rustc_codegen_ssa/mir/
operand.rs

1use std::fmt;
2
3use itertools::Either;
4use rustc_abi as abi;
5use rustc_abi::{
6    Align, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, TagEncoding, VariantIdx, Variants,
7};
8use rustc_hir::LangItem;
9use rustc_middle::mir::interpret::{Pointer, Scalar, alloc_range};
10use rustc_middle::mir::{self, ConstValue};
11use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
12use rustc_middle::ty::{self, Ty};
13use rustc_middle::{bug, span_bug};
14use rustc_session::config::{AnnotateMoves, DebugInfo, OptLevel};
15use tracing::{debug, instrument};
16
17use super::place::{PlaceRef, PlaceValue};
18use super::rvalue::transmute_scalar;
19use super::{FunctionCx, LocalRef};
20use crate::MemFlags;
21use crate::common::IntPredicate;
22use crate::traits::*;
23
24/// The representation of a Rust value. The enum variant is in fact
25/// uniquely determined by the value's type, but is kept as a
26/// safety check.
27#[derive(Copy, Clone, Debug)]
28pub enum OperandValue<V> {
29    /// A reference to the actual operand. The data is guaranteed
30    /// to be valid for the operand's lifetime.
31    /// The second value, if any, is the extra data (vtable or length)
32    /// which indicates that it refers to an unsized rvalue.
33    ///
34    /// An `OperandValue` *must* be this variant for any type for which
35    /// [`LayoutTypeCodegenMethods::is_backend_ref`] returns `true`.
36    /// (That basically amounts to "isn't one of the other variants".)
37    ///
38    /// This holds a [`PlaceValue`] (like a [`PlaceRef`] does) with a pointer
39    /// to the location holding the value. The type behind that pointer is the
40    /// one returned by [`LayoutTypeCodegenMethods::backend_type`].
41    Ref(PlaceValue<V>),
42    /// A single LLVM immediate value.
43    ///
44    /// An `OperandValue` *must* be this variant for any type for which
45    /// [`LayoutTypeCodegenMethods::is_backend_immediate`] returns `true`.
46    /// The backend value in this variant must be the *immediate* backend type,
47    /// as returned by [`LayoutTypeCodegenMethods::immediate_backend_type`].
48    Immediate(V),
49    /// A pair of immediate LLVM values. Used by wide pointers too.
50    ///
51    /// # Invariants
52    /// - For `Pair(a, b)`, `a` is always at offset 0, but may have `FieldIdx(1..)`
53    /// - `b` is not at offset 0, because `V` is not a 1ZST type.
54    /// - `a` and `b` will have a different FieldIdx, but otherwise `b`'s may be lower
55    ///   or they may not be adjacent, due to arbitrary numbers of 1ZST fields that
56    ///   will not affect the shape of the data which determines if `Pair` will be used.
57    /// - An `OperandValue` *must* be this variant for any type for which
58    /// [`LayoutTypeCodegenMethods::is_backend_scalar_pair`] returns `true`.
59    /// - The backend values in this variant must be the *immediate* backend types,
60    /// as returned by [`LayoutTypeCodegenMethods::scalar_pair_element_backend_type`]
61    /// with `immediate: true`.
62    Pair(V, V),
63    /// A value taking no bytes, and which therefore needs no LLVM value at all.
64    ///
65    /// If you ever need a `V` to pass to something, get a fresh poison value
66    /// from [`ConstCodegenMethods::const_poison`].
67    ///
68    /// An `OperandValue` *must* be this variant for any type for which
69    /// `is_zst` on its `Layout` returns `true`. Note however that
70    /// these values can still require alignment.
71    ZeroSized,
72}
73
74impl<V: CodegenObject> OperandValue<V> {
75    /// Return the data pointer and optional metadata as backend values
76    /// if this value can be treat as a pointer.
77    pub(crate) fn try_pointer_parts(self) -> Option<(V, Option<V>)> {
78        match self {
79            OperandValue::Immediate(llptr) => Some((llptr, None)),
80            OperandValue::Pair(llptr, llextra) => Some((llptr, Some(llextra))),
81            OperandValue::Ref(_) | OperandValue::ZeroSized => None,
82        }
83    }
84
85    /// Treat this value as a pointer and return the data pointer and
86    /// optional metadata as backend values.
87    ///
88    /// If you're making a place, use [`Self::deref`] instead.
