rustc_codegen_ssa/mir/operand.rs
1use std::fmt;
2
3use itertools::Either;
4use rustc_abi as abi;
5use rustc_abi::{
6 Align, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, TagEncoding, VariantIdx, Variants,
7};
8use rustc_hir::LangItem;
9use rustc_middle::mir::interpret::{Pointer, Scalar, alloc_range};
10use rustc_middle::mir::{self, ConstValue};
11use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
12use rustc_middle::ty::{self, Ty};
13use rustc_middle::{bug, span_bug};
14use rustc_session::config::{AnnotateMoves, DebugInfo, OptLevel};
15use tracing::{debug, instrument};
16
17use super::place::{PlaceRef, PlaceValue};
18use super::rvalue::transmute_scalar;
19use super::{FunctionCx, LocalRef};
20use crate::MemFlags;
21use crate::common::IntPredicate;
22use crate::traits::*;
23
24/// The representation of a Rust value. The enum variant is in fact
25/// uniquely determined by the value's type, but is kept as a
26/// safety check.
27#[derive(Copy, Clone, Debug)]
28pub enum OperandValue<V> {
29 /// A reference to the actual operand. The data is guaranteed
30 /// to be valid for the operand's lifetime.
31 /// The second value, if any, is the extra data (vtable or length)
32 /// which indicates that it refers to an unsized rvalue.
33 ///
34 /// An `OperandValue` *must* be this variant for any type for which
35 /// [`LayoutTypeCodegenMethods::is_backend_ref`] returns `true`.
36 /// (That basically amounts to "isn't one of the other variants".)
37 ///
38 /// This holds a [`PlaceValue`] (like a [`PlaceRef`] does) with a pointer
39 /// to the location holding the value. The type behind that pointer is the
40 /// one returned by [`LayoutTypeCodegenMethods::backend_type`].
41 Ref(PlaceValue<V>),
42 /// A single LLVM immediate value.
43 ///
44 /// An `OperandValue` *must* be this variant for any type for which
45 /// [`LayoutTypeCodegenMethods::is_backend_immediate`] returns `true`.
46 /// The backend value in this variant must be the *immediate* backend type,
47 /// as returned by [`LayoutTypeCodegenMethods::immediate_backend_type`].
48 Immediate(V),
49 /// A pair of immediate LLVM values. Used by wide pointers too.
50 ///
51 /// # Invariants
52 /// - For `Pair(a, b)`, `a` is always at offset 0, but may have `FieldIdx(1..)`
53 /// - `b` is not at offset 0, because `V` is not a 1ZST type.
54 /// - `a` and `b` will have a different FieldIdx, but otherwise `b`'s may be lower
55 /// or they may not be adjacent, due to arbitrary numbers of 1ZST fields that
56 /// will not affect the shape of the data which determines if `Pair` will be used.
57 /// - An `OperandValue` *must* be this variant for any type for which
58 /// [`LayoutTypeCodegenMethods::is_backend_scalar_pair`] returns `true`.
59 /// - The backend values in this variant must be the *immediate* backend types,
60 /// as returned by [`LayoutTypeCodegenMethods::scalar_pair_element_backend_type`]
61 /// with `immediate: true`.
62 Pair(V, V),
63 /// A value taking no bytes, and which therefore needs no LLVM value at all.
64 ///
65 /// If you ever need a `V` to pass to something, get a fresh poison value
66 /// from [`ConstCodegenMethods::const_poison`].
67 ///
68 /// An `OperandValue` *must* be this variant for any type for which
69 /// `is_zst` on its `Layout` returns `true`. Note however that
70 /// these values can still require alignment.
71 ZeroSized,
72}
73
74impl<V: CodegenObject> OperandValue<V> {
75 /// Return the data pointer and optional metadata as backend values
76 /// if this value can be treat as a pointer.
77 pub(crate) fn try_pointer_parts(self) -> Option<(V, Option<V>)> {
78 match self {
79 OperandValue::Immediate(llptr) => Some((llptr, None)),
80 OperandValue::Pair(llptr, llextra) => Some((llptr, Some(llextra))),
81 OperandValue::Ref(_) | OperandValue::ZeroSized => None,
82 }
83 }
84
85 /// Treat this value as a pointer and return the data pointer and
86 /// optional metadata as backend values.
87 ///
88 /// If you're making a place, use [`Self::deref`] instead.
89 pub(crate) fn pointer_parts(self) -> (V, Option<V>) {
90 self.try_pointer_parts()
91 .unwrap_or_else(|| bug!("OperandValue cannot be a pointer: {self:?}"))
92 }
93
94 /// Treat this value as a pointer and return the place to which it points.
95 ///
96 /// The pointer immediate doesn't inherently know its alignment,
97 /// so you need to pass it in. If you want to get it from a type's ABI
98 /// alignment, then maybe you want [`OperandRef::deref`] instead.
99 ///
100 /// This is the inverse of [`PlaceValue::address`].
101 pub(crate) fn deref(self, align: Align) -> PlaceValue<V> {
102 let (llval, llextra) = self.pointer_parts();
103 PlaceValue { llval, llextra, align }
104 }
105
106 pub(crate) fn is_expected_variant_for_type<'tcx, Cx: LayoutTypeCodegenMethods<'tcx>>(
107 &self,
108 cx: &Cx,
109 ty: TyAndLayout<'tcx>,
110 ) -> bool {
111 match self {
112 OperandValue::ZeroSized => ty.is_zst(),
113 OperandValue::Immediate(_) => cx.is_backend_immediate(ty),
114 OperandValue::Pair(_, _) => cx.is_backend_scalar_pair(ty),
115 OperandValue::Ref(_) => cx.is_backend_ref(ty),
116 }
117 }
118}
119
120/// An `OperandRef` is an "SSA" reference to a Rust value, along with
121/// its type.
