!(alloc_align >= layout.align.abi, "{alloc_align:?} < {:?}", layout.align.abi);
199200let read_scalar = |start, size, s: abi::Scalar, ty| {
201match alloc.0.read_scalar(
202bx,
203alloc_range(start, size),
204/*read_provenance*/ #[allow(non_exhaustive_omitted_patterns)] match s.primitive() {
abi::Primitive::Pointer(_) => true,
_ => false,
}matches!(s.primitive(), abi::Primitive::Pointer(_)),
205 ) {
206Ok(val) => bx.scalar_to_backend(val, s, ty),
207Err(_) => bx.const_poison(ty),
208 }
209 };
210211// It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
212 // However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
213 // and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
214 // case where some of the bytes are initialized and others are not. So, we need an extra
215 // check that walks over the type of `mplace` to make sure it is truly correct to treat this
216 // like a `Scalar` (or `ScalarPair`).
217match layout.backend_repr {
218 BackendRepr::Scalar(s @ abi::Scalar::Initialized { .. }) => {
219let size = s.size(bx);
220match (&size, &layout.size) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::Some(format_args!("abi::Scalar size does not match layout size")));
}
}
};assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
221let val = read_scalar(offset, size, s, bx.immediate_backend_type(layout));
222OperandRef { val: OperandValue::Immediate(val), layout, move_annotation: None }
223 }
224 BackendRepr::ScalarPair(
225 a @ abi::Scalar::Initialized { .. },
226 b @ abi::Scalar::Initialized { .. },
227 ) => {
228let (a_size, b_size) = (a.size(bx), b.size(bx));
229let b_offset = (offset + a_size).align_to(b.align(bx).abi);
230if !(b_offset.bytes() > 0) {
::core::panicking::panic("assertion failed: b_offset.bytes() > 0")
};assert!(b_offset.bytes() > 0);
231let a_val = read_scalar(
232offset,
233a_size,
234a,
235bx.scalar_pair_element_backend_type(layout, 0, true),
236 );
237let b_val = read_scalar(
238b_offset,
239b_size,
240b,
241bx.scalar_pair_element_backend_type(layout, 1, true),
242 );
243OperandRef { val: OperandValue::Pair(a_val, b_val), layout, move_annotation: None }
244 }
245_ if layout.is_zst() => OperandRef::zero_sized(layout),
246_ => {
247// Neither a scalar nor scalar pair. Load from a place
248 // FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
249 // same `ConstAllocation`?
250let init = bx.const_data_from_alloc(alloc);
251let base_addr = bx.static_addr_of(init, alloc_align, None);
252253let llval = bx.const_ptr_byte_offset(base_addr, offset);
254bx.load_operand(PlaceRef::new_sized(llval, layout))
255 }
256 }
257 }
258259/// Asserts that this operand refers to a scalar and returns
260 /// a reference to its value.
261pub fn immediate(self) -> V {
262match self.val {
263 OperandValue::Immediate(s) => s,
264_ => ::rustc_middle::util::bug::bug_fmt(format_args!("not immediate: {0:?}", self))bug!("not immediate: {:?}", self),
265 }
266 }
267268/// Asserts that this operand is a pointer (or reference) and returns
269 /// the place to which it points. (This requires no code to be emitted
270 /// as we represent places using the pointer to the place.)
271 ///
272 /// This uses [`Ty::builtin_deref`] to include the type of the place and
273 /// assumes the place is aligned to the pointee's usual ABI alignment.
274 ///
275 /// If you don't need the type, see [`OperandValue::pointer_parts`]
276 /// or [`OperandValue::deref`].
277pub fn deref<Cx: CodegenMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
278if self.layout.ty.is_box() {
279// Derefer should have removed all Box derefs
280::rustc_middle::util::bug::bug_fmt(format_args!("dereferencing {0:?} in codegen",
self.layout.ty));bug!("dereferencing {:?} in codegen", self.layout.ty);
281 }
282283let projected_ty = self284 .layout
285 .ty
286 .builtin_deref(true)
287 .unwrap_or_else(|| ::rustc_middle::util::bug::bug_fmt(format_args!("deref of non-pointer {0:?}",
self))bug!("deref of non-pointer {:?}", self));
288289let layout = cx.layout_of(projected_ty);
290self.val.deref(layout.align.abi).with_type(layout)
291 }
292293/// Store this operand into a place, applying move/copy annotation if present.
294 ///
295 /// This is the preferred method for storing operands, as it automatically
296 /// applies profiler annotations for tracked move/copy operations.
297pub fn store_with_annotation<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
298self,
299 bx: &mut Bx,
300 dest: PlaceRef<'tcx, V>,
301 ) {
302if let Some(instance) = self.move_annotation {
303bx.with_move_annotation(instance, |bx| self.val.store(bx, dest))
304 } else {
305self.val.store(bx, dest)
306 }
307 }
308309/// If this operand is a `Pair`, we return an aggregate with the two values.
310 /// For other cases, see `immediate`.
311pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
312self,
313 bx: &mut Bx,
314 ) -> V {
315if let OperandValue::Pair(a, b) = self.val {
316let llty = bx.cx().immediate_backend_type(self.layout);
317{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/mir/operand.rs:317",
"rustc_codegen_ssa::mir::operand", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/mir/operand.rs"),
::tracing_core::__macro_support::Option::Some(317u32),
::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::mir::operand"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("Operand::immediate_or_packed_pair: packing {0:?} into {1:?}",
self, llty) as &dyn Value))])
});
} else { ; }
};debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
318// Reconstruct the immediate aggregate.
319let mut llpair = bx.cx().const_poison(llty);
320llpair = bx.insert_value(llpair, a, 0);
321llpair = bx.insert_value(llpair, b, 1);
322llpair323 } else {
324self.immediate()
325 }
326 }
327328/// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
329pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
330 bx: &mut Bx,
331 llval: V,
332 layout: TyAndLayout<'tcx>,
333 ) -> Self {
334let val = if let BackendRepr::ScalarPair(..) = layout.backend_repr {
335{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/mir/operand.rs:335",
"rustc_codegen_ssa::mir::operand", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/mir/operand.rs"),
::tracing_core::__macro_support::Option::Some(335u32),
::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::mir::operand"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("Operand::from_immediate_or_packed_pair: unpacking {0:?} @ {1:?}",
llval, layout) as &dyn Value))])
});
} else { ; }
};debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
336337// Deconstruct the immediate aggregate.