89    pub(crate) fn pointer_parts(self) -> (V, Option<V>) {
90        self.try_pointer_parts()
91            .unwrap_or_else(|| bug!("OperandValue cannot be a pointer: {self:?}"))
92    }
93
94    /// Treat this value as a pointer and return the place to which it points.
95    ///
96    /// The pointer immediate doesn't inherently know its alignment,
97    /// so you need to pass it in. If you want to get it from a type's ABI
98    /// alignment, then maybe you want [`OperandRef::deref`] instead.
99    ///
100    /// This is the inverse of [`PlaceValue::address`].
101    pub(crate) fn deref(self, align: Align) -> PlaceValue<V> {
102        let (llval, llextra) = self.pointer_parts();
103        PlaceValue { llval, llextra, align }
104    }
105
106    pub(crate) fn is_expected_variant_for_type<'tcx, Cx: LayoutTypeCodegenMethods<'tcx>>(
107        &self,
108        cx: &Cx,
109        ty: TyAndLayout<'tcx>,
110    ) -> bool {
111        match self {
112            OperandValue::ZeroSized => ty.is_zst(),
113            OperandValue::Immediate(_) => cx.is_backend_immediate(ty),
114            OperandValue::Pair(_, _) => cx.is_backend_scalar_pair(ty),
115            OperandValue::Ref(_) => cx.is_backend_ref(ty),
116        }
117    }
118}
119
120/// An `OperandRef` is an "SSA" reference to a Rust value, along with
121/// its type.
122///
123/// NOTE: unless you know a value's type exactly, you should not
124/// generate LLVM opcodes acting on it and instead act via methods,
125/// to avoid nasty edge cases. In particular, using `Builder::store`
126/// directly is sure to cause problems -- use `OperandRef::store`
127/// instead.
128#[derive(Copy, Clone)]
129pub struct OperandRef<'tcx, V> {
130    /// The value.
131    pub val: OperandValue<V>,
132
133    /// The layout of value, based on its Rust type.
134    pub layout: TyAndLayout<'tcx>,
135
136    /// Annotation for profiler visibility of move/copy operations.
137    /// When set, the store operation should appear as an inlined call to this function.
138    pub move_annotation: Option<ty::Instance<'tcx>>,
139}
140
141impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
142    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
143        write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
144    }
145}
146
147impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
148    pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
149        assert!(layout.is_zst());
150        OperandRef { val: OperandValue::ZeroSized, layout, move_annotation: None }
151    }
152
153    pub(crate) fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
154        bx: &mut Bx,
155        val: mir::ConstValue,
156        ty: Ty<'tcx>,
157    ) -> Self {
158        let layout = bx.layout_of(ty);
159
160        let val = match val {
161            ConstValue::Scalar(x) => {
162                let BackendRepr::Scalar(scalar) = layout.backend_repr else {
163                    bug!("from_const: invalid ByVal layout: {:#?}", layout);
164                };
165                let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
166                OperandValue::Immediate(llval)
167            }
168            ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
169            ConstValue::Slice { alloc_id, meta } => {
170                let BackendRepr::ScalarPair(a_scalar, _) = layout.backend_repr else {
171                    bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
172                };
173                let a = Scalar::from_pointer(Pointer::new(alloc_id.into(), Size::ZERO), &bx.tcx());
174                let a_llval = bx.scalar_to_backend(
175                    a,
176                    a_scalar,
177                    bx.scalar_pair_element_backend_type(layout, 0, true),
178                );
179                let b_llval = bx.const_usize(meta);
180                OperandValue::Pair(a_llval, b_llval)
181            }
182            ConstValue::Indirect { alloc_id, offset } => {
183                let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
184                return Self::from_const_alloc(bx, layout, alloc, offset);
185            }
186        };
187
188        OperandRef { val, layout, move_annotation: None }
189    }
190
191    fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
192        bx: &mut Bx,
193        layout: TyAndLayout<'tcx>,
194        alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
195        offset: Size,
196    ) -> Self {
197        let alloc_align = alloc.inner().align;
198        assert!(alloc_align >= layout.align.abi, "{alloc_align:?} < {:?}", layout.align.abi);
199
200        let read_scalar = |start, size, s: abi::Scalar, ty| {
201            match alloc.0.read_scalar(
202                bx,
203                alloc_range(start, size),
204                /*read_provenance*/ matches!(s.primitive(), abi::Primitive::Pointer(_)),
205            ) {
206                Ok(val) => bx.scalar_to_backend(val, s, ty),
207                Err(_) => bx.const_poison(ty),
208            }
209        };
210
211        // It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
212        // However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
213        // and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
214        // case where some of the bytes are initialized and others are not. So, we need an extra
215        // check that walks over the type of `mplace` to make sure it is truly correct to treat this
216        // like a `Scalar` (or `ScalarPair`).