122///
123/// NOTE: unless you know a value's type exactly, you should not
124/// generate LLVM opcodes acting on it and instead act via methods,
125/// to avoid nasty edge cases. In particular, using `Builder::store`
126/// directly is sure to cause problems -- use `OperandRef::store`
127/// instead.
128#[derive(Copy, Clone)]
129pub struct OperandRef<'tcx, V> {
130 /// The value.
131 pub val: OperandValue<V>,
132
133 /// The layout of value, based on its Rust type.
134 pub layout: TyAndLayout<'tcx>,
135
136 /// Annotation for profiler visibility of move/copy operations.
137 /// When set, the store operation should appear as an inlined call to this function.
138 pub move_annotation: Option<ty::Instance<'tcx>>,
139}
140
141impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
142 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
143 write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
144 }
145}
146
147impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
148 pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
149 assert!(layout.is_zst());
150 OperandRef { val: OperandValue::ZeroSized, layout, move_annotation: None }
151 }
152
153 pub(crate) fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
154 bx: &mut Bx,
155 val: mir::ConstValue,
156 ty: Ty<'tcx>,
157 ) -> Self {
158 let layout = bx.layout_of(ty);
159
160 let val = match val {
161 ConstValue::Scalar(x) => {
162 let BackendRepr::Scalar(scalar) = layout.backend_repr else {
163 bug!("from_const: invalid ByVal layout: {:#?}", layout);
164 };
165 let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
166 OperandValue::Immediate(llval)
167 }
168 ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
169 ConstValue::Slice { alloc_id, meta } => {
170 let BackendRepr::ScalarPair(a_scalar, _) = layout.backend_repr else {
171 bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
172 };
173 let a = Scalar::from_pointer(Pointer::new(alloc_id.into(), Size::ZERO), &bx.tcx());
174 let a_llval = bx.scalar_to_backend(
175 a,
176 a_scalar,
177 bx.scalar_pair_element_backend_type(layout, 0, true),
178 );
179 let b_llval = bx.const_usize(meta);
180 OperandValue::Pair(a_llval, b_llval)
181 }
182 ConstValue::Indirect { alloc_id, offset } => {
183 let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
184 return Self::from_const_alloc(bx, layout, alloc, offset);
185 }
186 };
187
188 OperandRef { val, layout, move_annotation: None }
189 }
190
191 fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
192 bx: &mut Bx,
193 layout: TyAndLayout<'tcx>,
194 alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
195 offset: Size,
196 ) -> Self {
197 let alloc_align = alloc.inner().align;
198 assert!(alloc_align >= layout.align.abi, "{alloc_align:?} < {:?}", layout.align.abi);
199
200 let read_scalar = |start, size, s: abi::Scalar, ty| {
201 match alloc.0.read_scalar(
202 bx,
203 alloc_range(start, size),
204 /*read_provenance*/ matches!(s.primitive(), abi::Primitive::Pointer(_)),
205 ) {
206 Ok(val) => bx.scalar_to_backend(val, s, ty),
207 Err(_) => bx.const_poison(ty),
208 }
209 };
210
211 // It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
212 // However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
213 // and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
214 // case where some of the bytes are initialized and others are not. So, we need an extra
215 // check that walks over the type of `mplace` to make sure it is truly correct to treat this
216 // like a `Scalar` (or `ScalarPair`).
217 match layout.backend_repr {
218 BackendRepr::Scalar(s @ abi::Scalar::Initialized { .. }) => {
219 let size = s.size(bx);
220 assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
221 let val = read_scalar(offset, size, s, bx.immediate_backend_type(layout));
222 OperandRef { val: OperandValue::Immediate(val), layout, move_annotation: None }
223 }
224 BackendRepr::ScalarPair(
225 a @ abi::Scalar::Initialized { .. },
226 b @ abi::Scalar::Initialized { .. },
227 ) => {
228 let (a_size, b_size) = (a.size(bx), b.size(bx));
229 let b_offset = (offset + a_size).align_to(b.align(bx).abi);
230 assert!(b_offset.bytes() > 0);
231 let a_val = read_scalar(
232 offset,
233 a_size,
234 a,
235 bx.scalar_pair_element_backend_type(layout, 0, true),
236 );
237 let b_val = read_scalar(
238 b_offset,
239 b_size,
240 b,
241 bx.scalar_pair_element_backend_type(layout, 1, true),
242 );
243 OperandRef { val: OperandValue::Pair(a_val, b_val), layout, move_annotation: None }
244 }
245 _ if layout.is_zst() => OperandRef::zero_sized(layout),
246 _ => {
247 // Neither a scalar nor scalar pair. Load from a place
248 // FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
249 // same `ConstAllocation`?
250 let init = bx.const_data_from_alloc(alloc);
251 let base_addr = bx.static_addr_of(init, alloc_align, None);
252
253 let llval = bx.const_ptr_byte_offset(base_addr, offset);
254 bx.load_operand(PlaceRef::new_sized(llval, layout))
255 }
256 }
257 }
258
259 /// Asserts that this operand refers to a scalar and returns
260 /// a reference to its value.
261 pub fn immediate(self) -> V {
262 match self.val {
263 OperandValue::Immediate(s) => s,
264 _ => bug!("not immediate: {:?}", self),
265 }
266 }
267
268 /// Asserts that this operand is a pointer (or reference) and returns
269 /// the place to which it points. (This requires no code to be emitted
270 /// as we represent places using the pointer to the place.)