338let a_llval = bx.extract_value(llval, 0);
339let b_llval = bx.extract_value(llval, 1);
340 OperandValue::Pair(a_llval, b_llval)
341 } else {
342 OperandValue::Immediate(llval)
343 };
344OperandRef { val, layout, move_annotation: None }
345 }
346347pub(crate) fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
348&self,
349 fx: &mut FunctionCx<'a, 'tcx, Bx>,
350 bx: &mut Bx,
351 i: usize,
352 ) -> Self {
353let field = self.layout.field(bx.cx(), i);
354let offset = self.layout.fields.offset(i);
355356if !bx.is_backend_ref(self.layout) && bx.is_backend_ref(field) {
357// Part of https://github.com/rust-lang/compiler-team/issues/838
358::rustc_middle::util::bug::span_bug_fmt(fx.mir.span,
format_args!("Non-ref type {0:?} cannot project to ref field type {1:?}",
self, field));span_bug!(
359fx.mir.span,
360"Non-ref type {self:?} cannot project to ref field type {field:?}",
361 );
362 }
363364let val = if field.is_zst() {
365 OperandValue::ZeroSized366 } else if field.size == self.layout.size {
367match (&offset.bytes(), &0) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(offset.bytes(), 0);
368fx.codegen_transmute_operand(bx, *self, field)
369 } else {
370let (in_scalar, imm) = match (self.val, self.layout.backend_repr) {
371// Extract a scalar component from a pair.
372(OperandValue::Pair(a_llval, b_llval), BackendRepr::ScalarPair(a, b)) => {
373if offset.bytes() == 0 {
374match (&field.size, &a.size(bx.cx())) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(field.size, a.size(bx.cx()));
375 (Some(a), a_llval)
376 } else {
377match (&offset, &a.size(bx.cx()).align_to(b.align(bx.cx()).abi)) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
378match (&field.size, &b.size(bx.cx())) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(field.size, b.size(bx.cx()));
379 (Some(b), b_llval)
380 }
381 }
382383_ => {
384::rustc_middle::util::bug::span_bug_fmt(fx.mir.span,
format_args!("OperandRef::extract_field({0:?}): not applicable", self))span_bug!(fx.mir.span, "OperandRef::extract_field({:?}): not applicable", self)385 }
386 };
387 OperandValue::Immediate(match field.backend_repr {
388 BackendRepr::SimdVector { .. } => imm,
389 BackendRepr::Scalar(out_scalar) => {
390let Some(in_scalar) = in_scalarelse {
391::rustc_middle::util::bug::span_bug_fmt(fx.mir.span,
format_args!("OperandRef::extract_field({0:?}): missing input scalar for output scalar",
self))span_bug!(
392fx.mir.span,
393"OperandRef::extract_field({:?}): missing input scalar for output scalar",
394self
395)396 };
397if in_scalar != out_scalar {
398// If the backend and backend_immediate types might differ,
399 // flip back to the backend type then to the new immediate.
400 // This avoids nop truncations, but still handles things like
401 // Bools in union fields needs to be truncated.
402let backend = bx.from_immediate(imm);
403bx.to_immediate_scalar(backend, out_scalar)
404 } else {
405imm406 }
407 }
408 BackendRepr::ScalarPair(_, _)
409 | BackendRepr::Memory { .. }
410 | BackendRepr::ScalableVector { .. } => ::rustc_middle::util::bug::bug_fmt(format_args!("impossible case reached"))bug!(),
411 })
412 };
413414OperandRef { val, layout: field, move_annotation: None }
415 }
416417/// Obtain the actual discriminant of a value.
418#[allow(clippy :: suspicious_else_formatting)]
{
let __tracing_attr_span;
let __tracing_attr_guard;
if ::tracing::Level::TRACE <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::TRACE <=
::tracing::level_filters::LevelFilter::current() ||
{ false } {
__tracing_attr_span =
{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("codegen_get_discr",
"rustc_codegen_ssa::mir::operand", ::tracing::Level::TRACE,
::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/mir/operand.rs"),
::tracing_core::__macro_support::Option::Some(418u32),
::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::mir::operand"),
::tracing_core::field::FieldSet::new(&["self", "cast_to"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::SPAN)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let mut interest = ::tracing::subscriber::Interest::never();
if ::tracing::Level::TRACE <=
::tracing::level_filters::STATIC_MAX_LEVEL &&
::tracing::Level::TRACE <=
::tracing::level_filters::LevelFilter::current() &&
{ interest = __CALLSITE.interest(); !interest.is_never() }
&&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest) {
let meta = __CALLSITE.metadata();
::tracing::Span::new(meta,
&{
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = meta.fields().iter();
meta.fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&::tracing::field::debug(&self)
as &dyn Value)),
(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&::tracing::field::debug(&cast_to)
as &dyn Value))])
})
} else {
let span =
::tracing::__macro_support::__disabled_span(__CALLSITE.metadata());
{};
span
}
};
__tracing_attr_guard = __tracing_attr_span.enter();
}
#[warn(clippy :: suspicious_else_formatting)]
{
#[allow(unknown_lints, unreachable_code, clippy ::
diverging_sub_expression, clippy :: empty_loop, clippy ::
let_unit_value, clippy :: let_with_type_underscore, clippy ::
needless_return, clippy :: unreachable)]
if false {
let __tracing_attr_fake_return: V = loop {};
return __tracing_attr_fake_return;
}
{
let dl = &bx.tcx().data_layout;
let cast_to_layout = bx.cx().layout_of(cast_to);
let cast_to = bx.cx().immediate_backend_type(cast_to_layout);
if self.layout.is_uninhabited() {
return bx.cx().const_poison(cast_to);
}
let (tag_scalar, tag_encoding, tag_field) =
match self.layout.variants {
Variants::Empty => {
::core::panicking::panic_fmt(format_args!("internal error: entered unreachable code: {0}",
format_args!("we already handled uninhabited types")));
}
Variants::Single { index } => {
let discr_val =
if let Some(discr) =
self.layout.ty.discriminant_for_variant(bx.tcx(), index) {
discr.val
} else {
match (&index, &FIRST_VARIANT) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val, ::core::option::Option::None);
}
}
};
0
};
return bx.cx().const_uint_big(cast_to, discr_val);
}
Variants::Multiple { tag, ref tag_encoding, tag_field, .. }
=> {
(tag, tag_encoding, tag_field)
}
};
let tag_op =
match self.val {
OperandValue::ZeroSized =>
::rustc_middle::util::bug::bug_fmt(format_args!("impossible case reached")),
OperandValue::Immediate(_) | OperandValue::Pair(_, _) => {
self.extract_field(fx, bx, tag_field.as_usize())
}
OperandValue::Ref(place) => {
let tag =
place.with_type(self.layout).project_field(bx,
tag_field.as_usize());
bx.load_operand(tag)
}
};
let tag_imm = tag_op.immediate();
match *tag_encoding {
TagEncoding::Direct => {
let signed =
match tag_scalar.primitive() {
Primitive::Int(_, signed) =>
!tag_scalar.is_bool() && signed,
_ => false,
};
bx.intcast(tag_imm, cast_to, signed)
}
TagEncoding::Niche {
untagged_variant, ref niche_variants, niche_start } => {
let (tag, tag_llty) =
match tag_scalar.primitive() {
Primitive::Pointer(_) => {
let t = bx.type_from_integer(dl.ptr_sized_integer());
let tag = bx.ptrtoint(tag_imm, t);
(tag, t)
}
_ =>
(tag_imm, bx.cx().immediate_backend_type(tag_op.layout)),
};
let relative_max =
niche_variants.end().as_u32() -
niche_variants.start().as_u32();
let niche_start_const =
bx.cx().const_uint_big(tag_llty, niche_start);
let (is_niche, tagged_discr, delta) =
if relative_max == 0 {
let is_niche =
bx.icmp(IntPredicate::IntEQ, tag, niche_start_const);
let tagged_discr =
bx.cx().const_uint(cast_to,
niche_variants.start().as_u32() as u64);
(is_niche, tagged_discr, 0)
} else {
if niche_variants.contains(&untagged_variant) &&
bx.cx().sess().opts.optimize != OptLevel::No {
let impossible =
niche_start.wrapping_add(u128::from(untagged_variant.as_u32())).wrapping_sub(u128::from(niche_variants.start().as_u32()));
let impossible =
bx.cx().const_uint_big(tag_llty, impossible);
let ne = bx.icmp(IntPredicate::IntNE, tag, impossible);
bx.assume(ne);
}
let tag_range = tag_scalar.valid_range(&dl);
let tag_size = tag_scalar.size(&dl);
let niche_end =
u128::from(relative_max).wrapping_add(niche_start);
let niche_end = tag_size.truncate(niche_end);
let relative_discr = bx.sub(tag, niche_start_const);
let cast_tag = bx.intcast(relative_discr, cast_to, false);
let is_niche =
if tag_range.no_unsigned_wraparound(tag_size) == Ok(true) {
if niche_start == tag_range.start {
let niche_end_const =
bx.cx().const_uint_big(tag_llty, niche_end);
bx.icmp(IntPredicate::IntULE, tag, niche_end_const)
} else {
match (&niche_end, &tag_range.end) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val, ::core::option::Option::None);
}
}
};
bx.icmp(IntPredicate::IntUGE, tag, niche_start_const)
}
} else if tag_range.no_signed_wraparound(tag_size) ==
Ok(true) {
if niche_start == tag_range.start {
let niche_end_const =
bx.cx().const_uint_big(tag_llty, niche_end);
bx.icmp(IntPredicate::IntSLE, tag, niche_end_const)
} else {
match (&niche_end, &tag_range.end) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val, ::core::option::Option::None);
}
}
};
bx.icmp(IntPredicate::IntSGE, tag, niche_start_const)
}
} else {
bx.icmp(IntPredicate::IntULE, relative_discr,
bx.cx().const_uint(tag_llty, relative_max as u64))
};
(is_niche, cast_tag,
niche_variants.start().as_u32() as u128)
};
let tagged_discr =
if delta == 0 {
tagged_discr
} else {
bx.add(tagged_discr, bx.cx().const_uint_big(cast_to, delta))
};
let untagged_variant_const =
bx.cx().const_uint(cast_to,
u64::from(untagged_variant.as_u32()));
let discr =
bx.select(is_niche, tagged_discr, untagged_variant_const);
discr
}
}
}
}
}#[instrument(level = "trace", skip(fx, bx))]419pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
420self,
421 fx: &mut FunctionCx<'a, 'tcx, Bx>,
422 bx: &mut Bx,
423 cast_to: Ty<'tcx>,
424 ) -> V {
425let dl = &bx.tcx().data_layout;
426let cast_to_layout = bx.cx().layout_of(cast_to);
427let cast_to = bx.cx().immediate_backend_type(cast_to_layout);
428429// We check uninhabitedness separately because a type like
430 // `enum Foo { Bar(i32, !) }` is still reported as `Variants::Single`,
431 // *not* as `Variants::Empty`.
432if self.layout.is_uninhabited() {
433return bx.cx().const_poison(cast_to);
434 }
435436let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
437 Variants::Empty => unreachable!("we already handled uninhabited types"),
438 Variants::Single { index } => {
439let discr_val =
440if let Some(discr) = self.layout.ty.discriminant_for_variant(bx.tcx(), index) {
441 discr.val
442 } else {
443// This arm is for types which are neither enums nor coroutines,
444 // and thus for which the only possible "variant" should be the first one.
445assert_eq!(index, FIRST_VARIANT);
446// There's thus no actual discriminant to return, so we return
447 // what it would have been if this was a single-variant enum.
4480
449};
450return bx.cx().const_uint_big(cast_to, discr_val);
451 }
452 Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
453 (tag, tag_encoding, tag_field)
454 }
455 };
456457// Read the tag/niche-encoded discriminant from memory.
458let tag_op = match self.val {
459 OperandValue::ZeroSized => bug!(),
460 OperandValue::Immediate(_) | OperandValue::Pair(_, _) => {
461self.extract_field(fx, bx, tag_field.as_usize())
462 }
463 OperandValue::Ref(place) => {
464let tag = place.with_type(self.layout).project_field(bx, tag_field.as_usize());
465 bx.load_operand(tag)
466 }
467 };
468let tag_imm = tag_op.immediate();
469470// Decode the discriminant (specifically if it's niche-encoded).
471match *tag_encoding {
472 TagEncoding::Direct => {
473let signed = match tag_scalar.primitive() {
474// We use `i1` for bytes that are always `0` or `1`,
475 // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
476 // let LLVM interpret the `i1` as signed, because
477 // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
478Primitive::Int(_, signed) => !tag_scalar.is_bool() && signed,
479_ => false,
480 };
481 bx.intcast(tag_imm, cast_to, signed)
482 }
483 TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
484// Cast to an integer so we don't have to treat a pointer as a
485 // special case.