271 ///
272 /// This uses [`Ty::builtin_deref`] to include the type of the place and
273 /// assumes the place is aligned to the pointee's usual ABI alignment.
274 ///
275 /// If you don't need the type, see [`OperandValue::pointer_parts`]
276 /// or [`OperandValue::deref`].
277 pub fn deref<Cx: CodegenMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
278 if self.layout.ty.is_box() {
279 // Derefer should have removed all Box derefs
280 bug!("dereferencing {:?} in codegen", self.layout.ty);
281 }
282
283 let projected_ty = self
284 .layout
285 .ty
286 .builtin_deref(true)
287 .unwrap_or_else(|| bug!("deref of non-pointer {:?}", self));
288
289 let layout = cx.layout_of(projected_ty);
290 self.val.deref(layout.align.abi).with_type(layout)
291 }
292
293 /// Store this operand into a place, applying move/copy annotation if present.
294 ///
295 /// This is the preferred method for storing operands, as it automatically
296 /// applies profiler annotations for tracked move/copy operations.
297 pub fn store_with_annotation<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
298 self,
299 bx: &mut Bx,
300 dest: PlaceRef<'tcx, V>,
301 ) {
302 if let Some(instance) = self.move_annotation {
303 bx.with_move_annotation(instance, |bx| self.val.store(bx, dest))
304 } else {
305 self.val.store(bx, dest)
306 }
307 }
308
309 /// If this operand is a `Pair`, we return an aggregate with the two values.
310 /// For other cases, see `immediate`.
311 pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
312 self,
313 bx: &mut Bx,
314 ) -> V {
315 if let OperandValue::Pair(a, b) = self.val {
316 let llty = bx.cx().immediate_backend_type(self.layout);
317 debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
318 // Reconstruct the immediate aggregate.
319 let mut llpair = bx.cx().const_poison(llty);
320 llpair = bx.insert_value(llpair, a, 0);
321 llpair = bx.insert_value(llpair, b, 1);
322 llpair
323 } else {
324 self.immediate()
325 }
326 }
327
328 /// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
329 pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
330 bx: &mut Bx,
331 llval: V,
332 layout: TyAndLayout<'tcx>,
333 ) -> Self {
334 let val = if let BackendRepr::ScalarPair(..) = layout.backend_repr {
335 debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
336
337 // Deconstruct the immediate aggregate.
338 let a_llval = bx.extract_value(llval, 0);
339 let b_llval = bx.extract_value(llval, 1);
340 OperandValue::Pair(a_llval, b_llval)
341 } else {
342 OperandValue::Immediate(llval)
343 };
344 OperandRef { val, layout, move_annotation: None }
345 }
346
347 pub(crate) fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
348 &self,
349 fx: &mut FunctionCx<'a, 'tcx, Bx>,
350 bx: &mut Bx,
351 i: usize,
352 ) -> Self {
353 let field = self.layout.field(bx.cx(), i);
354 let offset = self.layout.fields.offset(i);
355
356 if !bx.is_backend_ref(self.layout) && bx.is_backend_ref(field) {
357 // Part of https://github.com/rust-lang/compiler-team/issues/838
358 span_bug!(
359 fx.mir.span,
360 "Non-ref type {self:?} cannot project to ref field type {field:?}",
361 );
362 }
363
364 let val = if field.is_zst() {
365 OperandValue::ZeroSized
366 } else if field.size == self.layout.size {
367 assert_eq!(offset.bytes(), 0);
368 fx.codegen_transmute_operand(bx, *self, field)
369 } else {
370 let (in_scalar, imm) = match (self.val, self.layout.backend_repr) {
371 // Extract a scalar component from a pair.
372 (OperandValue::Pair(a_llval, b_llval), BackendRepr::ScalarPair(a, b)) => {
373 if offset.bytes() == 0 {
374 assert_eq!(field.size, a.size(bx.cx()));
375 (Some(a), a_llval)
376 } else {
377 assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
378 assert_eq!(field.size, b.size(bx.cx()));
379 (Some(b), b_llval)
380 }
381 }
382
383 _ => {
384 span_bug!(fx.mir.span, "OperandRef::extract_field({:?}): not applicable", self)
385 }
386 };
387 OperandValue::Immediate(match field.backend_repr {
388 BackendRepr::SimdVector { .. } => imm,
389 BackendRepr::Scalar(out_scalar) => {
390 let Some(in_scalar) = in_scalar else {
391 span_bug!(
392 fx.mir.span,
393 "OperandRef::extract_field({:?}): missing input scalar for output scalar",
394 self
395 )
396 };
397 if in_scalar != out_scalar {
398 // If the backend and backend_immediate types might differ,
399 // flip back to the backend type then to the new immediate.
400 // This avoids nop truncations, but still handles things like
401 // Bools in union fields needs to be truncated.
402 let backend = bx.from_immediate(imm);
403 bx.to_immediate_scalar(backend, out_scalar)
404 } else {
405 imm
406 }
407 }
408 BackendRepr::ScalarPair(_, _) | BackendRepr::Memory { .. } => bug!(),
409 })
410 };
411
412 OperandRef { val, layout: field, move_annotation: None }
413 }
414
415 /// Obtain the actual discriminant of a value.
416 #[instrument(level = "trace", skip(fx, bx))]
417 pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
418 self,
419 fx: &mut FunctionCx<'a, 'tcx, Bx>,
420 bx: &mut Bx,
421 cast_to: Ty<'tcx>,
422 ) -> V {
423 let dl = &bx.tcx().data_layout;
424 let cast_to_layout = bx.cx().layout_of(cast_to);
425 let cast_to = bx.cx().immediate_backend_type(cast_to_layout);
426
427 // We check uninhabitedness separately because a type like
428 // `enum Foo { Bar(i32, !) }` is still reported as `Variants::Single`,
429 // *not* as `Variants::Empty`.
430 if self.layout.is_uninhabited() {
431 return bx.cx().const_poison(cast_to);
432 }
433
434 let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
435 Variants::Empty => unreachable!("we already handled uninhabited types"),
436 Variants::Single { index } => {
437 let discr_val =
438 if let Some(discr) = self.layout.ty.discriminant_for_variant(bx.tcx(), index) {
439 discr.val
440 } else {
441 // This arm is for types which are neither enums nor coroutines,
442 // and thus for which the only possible "variant" should be the first one.
443 assert_eq!(index, FIRST_VARIANT);
444 // There's thus no actual discriminant to return, so we return
445 // what it would have been if this was a single-variant enum.
446 0
447 };
448 return bx.cx().const_uint_big(cast_to, discr_val);
449 }
450 Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
451 (tag, tag_encoding, tag_field)
452 }
453 };
454
455 // Read the tag/niche-encoded discriminant from memory.
456 let tag_op = match self.val {
457 OperandValue::ZeroSized => bug!(),
458 OperandValue::Immediate(_) | OperandValue::Pair(_, _) => {
459 self.extract_field(fx, bx, tag_field.as_usize())
460 }
461 OperandValue::Ref(place) => {
462 let tag = place.with_type(self.layout).project_field(bx, tag_field.as_usize());
463 bx.load_operand(tag)
464 }
465 };
466 let tag_imm = tag_op.immediate();
467
468 // Decode the discriminant (specifically if it's niche-encoded).
469 match *tag_encoding {
470 TagEncoding::Direct => {
471 let signed = match tag_scalar.primitive() {
472 // We use `i1` for bytes that are always `0` or `1`,
473 // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
474 // let LLVM interpret the `i1` as signed, because
475 // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
476 Primitive::Int(_, signed) => !tag_scalar.is_bool() && signed,
477 _ => false,
478 };
479 bx.intcast(tag_imm, cast_to, signed)
480 }
481 TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
482 // Cast to an integer so we don't have to treat a pointer as a
483 // special case.
484 let (tag, tag_llty) = match tag_scalar.primitive() {
485 // FIXME(erikdesjardins): handle non-default addrspace ptr sizes
486 Primitive::Pointer(_) => {
487 let t = bx.type_from_integer(dl.ptr_sized_integer());
488 let tag = bx.ptrtoint(tag_imm, t);
489 (tag, t)
490 }
491 _ => (tag_imm, bx.cx().immediate_backend_type(tag_op.layout)),
492 };
493
494 // `layout_sanity_check` ensures that we only get here for cases where the discriminant
495 // value and the variant index match, since that's all `Niche` can encode.
496
497 let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
498 let niche_start_const = bx.cx().const_uint_big(tag_llty, niche_start);
499
500 // We have a subrange `niche_start..=niche_end` inside `range`.
501 // If the value of the tag is inside this subrange, it's a
502 // "niche value", an increment of the discriminant. Otherwise it
503 // indicates the untagged variant.
504 // A general algorithm to extract the discriminant from the tag
505 // is:
506 // relative_tag = tag - niche_start
507 // is_niche = relative_tag <= (ule) relative_max
508 // discr = if is_niche {
509 // cast(relative_tag) + niche_variants.start()
510 // } else {
511 // untagged_variant
512 // }
513 // However, we will likely be able to emit simpler code.
514 let (is_niche, tagged_discr, delta) = if relative_max == 0 {
515 // Best case scenario: only one tagged variant. This will
516 // likely become just a comparison and a jump.
517 // The algorithm is:
518 // is_niche = tag == niche_start
519 // discr = if is_niche {
520 // niche_start
521 // } else {
522 // untagged_variant
523 // }
524 let is_niche = bx.icmp(IntPredicate::IntEQ, tag, niche_start_const);
525 let tagged_discr =
526 bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64);
527 (is_niche, tagged_discr, 0)
528 } else {
529 // Thanks to parameter attributes and load metadata, LLVM already knows
530 // the general valid range of the tag. It's possible, though, for there
531 // to be an impossible value *in the middle*, which those ranges don't
532 // communicate, so it's worth an `assume` to let the optimizer know.
533 // Most importantly, this means when optimizing a variant test like
534 // `SELECT(is_niche, complex, CONST) == CONST` it's ok to simplify that
535 // to `!is_niche` because the `complex` part can't possibly match.
536 //
537 // This was previously asserted on `tagged_discr` below, where the
538 // impossible value is more obvious, but that caused an intermediate
539 // value to become multi-use and thus not optimize, so instead this
540 // assumes on the original input which is always multi-use. See
541 // <https://github.com/llvm/llvm-project/issues/134024#issuecomment-3131782555>
542 //
543 // FIXME: If we ever get range assume operand bundles in LLVM (so we
544 // don't need the `icmp`s in the instruction stream any more), it
545 // might be worth moving this back to being on the switch argument
546 // where it's more obviously applicable.
547 if niche_variants.contains(&untagged_variant)
548 && bx.cx().sess().opts.optimize != OptLevel::No
549 {
550 let impossible = niche_start
551 .wrapping_add(u128::from(untagged_variant.as_u32()))
552 .wrapping_sub(u128::from(niche_variants.start().as_u32()));
553 let impossible = bx.cx().const_uint_big(tag_llty, impossible);
554 let ne = bx.icmp(IntPredicate::IntNE, tag, impossible);
555 bx.assume(ne);
556 }
557
558 // With multiple niched variants we'll have to actually compute
559 // the variant index from the stored tag.