486let (tag, tag_llty) = match tag_scalar.primitive() {
487// FIXME(erikdesjardins): handle non-default addrspace ptr sizes
488Primitive::Pointer(_) => {
489let t = bx.type_from_integer(dl.ptr_sized_integer());
490let tag = bx.ptrtoint(tag_imm, t);
491 (tag, t)
492 }
493_ => (tag_imm, bx.cx().immediate_backend_type(tag_op.layout)),
494 };
495496// `layout_sanity_check` ensures that we only get here for cases where the discriminant
497 // value and the variant index match, since that's all `Niche` can encode.
498499let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
500let niche_start_const = bx.cx().const_uint_big(tag_llty, niche_start);
501502// We have a subrange `niche_start..=niche_end` inside `range`.
503 // If the value of the tag is inside this subrange, it's a
504 // "niche value", an increment of the discriminant. Otherwise it
505 // indicates the untagged variant.
506 // A general algorithm to extract the discriminant from the tag
507 // is:
508 // relative_tag = tag - niche_start
509 // is_niche = relative_tag <= (ule) relative_max
510 // discr = if is_niche {
511 // cast(relative_tag) + niche_variants.start()
512 // } else {
513 // untagged_variant
514 // }
515 // However, we will likely be able to emit simpler code.
516let (is_niche, tagged_discr, delta) = if relative_max == 0 {
517// Best case scenario: only one tagged variant. This will
518 // likely become just a comparison and a jump.
519 // The algorithm is:
520 // is_niche = tag == niche_start
521 // discr = if is_niche {
522 // niche_start
523 // } else {
524 // untagged_variant
525 // }
526let is_niche = bx.icmp(IntPredicate::IntEQ, tag, niche_start_const);
527let tagged_discr =
528 bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64);
529 (is_niche, tagged_discr, 0)
530 } else {
531// Thanks to parameter attributes and load metadata, LLVM already knows
532 // the general valid range of the tag. It's possible, though, for there
533 // to be an impossible value *in the middle*, which those ranges don't
534 // communicate, so it's worth an `assume` to let the optimizer know.
535 // Most importantly, this means when optimizing a variant test like
536 // `SELECT(is_niche, complex, CONST) == CONST` it's ok to simplify that
537 // to `!is_niche` because the `complex` part can't possibly match.
538 //
539 // This was previously asserted on `tagged_discr` below, where the
540 // impossible value is more obvious, but that caused an intermediate
541 // value to become multi-use and thus not optimize, so instead this
542 // assumes on the original input which is always multi-use. See
543 // <https://github.com/llvm/llvm-project/issues/134024#issuecomment-3131782555>
544 //
545 // FIXME: If we ever get range assume operand bundles in LLVM (so we
546 // don't need the `icmp`s in the instruction stream any more), it
547 // might be worth moving this back to being on the switch argument
548 // where it's more obviously applicable.
549if niche_variants.contains(&untagged_variant)
550 && bx.cx().sess().opts.optimize != OptLevel::No
551 {
552let impossible = niche_start
553 .wrapping_add(u128::from(untagged_variant.as_u32()))
554 .wrapping_sub(u128::from(niche_variants.start().as_u32()));
555let impossible = bx.cx().const_uint_big(tag_llty, impossible);
556let ne = bx.icmp(IntPredicate::IntNE, tag, impossible);
557 bx.assume(ne);
558 }
559560// With multiple niched variants we'll have to actually compute
561 // the variant index from the stored tag.
562 //
563 // However, there's still one small optimization we can often do for
564 // determining *whether* a tag value is a natural value or a niched
565 // variant. The general algorithm involves a subtraction that often
566 // wraps in practice, making it tricky to analyse. However, in cases
567 // where there are few enough possible values of the tag that it doesn't
568 // need to wrap around, we can instead just look for the contiguous
569 // tag values on the end of the range with a single comparison.
570 //
571 // For example, take the type `enum Demo { A, B, Untagged(bool) }`.
572 // The `bool` is {0, 1}, and the two other variants are given the
573 // tags {2, 3} respectively. That means the `tag_range` is
574 // `[0, 3]`, which doesn't wrap as unsigned (nor as signed), so
575 // we can test for the niched variants with just `>= 2`.
576 //
577 // That means we're looking either for the niche values *above*
578 // the natural values of the untagged variant:
579 //
580 // niche_start niche_end
581 // | |
582 // v v
583 // MIN -------------+---------------------------+---------- MAX
584 // ^ | is niche |
585 // | +---------------------------+
586 // | |
587 // tag_range.start tag_range.end
588 //
589 // Or *below* the natural values:
590 //
591 // niche_start niche_end
592 // | |
593 // v v
594 // MIN ----+-----------------------+---------------------- MAX
595 // | is niche | ^
596 // +-----------------------+ |
597 // | |
598 // tag_range.start tag_range.end
599 //
600 // With those two options and having the flexibility to choose
601 // between a signed or unsigned comparison on the tag, that
602 // covers most realistic scenarios. The tests have a (contrived)
603 // example of a 1-byte enum with over 128 niched variants which
604 // wraps both as signed as unsigned, though, and for something
605 // like that we're stuck with the general algorithm.
606607let tag_range = tag_scalar.valid_range(&dl);
608let tag_size = tag_scalar.size(&dl);
609let niche_end = u128::from(relative_max).wrapping_add(niche_start);
610let niche_end = tag_size.truncate(niche_end);
611612let relative_discr = bx.sub(tag, niche_start_const);
613let cast_tag = bx.intcast(relative_discr, cast_to, false);
614let is_niche = if tag_range.no_unsigned_wraparound(tag_size) == Ok(true) {
615if niche_start == tag_range.start {
616let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
617 bx.icmp(IntPredicate::IntULE, tag, niche_end_const)
618 } else {
619assert_eq!(niche_end, tag_range.end);
620 bx.icmp(IntPredicate::IntUGE, tag, niche_start_const)
621 }
622 } else if tag_range.no_signed_wraparound(tag_size) == Ok(true) {
623if niche_start == tag_range.start {
624let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
625 bx.icmp(IntPredicate::IntSLE, tag, niche_end_const)
626 } else {
627assert_eq!(niche_end, tag_range.end);
628 bx.icmp(IntPredicate::IntSGE, tag, niche_start_const)
629 }
630 } else {
631 bx.icmp(
632 IntPredicate::IntULE,
633 relative_discr,
634 bx.cx().const_uint(tag_llty, relative_max as u64),
635 )
636 };
637638 (is_niche, cast_tag, niche_variants.start().as_u32() as u128)
639 };
640641let tagged_discr = if delta == 0 {
642 tagged_discr
643 } else {
644 bx.add(tagged_discr, bx.cx().const_uint_big(cast_to, delta))
645 };
646647let untagged_variant_const =
648 bx.cx().const_uint(cast_to, u64::from(untagged_variant.as_u32()));
649650let discr = bx.select(is_niche, tagged_discr, untagged_variant_const);
651652// In principle we could insert assumes on the possible range of `discr`, but
653 // currently in LLVM this isn't worth it because the original `tag` will
654 // have either a `range` parameter attribute or `!range` metadata,
655 // or come from a `transmute` that already `assume`d it.