560 //
561 // However, there's still one small optimization we can often do for
562 // determining *whether* a tag value is a natural value or a niched
563 // variant. The general algorithm involves a subtraction that often
564 // wraps in practice, making it tricky to analyse. However, in cases
565 // where there are few enough possible values of the tag that it doesn't
566 // need to wrap around, we can instead just look for the contiguous
567 // tag values on the end of the range with a single comparison.
568 //
569 // For example, take the type `enum Demo { A, B, Untagged(bool) }`.
570 // The `bool` is {0, 1}, and the two other variants are given the
571 // tags {2, 3} respectively. That means the `tag_range` is
572 // `[0, 3]`, which doesn't wrap as unsigned (nor as signed), so
573 // we can test for the niched variants with just `>= 2`.
574 //
575 // That means we're looking either for the niche values *above*
576 // the natural values of the untagged variant:
577 //
578 // niche_start niche_end
579 // | |
580 // v v
581 // MIN -------------+---------------------------+---------- MAX
582 // ^ | is niche |
583 // | +---------------------------+
584 // | |
585 // tag_range.start tag_range.end
586 //
587 // Or *below* the natural values:
588 //
589 // niche_start niche_end
590 // | |
591 // v v
592 // MIN ----+-----------------------+---------------------- MAX
593 // | is niche | ^
594 // +-----------------------+ |
595 // | |
596 // tag_range.start tag_range.end
597 //
598 // With those two options and having the flexibility to choose
599 // between a signed or unsigned comparison on the tag, that
600 // covers most realistic scenarios. The tests have a (contrived)
601 // example of a 1-byte enum with over 128 niched variants which
602 // wraps both as signed as unsigned, though, and for something
603 // like that we're stuck with the general algorithm.
604
605 let tag_range = tag_scalar.valid_range(&dl);
606 let tag_size = tag_scalar.size(&dl);
607 let niche_end = u128::from(relative_max).wrapping_add(niche_start);
608 let niche_end = tag_size.truncate(niche_end);
609
610 let relative_discr = bx.sub(tag, niche_start_const);
611 let cast_tag = bx.intcast(relative_discr, cast_to, false);
612 let is_niche = if tag_range.no_unsigned_wraparound(tag_size) == Ok(true) {
613 if niche_start == tag_range.start {
614 let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
615 bx.icmp(IntPredicate::IntULE, tag, niche_end_const)
616 } else {
617 assert_eq!(niche_end, tag_range.end);
618 bx.icmp(IntPredicate::IntUGE, tag, niche_start_const)
619 }
620 } else if tag_range.no_signed_wraparound(tag_size) == Ok(true) {
621 if niche_start == tag_range.start {
622 let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
623 bx.icmp(IntPredicate::IntSLE, tag, niche_end_const)
624 } else {
625 assert_eq!(niche_end, tag_range.end);
626 bx.icmp(IntPredicate::IntSGE, tag, niche_start_const)
627 }
628 } else {
629 bx.icmp(
630 IntPredicate::IntULE,
631 relative_discr,
632 bx.cx().const_uint(tag_llty, relative_max as u64),
633 )
634 };
635
636 (is_niche, cast_tag, niche_variants.start().as_u32() as u128)
637 };
638
639 let tagged_discr = if delta == 0 {
640 tagged_discr
641 } else {
642 bx.add(tagged_discr, bx.cx().const_uint_big(cast_to, delta))
643 };
644
645 let untagged_variant_const =
646 bx.cx().const_uint(cast_to, u64::from(untagged_variant.as_u32()));
647
648 let discr = bx.select(is_niche, tagged_discr, untagged_variant_const);
649
650 // In principle we could insert assumes on the possible range of `discr`, but
651 // currently in LLVM this isn't worth it because the original `tag` will
652 // have either a `range` parameter attribute or `!range` metadata,
653 // or come from a `transmute` that already `assume`d it.
654
655 discr
656 }
657 }
658 }
659}
660
661/// Each of these variants starts out as `Either::Right` when it's uninitialized,
662/// then setting the field changes that to `Either::Left` with the backend value.
663#[derive(Debug, Copy, Clone)]
664enum OperandValueBuilder<V> {
665 ZeroSized,
666 Immediate(Either<V, abi::Scalar>),
667 Pair(Either<V, abi::Scalar>, Either<V, abi::Scalar>),
668 /// `repr(simd)` types need special handling because they each have a non-empty
669 /// array field (which uses [`OperandValue::Ref`]) despite the SIMD type itself
670 /// using [`OperandValue::Immediate`] which for any other kind of type would
671 /// mean that its one non-ZST field would also be [`OperandValue::Immediate`].
672 Vector(Either<V, ()>),
673}
674
675/// Allows building up an `OperandRef` by setting fields one at a time.
676#[derive(Debug, Copy, Clone)]
677pub(super) struct OperandRefBuilder<'tcx, V> {
678 val: OperandValueBuilder<V>,
679 layout: TyAndLayout<'tcx>,
680}
681
682impl<'a, 'tcx, V: CodegenObject> OperandRefBuilder<'tcx, V> {
683 /// Creates an uninitialized builder for an instance of the `layout`.
684 ///
685 /// ICEs for [`BackendRepr::Memory`] types (other than ZSTs), which should
686 /// be built up inside a [`PlaceRef`] instead as they need an allocated place
687 /// into which to write the values of the fields.
688 pub(super) fn new(layout: TyAndLayout<'tcx>) -> Self {
689 let val = match layout.backend_repr {
690 BackendRepr::Memory { .. } if layout.is_zst() => OperandValueBuilder::ZeroSized,
691 BackendRepr::Scalar(s) => OperandValueBuilder::Immediate(Either::Right(s)),
692 BackendRepr::ScalarPair(a, b) => {
693 OperandValueBuilder::Pair(Either::Right(a), Either::Right(b))
694 }
695 BackendRepr::SimdVector { .. } => OperandValueBuilder::Vector(Either::Right(())),
696 BackendRepr::Memory { .. } => {
697 bug!("Cannot use non-ZST Memory-ABI type in operand builder: {layout:?}");
698 }
699 };
700 OperandRefBuilder { val, layout }
701 }
702
703 pub(super) fn insert_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
704 &mut self,
705 bx: &mut Bx,
706 variant: VariantIdx,
707 field: FieldIdx,
708 field_operand: OperandRef<'tcx, V>,
709 ) {
710 if let OperandValue::ZeroSized = field_operand.val {
711 // A ZST never adds any state, so just ignore it.
712 // This special-casing is worth it because of things like
713 // `Result<!, !>` where `Ok(never)` is legal to write,
714 // but the type shows as FieldShape::Primitive so we can't
715 // actually look at the layout for the field being set.
716 return;
717 }
718
719 let is_zero_offset = if let abi::FieldsShape::Primitive = self.layout.fields {
720 // The other branch looking at field layouts ICEs for primitives,
721 // so we need to handle them separately.
722 // Because we handled ZSTs above (like the metadata in a thin pointer),
723 // the only possibility is that we're setting the one-and-only field.
724 assert!(!self.layout.is_zst());
725 assert_eq!(variant, FIRST_VARIANT);
726 assert_eq!(field, FieldIdx::ZERO);
727 true
728 } else {
729 let variant_layout = self.layout.for_variant(bx.cx(), variant);
730 let field_offset = variant_layout.fields.offset(field.as_usize());
731 field_offset == Size::ZERO
732 };
733
734 let mut update = |tgt: &mut Either<V, abi::Scalar>, src, from_scalar| {
735 let to_scalar = tgt.unwrap_right();
736 // We transmute here (rather than just `from_immediate`) because in
737 // `Result<usize, *const ()>` the field of the `Ok` is an integer,
738 // but the corresponding scalar in the enum is a pointer.
739 let imm = transmute_scalar(bx, src, from_scalar, to_scalar);
740 *tgt = Either::Left(imm);
741 };
742
743 match (field_operand.val, field_operand.layout.backend_repr) {
744 (OperandValue::ZeroSized, _) => unreachable!("Handled above"),
745 (OperandValue::Immediate(v), BackendRepr::Scalar(from_scalar)) => match &mut self.val {
746 OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
747 update(val, v, from_scalar);
748 }
749 OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
750 update(fst, v, from_scalar);
751 }
752 OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
753 update(snd, v, from_scalar);
754 }
755 _ => {
756 bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
757 }
758 },
759 (OperandValue::Immediate(v), BackendRepr::SimdVector { .. }) => match &mut self.val {
760 OperandValueBuilder::Vector(val @ Either::Right(())) if is_zero_offset => {
761 *val = Either::Left(v);
762 }
763 _ => {
764 bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
765 }
766 },
767 (OperandValue::Pair(a, b), BackendRepr::ScalarPair(from_sa, from_sb)) => {
768 match &mut self.val {
769 OperandValueBuilder::Pair(fst @ Either::Right(_), snd @ Either::Right(_)) => {
770 update(fst, a, from_sa);
771 update(snd, b, from_sb);
772 }
773 _ => bug!(
774 "Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}"
775 ),
776 }
777 }
778 (OperandValue::Ref(place), BackendRepr::Memory { .. }) => match &mut self.val {
779 OperandValueBuilder::Vector(val @ Either::Right(())) => {
780 let ibty = bx.cx().immediate_backend_type(self.layout);
781 let simd = bx.load_from_place(ibty, place);
782 *val = Either::Left(simd);
783 }
784 _ => {
785 bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
786 }
787 },
788 _ => bug!("Operand cannot be used with `insert_field`: {field_operand:?}"),
789 }
790 }
791
792 /// Insert the immediate value `imm` for field `f` in the *type itself*,
793 /// rather than into one of the variants.
794 ///
795 /// Most things want [`Self::insert_field`] instead, but this one is
796 /// necessary for writing things like enum tags that aren't in any variant.
797 pub(super) fn insert_imm(&mut self, f: FieldIdx, imm: V) {
798 let field_offset = self.layout.fields.offset(f.as_usize());
799 let is_zero_offset = field_offset == Size::ZERO;
800 match &mut self.val {
801 OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
802 *val = Either::Left(imm);
803 }
804 OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
805 *fst = Either::Left(imm);
806 }
807 OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
808 *snd = Either::Left(imm);
809 }
810 _ => bug!("Tried to insert {imm:?} into field {f:?} of {self:?}"),
811 }
812 }
813
814 /// After having set all necessary fields, this converts the builder back
815 /// to the normal `OperandRef`.
816 ///
817 /// ICEs if any required fields were not set.
818 pub(super) fn build(&self, cx: &impl CodegenMethods<'tcx, Value = V>) -> OperandRef<'tcx, V> {
819 let OperandRefBuilder { val, layout } = *self;
820
821 // For something like `Option::<u32>::None`, it's expected that the
822 // payload scalar will not actually have been set, so this converts
823 // unset scalars to corresponding `undef` values so long as the scalar
824 // from the layout allows uninit.