656657discr
658 }
659 }
660 }
661}
662663/// Each of these variants starts out as `Either::Right` when it's uninitialized,
664/// then setting the field changes that to `Either::Left` with the backend value.
665#[derive(#[automatically_derived]
impl<V: ::core::fmt::Debug> ::core::fmt::Debug for OperandValueBuilder<V> {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
OperandValueBuilder::ZeroSized =>
::core::fmt::Formatter::write_str(f, "ZeroSized"),
OperandValueBuilder::Immediate(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f,
"Immediate", &__self_0),
OperandValueBuilder::Pair(__self_0, __self_1) =>
::core::fmt::Formatter::debug_tuple_field2_finish(f, "Pair",
__self_0, &__self_1),
OperandValueBuilder::Vector(__self_0) =>
::core::fmt::Formatter::debug_tuple_field1_finish(f, "Vector",
&__self_0),
}
}
}Debug, #[automatically_derived]
impl<V: ::core::marker::Copy> ::core::marker::Copy for OperandValueBuilder<V>
{
}Copy, #[automatically_derived]
impl<V: ::core::clone::Clone> ::core::clone::Clone for OperandValueBuilder<V>
{
#[inline]
fn clone(&self) -> OperandValueBuilder<V> {
match self {
OperandValueBuilder::ZeroSized => OperandValueBuilder::ZeroSized,
OperandValueBuilder::Immediate(__self_0) =>
OperandValueBuilder::Immediate(::core::clone::Clone::clone(__self_0)),
OperandValueBuilder::Pair(__self_0, __self_1) =>
OperandValueBuilder::Pair(::core::clone::Clone::clone(__self_0),
::core::clone::Clone::clone(__self_1)),
OperandValueBuilder::Vector(__self_0) =>
OperandValueBuilder::Vector(::core::clone::Clone::clone(__self_0)),
}
}
}Clone)]
666enum OperandValueBuilder<V> {
667 ZeroSized,
668 Immediate(Either<V, abi::Scalar>),
669 Pair(Either<V, abi::Scalar>, Either<V, abi::Scalar>),
670/// `repr(simd)` types need special handling because they each have a non-empty
671 /// array field (which uses [`OperandValue::Ref`]) despite the SIMD type itself
672 /// using [`OperandValue::Immediate`] which for any other kind of type would
673 /// mean that its one non-ZST field would also be [`OperandValue::Immediate`].
674Vector(Either<V, ()>),
675}
676677/// Allows building up an `OperandRef` by setting fields one at a time.
678#[derive(#[automatically_derived]
impl<'tcx, V: ::core::fmt::Debug> ::core::fmt::Debug for
OperandRefBuilder<'tcx, V> {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::debug_struct_field2_finish(f,
"OperandRefBuilder", "val", &self.val, "layout", &&self.layout)
}
}Debug, #[automatically_derived]
impl<'tcx, V: ::core::marker::Copy> ::core::marker::Copy for
OperandRefBuilder<'tcx, V> {
}Copy, #[automatically_derived]
impl<'tcx, V: ::core::clone::Clone> ::core::clone::Clone for
OperandRefBuilder<'tcx, V> {
#[inline]
fn clone(&self) -> OperandRefBuilder<'tcx, V> {
OperandRefBuilder {
val: ::core::clone::Clone::clone(&self.val),
layout: ::core::clone::Clone::clone(&self.layout),
}
}
}Clone)]
679pub(super) struct OperandRefBuilder<'tcx, V> {
680 val: OperandValueBuilder<V>,
681 layout: TyAndLayout<'tcx>,
682}
683684impl<'a, 'tcx, V: CodegenObject> OperandRefBuilder<'tcx, V> {
685/// Creates an uninitialized builder for an instance of the `layout`.
686 ///
687 /// ICEs for [`BackendRepr::Memory`] types (other than ZSTs), which should
688 /// be built up inside a [`PlaceRef`] instead as they need an allocated place
689 /// into which to write the values of the fields.
690pub(super) fn new(layout: TyAndLayout<'tcx>) -> Self {
691let val = match layout.backend_repr {
692 BackendRepr::Memory { .. } if layout.is_zst() => OperandValueBuilder::ZeroSized,
693 BackendRepr::Scalar(s) => OperandValueBuilder::Immediate(Either::Right(s)),
694 BackendRepr::ScalarPair(a, b) => {
695 OperandValueBuilder::Pair(Either::Right(a), Either::Right(b))
696 }
697 BackendRepr::SimdVector { .. } | BackendRepr::ScalableVector { .. } => {
698 OperandValueBuilder::Vector(Either::Right(()))
699 }
700 BackendRepr::Memory { .. } => {
701::rustc_middle::util::bug::bug_fmt(format_args!("Cannot use non-ZST Memory-ABI type in operand builder: {0:?}",
layout));bug!("Cannot use non-ZST Memory-ABI type in operand builder: {layout:?}");
702 }
703 };
704OperandRefBuilder { val, layout }
705 }
706707pub(super) fn insert_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
708&mut self,
709 bx: &mut Bx,
710 variant: VariantIdx,
711 field: FieldIdx,
712 field_operand: OperandRef<'tcx, V>,
713 ) {
714if let OperandValue::ZeroSized = field_operand.val {
715// A ZST never adds any state, so just ignore it.
716 // This special-casing is worth it because of things like
717 // `Result<!, !>` where `Ok(never)` is legal to write,
718 // but the type shows as FieldShape::Primitive so we can't
719 // actually look at the layout for the field being set.
720return;
721 }
722723let is_zero_offset = if let abi::FieldsShape::Primitive = self.layout.fields {
724// The other branch looking at field layouts ICEs for primitives,
725 // so we need to handle them separately.
726 // Because we handled ZSTs above (like the metadata in a thin pointer),
727 // the only possibility is that we're setting the one-and-only field.
728if !!self.layout.is_zst() {
::core::panicking::panic("assertion failed: !self.layout.is_zst()")
};assert!(!self.layout.is_zst());
729match (&variant, &FIRST_VARIANT) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(variant, FIRST_VARIANT);
730match (&field, &FieldIdx::ZERO) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(field, FieldIdx::ZERO);
731true
732} else {
733let variant_layout = self.layout.for_variant(bx.cx(), variant);
734let field_offset = variant_layout.fields.offset(field.as_usize());
735field_offset == Size::ZERO736 };
737738let mut update = |tgt: &mut Either<V, abi::Scalar>, src, from_scalar| {
739let to_scalar = tgt.unwrap_right();
740// We transmute here (rather than just `from_immediate`) because in
741 // `Result<usize, *const ()>` the field of the `Ok` is an integer,
742 // but the corresponding scalar in the enum is a pointer.
743let imm = transmute_scalar(bx, src, from_scalar, to_scalar);
744*tgt = Either::Left(imm);
745 };
746747match (field_operand.val, field_operand.layout.backend_repr) {
748 (OperandValue::ZeroSized, _) => {
::core::panicking::panic_fmt(format_args!("internal error: entered unreachable code: {0}",
format_args!("Handled above")));
}unreachable!("Handled above"),
749 (OperandValue::Immediate(v), BackendRepr::Scalar(from_scalar)) => match &mut self.val {
750 OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
751update(val, v, from_scalar);
752 }
753 OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
754update(fst, v, from_scalar);
755 }
756 OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
757update(snd, v, from_scalar);
758 }
759_ => {
760::rustc_middle::util::bug::bug_fmt(format_args!("Tried to insert {0:?} into {1:?}.{2:?} of {3:?}",
field_operand, variant, field, self))bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")761 }
762 },
763 (OperandValue::Immediate(v), BackendRepr::SimdVector { .. }) => match &mut self.val {
764 OperandValueBuilder::Vector(val @ Either::Right(())) if is_zero_offset => {
765*val = Either::Left(v);
766 }
767_ => {
768::rustc_middle::util::bug::bug_fmt(format_args!("Tried to insert {0:?} into {1:?}.{2:?} of {3:?}",
field_operand, variant, field, self))bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")769 }
770 },
771 (OperandValue::Pair(a, b), BackendRepr::ScalarPair(from_sa, from_sb)) => {
772match &mut self.val {
773 OperandValueBuilder::Pair(fst @ Either::Right(_), snd @ Either::Right(_)) => {
774update(fst, a, from_sa);
775update(snd, b, from_sb);
776 }
777_ => ::rustc_middle::util::bug::bug_fmt(format_args!("Tried to insert {0:?} into {1:?}.{2:?} of {3:?}",
field_operand, variant, field, self))bug!(
778"Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}"
779),
780 }
781 }
782 (OperandValue::Ref(place), BackendRepr::Memory { .. }) => match &mut self.val {
783 OperandValueBuilder::Vector(val @ Either::Right(())) => {
784let ibty = bx.cx().immediate_backend_type(self.layout);
785let simd = bx.load_from_place(ibty, place);
786*val = Either::Left(simd);
787 }
788_ => {
789::rustc_middle::util::bug::bug_fmt(format_args!("Tried to insert {0:?} into {1:?}.{2:?} of {3:?}",
field_operand, variant, field, self))bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")790 }
791 },
792_ => ::rustc_middle::util::bug::bug_fmt(format_args!("Operand cannot be used with `insert_field`: {0:?}",
field_operand))bug!("Operand cannot be used with `insert_field`: {field_operand:?}"),
793 }
794 }
795796/// Insert the immediate value `imm` for field `f` in the *type itself*,
797 /// rather than into one of the variants.
798 ///
799 /// Most things want [`Self::insert_field`] instead, but this one is
800 /// necessary for writing things like enum tags that aren't in any variant.
801pub(super) fn insert_imm(&mut self, f: FieldIdx, imm: V) {
802let field_offset = self.layout.fields.offset(f.as_usize());
803let is_zero_offset = field_offset == Size::ZERO;
804match &mut self.val {
805 OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
806*val = Either::Left(imm);
807 }
808 OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
809*fst = Either::Left(imm);
810 }
811 OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
812*snd = Either::Left(imm);
813 }
814_ => ::rustc_middle::util::bug::bug_fmt(format_args!("Tried to insert {0:?} into field {1:?} of {2:?}",
imm, f, self))bug!("Tried to insert {imm:?} into field {f:?} of {self:?}"),
815 }
816 }
817818/// After having set all necessary fields, this converts the builder back
819 /// to the normal `OperandRef`.
820 ///
821 /// ICEs if any required fields were not set.
822pub(super) fn build(&self, cx: &impl CodegenMethods<'tcx, Value = V>) -> OperandRef<'tcx, V> {
823let OperandRefBuilder { val, layout } = *self;
824825// For something like `Option::<u32>::None`, it's expected that the
826 // payload scalar will not actually have been set, so this converts
827 // unset scalars to corresponding `undef` values so long as the scalar
828 // from the layout allows uninit.
829let unwrap = |r: Either<V, abi::Scalar>| match r {
830 Either::Left(v) => v,
831 Either::Right(s) if s.is_uninit_valid() => {
832let bty = cx.type_from_scalar(s);
833cx.const_undef(bty)
834 }
835 Either::Right(_) => ::rustc_middle::util::bug::bug_fmt(format_args!("OperandRef::build called while fields are missing {0:?}",
self))bug!("OperandRef::build called while fields are missing {self:?}"),
836 };
837838let val = match val {
839 OperandValueBuilder::ZeroSized => OperandValue::ZeroSized,
840 OperandValueBuilder::Immediate(v) => OperandValue::Immediate(unwrap(v)),
841 OperandValueBuilder::Pair(a, b) => OperandValue::Pair(unwrap(a), unwrap(b)),
842 OperandValueBuilder::Vector(v) => match v {
843 Either::Left(v) => OperandValue::Immediate(v),
844 Either::Right(())
845if let BackendRepr::SimdVector { element, .. } = layout.backend_repr
846 && element.is_uninit_valid() =>
847 {
848let bty = cx.immediate_backend_type(layout);
849 OperandValue::Immediate(cx.const_undef(bty))
850 }
851 Either::Right(()) => {
852::rustc_middle::util::bug::bug_fmt(format_args!("OperandRef::build called while fields are missing {0:?}",
self))bug!("OperandRef::build called while fields are missing {self:?}")853 }
854 },
855 };
856OperandRef { val, layout, move_annotation: None }
857 }
858}
859860/// Default size limit for move/copy annotations (in bytes). 64 bytes is a common size of a cache
861/// line, and the assumption is that anything this size or below is very cheap to move/copy, so only
862/// annotate copies larger than this.