825 let unwrap = |r: Either<V, abi::Scalar>| match r {
826 Either::Left(v) => v,
827 Either::Right(s) if s.is_uninit_valid() => {
828 let bty = cx.type_from_scalar(s);
829 cx.const_undef(bty)
830 }
831 Either::Right(_) => bug!("OperandRef::build called while fields are missing {self:?}"),
832 };
833
834 let val = match val {
835 OperandValueBuilder::ZeroSized => OperandValue::ZeroSized,
836 OperandValueBuilder::Immediate(v) => OperandValue::Immediate(unwrap(v)),
837 OperandValueBuilder::Pair(a, b) => OperandValue::Pair(unwrap(a), unwrap(b)),
838 OperandValueBuilder::Vector(v) => match v {
839 Either::Left(v) => OperandValue::Immediate(v),
840 Either::Right(())
841 if let BackendRepr::SimdVector { element, .. } = layout.backend_repr
842 && element.is_uninit_valid() =>
843 {
844 let bty = cx.immediate_backend_type(layout);
845 OperandValue::Immediate(cx.const_undef(bty))
846 }
847 Either::Right(()) => {
848 bug!("OperandRef::build called while fields are missing {self:?}")
849 }
850 },
851 };
852 OperandRef { val, layout, move_annotation: None }
853 }
854}
855
856/// Default size limit for move/copy annotations (in bytes). 64 bytes is a common size of a cache
857/// line, and the assumption is that anything this size or below is very cheap to move/copy, so only
858/// annotate copies larger than this.
859const MOVE_ANNOTATION_DEFAULT_LIMIT: u64 = 65;
860
861impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
862 /// Returns an `OperandValue` that's generally UB to use in any way.
863 ///
864 /// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
865 /// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
866 ///
867 /// Supports sized types only.
868 pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
869 bx: &mut Bx,
870 layout: TyAndLayout<'tcx>,
871 ) -> OperandValue<V> {
872 assert!(layout.is_sized());
873 if layout.is_zst() {
874 OperandValue::ZeroSized
875 } else if bx.cx().is_backend_immediate(layout) {
876 let ibty = bx.cx().immediate_backend_type(layout);
877 OperandValue::Immediate(bx.const_poison(ibty))
878 } else if bx.cx().is_backend_scalar_pair(layout) {
879 let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
880 let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
881 OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
882 } else {
883 let ptr = bx.cx().type_ptr();
884 OperandValue::Ref(PlaceValue::new_sized(bx.const_poison(ptr), layout.align.abi))
885 }
886 }
887
888 pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
889 self,
890 bx: &mut Bx,
891 dest: PlaceRef<'tcx, V>,
892 ) {
893 self.store_with_flags(bx, dest, MemFlags::empty());
894 }
895
896 pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
897 self,
898 bx: &mut Bx,
899 dest: PlaceRef<'tcx, V>,
900 ) {
901 self.store_with_flags(bx, dest, MemFlags::VOLATILE);
902 }
903
904 pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
905 self,
906 bx: &mut Bx,
907 dest: PlaceRef<'tcx, V>,
908 ) {
909 self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
910 }
911
912 pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
913 self,
914 bx: &mut Bx,
915 dest: PlaceRef<'tcx, V>,
916 ) {
917 self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
918 }
919
920 pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
921 self,
922 bx: &mut Bx,
923 dest: PlaceRef<'tcx, V>,
924 flags: MemFlags,
925 ) {
926 debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
927 match self {
928 OperandValue::ZeroSized => {
929 // Avoid generating stores of zero-sized values, because the only way to have a
930 // zero-sized value is through `undef`/`poison`, and the store itself is useless.
931 }
932 OperandValue::Ref(val) => {
933 assert!(dest.layout.is_sized(), "cannot directly store unsized values");
934 if val.llextra.is_some() {
935 bug!("cannot directly store unsized values");
936 }
937 bx.typed_place_copy_with_flags(dest.val, val, dest.layout, flags);
938 }
939 OperandValue::Immediate(s) => {
940 let val = bx.from_immediate(s);
941 bx.store_with_flags(val, dest.val.llval, dest.val.align, flags);
942 }
943 OperandValue::Pair(a, b) => {
944 let BackendRepr::ScalarPair(a_scalar, b_scalar) = dest.layout.backend_repr else {
945 bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
946 };
947 let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
948
949 let val = bx.from_immediate(a);
950 let align = dest.val.align;
951 bx.store_with_flags(val, dest.val.llval, align, flags);
952
953 let llptr = bx.inbounds_ptradd(dest.val.llval, bx.const_usize(b_offset.bytes()));
954 let val = bx.from_immediate(b);
955 let align = dest.val.align.restrict_for_offset(b_offset);
956 bx.store_with_flags(val, llptr, align, flags);
957 }
958 }
959 }
960}
961
962impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
963 fn maybe_codegen_consume_direct(
964 &mut self,
965 bx: &mut Bx,
966 place_ref: mir::PlaceRef<'tcx>,
967 ) -> Option<OperandRef<'tcx, Bx::Value>> {
968 debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
969
970 match self.locals[place_ref.local] {
971 LocalRef::Operand(mut o) => {
972 // We only need to handle the projections that
973 // `LocalAnalyzer::process_place` let make it here.
974 for elem in place_ref.projection {
975 match *elem {
976 mir::ProjectionElem::Field(f, _) => {
977 assert!(
978 !o.layout.ty.is_any_ptr(),
979 "Bad PlaceRef: destructing pointers should use cast/PtrMetadata, \
980 but tried to access field {f:?} of pointer {o:?}",
981 );
982 o = o.extract_field(self, bx, f.index());
983 }
984 mir::PlaceElem::Downcast(_, vidx) => {
985 debug_assert_eq!(
986 o.layout.variants,
987 abi::Variants::Single { index: vidx },
988 );
989 let layout = o.layout.for_variant(bx.cx(), vidx);
990 o = OperandRef { layout, ..o }
991 }
992 _ => return None,
993 }
994 }
995
996 Some(o)
997 }
998 LocalRef::PendingOperand => {
999 bug!("use of {:?} before def", place_ref);
1000 }
1001 LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
1002 // watch out for locals that do not have an
1003 // alloca; they are handled somewhat differently
1004 None
1005 }
1006 }
1007 }
1008
1009 pub fn codegen_consume(
1010 &mut self,
1011 bx: &mut Bx,
1012 place_ref: mir::PlaceRef<'tcx>,
1013 ) -> OperandRef<'tcx, Bx::Value> {
1014 debug!("codegen_consume(place_ref={:?})", place_ref);
1015
1016 let ty = self.monomorphized_place_ty(place_ref);
1017 let layout = bx.cx().layout_of(ty);
1018
1019 // ZSTs don't require any actual memory access.
1020 if layout.is_zst() {
1021 return OperandRef::zero_sized(layout);
1022 }
1023
1024 if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
1025 return o;
1026 }
1027
1028 // for most places, to consume them we just load them
1029 // out from their home
1030 let place = self.codegen_place(bx, place_ref);
1031 bx.load_operand(place)
1032 }
1033
1034 pub fn codegen_operand(
1035 &mut self,
1036 bx: &mut Bx,
1037 operand: &mir::Operand<'tcx>,
1038 ) -> OperandRef<'tcx, Bx::Value> {
1039 debug!("codegen_operand(operand={:?})", operand);
1040
1041 match *operand {
1042 mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
1043 let kind = match operand {
1044 mir::Operand::Move(_) => LangItem::CompilerMove,
1045 mir::Operand::Copy(_) => LangItem::CompilerCopy,
1046 _ => unreachable!(),
1047 };
1048
1049 // Check if we should annotate this move/copy for profiling
1050 let move_annotation = self.move_copy_annotation_instance(bx, place.as_ref(), kind);
1051
1052 OperandRef { move_annotation, ..self.codegen_consume(bx, place.as_ref()) }
1053 }
1054
1055 mir::Operand::Constant(ref constant) => {
1056 let constant_ty = self.monomorphize(constant.ty());
1057 // Most SIMD vector constants should be passed as immediates.
1058 // (In particular, some intrinsics really rely on this.)
1059 if constant_ty.is_simd() {
1060 // However, some SIMD types do not actually use the vector ABI
1061 // (in particular, packed SIMD types do not). Ensure we exclude those.
1062 let layout = bx.layout_of(constant_ty);
1063 if let BackendRepr::SimdVector { .. } = layout.backend_repr {
1064 let (llval, ty) = self.immediate_const_vector(bx, constant);
1065 return OperandRef {
1066 val: OperandValue::Immediate(llval),
1067 layout: bx.layout_of(ty),
1068 move_annotation: None,
1069 };
1070 }
1071 }
1072 self.eval_mir_constant_to_operand(bx, constant)
1073 }
1074 }
1075 }
1076
1077 /// Creates an `Instance` for annotating a move/copy operation at codegen time.
1078 ///
1079 /// Returns `Some(instance)` if the operation should be annotated with debug info, `None`
1080 /// otherwise. The instance represents a monomorphized `compiler_move<T, SIZE>` or
1081 /// `compiler_copy<T, SIZE>` function that can be used to create debug scopes.
1082 ///
1083 /// There are a number of conditions that must be met for an annotation to be created, but aside
1084 /// from the basics (annotation is enabled, we're generating debuginfo), the primary concern is
1085 /// moves/copies which could result in a real `memcpy`. So we check for the size limit, but also
1086 /// that the underlying representation of the type is in memory.
1087 fn move_copy_annotation_instance(
1088 &self,
1089 bx: &Bx,
1090 place: mir::PlaceRef<'tcx>,
1091 kind: LangItem,
1092 ) -> Option<ty::Instance<'tcx>> {
1093 let tcx = bx.tcx();
1094 let sess = tcx.sess;
1095
1096 // Skip if we're not generating debuginfo
1097 if sess.opts.debuginfo == DebugInfo::None {
1098 return None;
1099 }
1100
1101 // Check if annotation is enabled and get size limit (otherwise skip)
1102 let size_limit = match sess.opts.unstable_opts.annotate_moves {
1103 AnnotateMoves::Disabled => return None,
1104 AnnotateMoves::Enabled(None) => MOVE_ANNOTATION_DEFAULT_LIMIT,
1105 AnnotateMoves::Enabled(Some(limit)) => limit,
1106 };
1107
1108 let ty = self.monomorphized_place_ty(place);
1109 let layout = bx.cx().layout_of(ty);
1110 let ty_size = layout.size.bytes();
1111
1112 // Only annotate if type has a memory representation and exceeds size limit (and has a
1113 // non-zero size)
1114 if layout.is_zst()
1115 || ty_size < size_limit
1116 || !matches!(layout.backend_repr, BackendRepr::Memory { .. })
1117 {
1118 return None;
1119 }
1120
1121 // Look up the DefId for compiler_move or compiler_copy lang item
1122 let def_id = tcx.lang_items().get(kind)?;
1123
1124 // Create generic args: compiler_move<T, SIZE> or compiler_copy<T, SIZE>
1125 let size_const = ty::Const::from_target_usize(tcx, ty_size);
1126 let generic_args = tcx.mk_args(&[ty.into(), size_const.into()]);
1127
1128 // Create the Instance
1129 let typing_env = self.mir.typing_env(tcx);
1130 let instance = ty::Instance::expect_resolve(
1131 tcx,
1132 typing_env,
1133 def_id,
1134 generic_args,
1135 rustc_span::DUMMY_SP, // span only used for error messages
1136 );
1137
1138 Some(instance)
1139 }
1140}