863const MOVE_ANNOTATION_DEFAULT_LIMIT: u64 = 65;
864865impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
866/// Returns an `OperandValue` that's generally UB to use in any way.
867 ///
868 /// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
869 /// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
870 ///
871 /// Supports sized types only.
872pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
873 bx: &mut Bx,
874 layout: TyAndLayout<'tcx>,
875 ) -> OperandValue<V> {
876if !layout.is_sized() {
::core::panicking::panic("assertion failed: layout.is_sized()")
};assert!(layout.is_sized());
877if layout.is_zst() {
878 OperandValue::ZeroSized879 } else if bx.cx().is_backend_immediate(layout) {
880let ibty = bx.cx().immediate_backend_type(layout);
881 OperandValue::Immediate(bx.const_poison(ibty))
882 } else if bx.cx().is_backend_scalar_pair(layout) {
883let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
884let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
885 OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
886 } else {
887let ptr = bx.cx().type_ptr();
888 OperandValue::Ref(PlaceValue::new_sized(bx.const_poison(ptr), layout.align.abi))
889 }
890 }
891892pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
893self,
894 bx: &mut Bx,
895 dest: PlaceRef<'tcx, V>,
896 ) {
897self.store_with_flags(bx, dest, MemFlags::empty());
898 }
899900pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
901self,
902 bx: &mut Bx,
903 dest: PlaceRef<'tcx, V>,
904 ) {
905self.store_with_flags(bx, dest, MemFlags::VOLATILE);
906 }
907908pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
909self,
910 bx: &mut Bx,
911 dest: PlaceRef<'tcx, V>,
912 ) {
913self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
914 }
915916pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
917self,
918 bx: &mut Bx,
919 dest: PlaceRef<'tcx, V>,
920 ) {
921self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
922 }
923924pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
925self,
926 bx: &mut Bx,
927 dest: PlaceRef<'tcx, V>,
928 flags: MemFlags,
929 ) {
930{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/mir/operand.rs:930",
"rustc_codegen_ssa::mir::operand", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/mir/operand.rs"),
::tracing_core::__macro_support::Option::Some(930u32),
::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::mir::operand"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("OperandRef::store: operand={0:?}, dest={1:?}",
self, dest) as &dyn Value))])
});
} else { ; }
};debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
931match self {
932 OperandValue::ZeroSized => {
933// Avoid generating stores of zero-sized values, because the only way to have a
934 // zero-sized value is through `undef`/`poison`, and the store itself is useless.
935}
936 OperandValue::Ref(val) => {
937if !dest.layout.is_sized() {
{
::core::panicking::panic_fmt(format_args!("cannot directly store unsized values"));
}
};assert!(dest.layout.is_sized(), "cannot directly store unsized values");
938if val.llextra.is_some() {
939::rustc_middle::util::bug::bug_fmt(format_args!("cannot directly store unsized values"));bug!("cannot directly store unsized values");
940 }
941bx.typed_place_copy_with_flags(dest.val, val, dest.layout, flags);
942 }
943 OperandValue::Immediate(s) => {
944let val = bx.from_immediate(s);
945bx.store_with_flags(val, dest.val.llval, dest.val.align, flags);
946 }
947 OperandValue::Pair(a, b) => {
948let BackendRepr::ScalarPair(a_scalar, b_scalar) = dest.layout.backend_repr else {
949::rustc_middle::util::bug::bug_fmt(format_args!("store_with_flags: invalid ScalarPair layout: {0:#?}",
dest.layout));bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
950 };
951let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
952953let val = bx.from_immediate(a);
954let align = dest.val.align;
955bx.store_with_flags(val, dest.val.llval, align, flags);
956957let llptr = bx.inbounds_ptradd(dest.val.llval, bx.const_usize(b_offset.bytes()));
958let val = bx.from_immediate(b);
959let align = dest.val.align.restrict_for_offset(b_offset);
960bx.store_with_flags(val, llptr, align, flags);
961 }
962 }
963 }
964}
965966impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
967fn maybe_codegen_consume_direct(
968&mut self,
969 bx: &mut Bx,
970 place_ref: mir::PlaceRef<'tcx>,
971 ) -> Option<OperandRef<'tcx, Bx::Value>> {
972{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/mir/operand.rs:972",
"rustc_codegen_ssa::mir::operand", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/mir/operand.rs"),
::tracing_core::__macro_support::Option::Some(972u32),
::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::mir::operand"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("maybe_codegen_consume_direct(place_ref={0:?})",
place_ref) as &dyn Value))])
});
} else { ; }
};debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
973974match self.locals[place_ref.local] {
975 LocalRef::Operand(mut o) => {
976// We only need to handle the projections that
977 // `LocalAnalyzer::process_place` let make it here.
978for elem in place_ref.projection {
979match *elem {
980 mir::ProjectionElem::Field(f, _) => {
981if !!o.layout.ty.is_any_ptr() {
{
::core::panicking::panic_fmt(format_args!("Bad PlaceRef: destructing pointers should use cast/PtrMetadata, but tried to access field {0:?} of pointer {1:?}",
f, o));
}
};assert!(
982 !o.layout.ty.is_any_ptr(),
983"Bad PlaceRef: destructing pointers should use cast/PtrMetadata, \
984 but tried to access field {f:?} of pointer {o:?}",
985 );
986 o = o.extract_field(self, bx, f.index());
987 }
988 mir::PlaceElem::Downcast(_, vidx) => {
989if true {
match (&o.layout.variants, &abi::Variants::Single { index: vidx }) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val, ::core::option::Option::None);
}
}
};
};debug_assert_eq!(
990 o.layout.variants,
991 abi::Variants::Single { index: vidx },
992 );
993let layout = o.layout.for_variant(bx.cx(), vidx);
994 o = OperandRef { layout, ..o }
995 }
996_ => return None,
997 }
998 }
9991000Some(o)
1001 }
1002 LocalRef::PendingOperand => {
1003::rustc_middle::util::bug::bug_fmt(format_args!("use of {0:?} before def",
place_ref));bug!("use of {:?} before def", place_ref);
1004 }
1005 LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
1006// watch out for locals that do not have an
1007 // alloca; they are handled somewhat differently
1008None1009 }
1010 }
1011 }
10121013pub fn codegen_consume(
1014&mut self,
1015 bx: &mut Bx,
1016 place_ref: mir::PlaceRef<'tcx>,
1017 ) -> OperandRef<'tcx, Bx::Value> {
1018{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/mir/operand.rs:1018",
"rustc_codegen_ssa::mir::operand", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/mir/operand.rs"),
::tracing_core::__macro_support::Option::Some(1018u32),
::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::mir::operand"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("codegen_consume(place_ref={0:?})",
place_ref) as &dyn Value))])
});
} else { ; }
};debug!("codegen_consume(place_ref={:?})", place_ref);
10191020let ty = self.monomorphized_place_ty(place_ref);
1021let layout = bx.cx().layout_of(ty);
10221023// ZSTs don't require any actual memory access.
1024if layout.is_zst() {
1025return OperandRef::zero_sized(layout);
1026 }
10271028if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
1029return o;
1030 }
10311032// for most places, to consume them we just load them
1033 // out from their home
1034let place = self.codegen_place(bx, place_ref);
1035bx.load_operand(place)
1036 }
10371038pub fn codegen_operand(
1039&mut self,
1040 bx: &mut Bx,
1041 operand: &mir::Operand<'tcx>,
1042 ) -> OperandRef<'tcx, Bx::Value> {
1043{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/mir/operand.rs:1043",
"rustc_codegen_ssa::mir::operand", ::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/mir/operand.rs"),
::tracing_core::__macro_support::Option::Some(1043u32),
::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::mir::operand"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("codegen_operand(operand={0:?})",
operand) as &dyn Value))])
});
} else { ; }
};debug!("codegen_operand(operand={:?})", operand);
10441045match *operand {
1046 mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
1047let kind = match operand {
1048 mir::Operand::Move(_) => LangItem::CompilerMove,
1049 mir::Operand::Copy(_) => LangItem::CompilerCopy,
1050_ => ::core::panicking::panic("internal error: entered unreachable code")unreachable!(),
1051 };
10521053// Check if we should annotate this move/copy for profiling
1054let move_annotation = self.move_copy_annotation_instance(bx, place.as_ref(), kind);
10551056OperandRef { move_annotation, ..self.codegen_consume(bx, place.as_ref()) }
1057 }
10581059 mir::Operand::RuntimeChecks(checks) => {
1060let layout = bx.layout_of(bx.tcx().types.bool);
1061let BackendRepr::Scalar(scalar) = layout.backend_repr else {
1062::rustc_middle::util::bug::bug_fmt(format_args!("from_const: invalid ByVal layout: {0:#?}",
layout));bug!("from_const: invalid ByVal layout: {:#?}", layout);
1063 };
1064let x = Scalar::from_bool(checks.value(bx.tcx().sess));
1065let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
1066let val = OperandValue::Immediate(llval);
1067OperandRef { val, layout, move_annotation: None }
1068 }
10691070 mir::Operand::Constant(ref constant) => {
1071let constant_ty = self.monomorphize(constant.ty());
1072// Most SIMD vector constants should be passed as immediates.
1073 // (In particular, some intrinsics really rely on this.)
1074if constant_ty.is_simd() {
1075// However, some SIMD types do not actually use the vector ABI
1076 // (in particular, packed SIMD types do not). Ensure we exclude those.
1077 //
1078 // We also have to exclude vectors of pointers because `immediate_const_vector`
1079 // does not work for those.
1080let layout = bx.layout_of(constant_ty);
1081let (_, element_ty) = constant_ty.simd_size_and_type(bx.tcx());
1082if let BackendRepr::SimdVector { .. } = layout.backend_repr
1083 && element_ty.is_numeric()
1084 {
1085let (llval, ty) = self.immediate_const_vector(bx, constant);
1086return OperandRef {
1087 val: OperandValue::Immediate(llval),
1088 layout: bx.layout_of(ty),
1089 move_annotation: None,
1090 };
1091 }
1092 }
1093self.eval_mir_constant_to_operand(bx, constant)
1094 }
1095 }
1096 }
10971098/// Creates an `Instance` for annotating a move/copy operation at codegen time.
1099 ///
1100 /// Returns `Some(instance)` if the operation should be annotated with debug info, `None`
1101 /// otherwise. The instance represents a monomorphized `compiler_move<T, SIZE>` or
1102 /// `compiler_copy<T, SIZE>` function that can be used to create debug scopes.
1103 ///
1104 /// There are a number of conditions that must be met for an annotation to be created, but aside
1105 /// from the basics (annotation is enabled, we're generating debuginfo), the primary concern is
1106 /// moves/copies which could result in a real `memcpy`. So we check for the size limit, but also
1107 /// that the underlying representation of the type is in memory.
1108fn move_copy_annotation_instance(
1109&self,
1110 bx: &Bx,
1111 place: mir::PlaceRef<'tcx>,
1112 kind: LangItem,
1113 ) -> Option<ty::Instance<'tcx>> {
1114let tcx = bx.tcx();
1115let sess = tcx.sess;
11161117// Skip if we're not generating debuginfo
1118if sess.opts.debuginfo == DebugInfo::None {
1119return None;
1120 }
11211122// Check if annotation is enabled and get size limit (otherwise skip)
1123let size_limit = match sess.opts.unstable_opts.annotate_moves {
1124 AnnotateMoves::Disabled => return None,
1125 AnnotateMoves::Enabled(None) => MOVE_ANNOTATION_DEFAULT_LIMIT,
1126 AnnotateMoves::Enabled(Some(limit)) => limit,
1127 };
11281129let ty = self.monomorphized_place_ty(place);
1130let layout = bx.cx().layout_of(ty);
1131let ty_size = layout.size.bytes();
11321133// Only annotate if type has a memory representation and exceeds size limit (and has a
1134 // non-zero size)
1135if layout.is_zst()
1136 || ty_size < size_limit1137 || !#[allow(non_exhaustive_omitted_patterns)] match layout.backend_repr {
BackendRepr::Memory { .. } => true,
_ => false,
}matches!(layout.backend_repr, BackendRepr::Memory { .. })1138 {
1139return None;
1140 }
11411142// Look up the DefId for compiler_move or compiler_copy lang item
1143let def_id = tcx.lang_items().get(kind)?;
11441145// Create generic args: compiler_move<T, SIZE> or compiler_copy<T, SIZE>
1146let size_const = ty::Const::from_target_usize(tcx, ty_size);
1147let generic_args = tcx.mk_args(&[ty.into(), size_const.into()]);
11481149// Create the Instance
1150let typing_env = self.mir.typing_env(tcx);
1151let instance = ty::Instance::expect_resolve(
1152tcx,
1153typing_env,
1154def_id,
1155generic_args,
1156 rustc_span::DUMMY_SP, // span only used for error messages
1157);
11581159Some(instance)
1160 }
1161}