217        match layout.backend_repr {
218            BackendRepr::Scalar(s @ abi::Scalar::Initialized { .. }) => {
219                let size = s.size(bx);
220                assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
221                let val = read_scalar(offset, size, s, bx.immediate_backend_type(layout));
222                OperandRef { val: OperandValue::Immediate(val), layout, move_annotation: None }
223            }
224            BackendRepr::ScalarPair(
225                a @ abi::Scalar::Initialized { .. },
226                b @ abi::Scalar::Initialized { .. },
227            ) => {
228                let (a_size, b_size) = (a.size(bx), b.size(bx));
229                let b_offset = (offset + a_size).align_to(b.align(bx).abi);
230                assert!(b_offset.bytes() > 0);
231                let a_val = read_scalar(
232                    offset,
233                    a_size,
234                    a,
235                    bx.scalar_pair_element_backend_type(layout, 0, true),
236                );
237                let b_val = read_scalar(
238                    b_offset,
239                    b_size,
240                    b,
241                    bx.scalar_pair_element_backend_type(layout, 1, true),
242                );
243                OperandRef { val: OperandValue::Pair(a_val, b_val), layout, move_annotation: None }
244            }
245            _ if layout.is_zst() => OperandRef::zero_sized(layout),
246            _ => {
247                // Neither a scalar nor scalar pair. Load from a place
248                // FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
249                // same `ConstAllocation`?
250                let init = bx.const_data_from_alloc(alloc);
251                let base_addr = bx.static_addr_of(init, alloc_align, None);
252
253                let llval = bx.const_ptr_byte_offset(base_addr, offset);
254                bx.load_operand(PlaceRef::new_sized(llval, layout))
255            }
256        }
257    }
258
259    /// Asserts that this operand refers to a scalar and returns
260    /// a reference to its value.
261    pub fn immediate(self) -> V {
262        match self.val {
263            OperandValue::Immediate(s) => s,
264            _ => bug!("not immediate: {:?}", self),
265        }
266    }
267
268    /// Asserts that this operand is a pointer (or reference) and returns
269    /// the place to which it points.  (This requires no code to be emitted
270    /// as we represent places using the pointer to the place.)
271    ///
272    /// This uses [`Ty::builtin_deref`] to include the type of the place and
273    /// assumes the place is aligned to the pointee's usual ABI alignment.
274    ///
275    /// If you don't need the type, see [`OperandValue::pointer_parts`]
276    /// or [`OperandValue::deref`].
277    pub fn deref<Cx: CodegenMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
278        if self.layout.ty.is_box() {
279            // Derefer should have removed all Box derefs
280            bug!("dereferencing {:?} in codegen", self.layout.ty);
281        }
282
283        let projected_ty = self
284            .layout
285            .ty
286            .builtin_deref(true)
287            .unwrap_or_else(|| bug!("deref of non-pointer {:?}", self));
288
289        let layout = cx.layout_of(projected_ty);
290        self.val.deref(layout.align.abi).with_type(layout)
291    }
292
293    /// Store this operand into a place, applying move/copy annotation if present.
294    ///
295    /// This is the preferred method for storing operands, as it automatically
296    /// applies profiler annotations for tracked move/copy operations.
297    pub fn store_with_annotation<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
298        self,
299        bx: &mut Bx,
300        dest: PlaceRef<'tcx, V>,
301    ) {
302        if let Some(instance) = self.move_annotation {
303            bx.with_move_annotation(instance, |bx| self.val.store(bx, dest))
304        } else {
305            self.val.store(bx, dest)
306        }
307    }
308
309    /// If this operand is a `Pair`, we return an aggregate with the two values.
310    /// For other cases, see `immediate`.
311    pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
312        self,
313        bx: &mut Bx,
314    ) -> V {
315        if let OperandValue::Pair(a, b) = self.val {
316            let llty = bx.cx().immediate_backend_type(self.layout);
317            debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
318            // Reconstruct the immediate aggregate.
319            let mut llpair = bx.cx().const_poison(llty);
320            llpair = bx.insert_value(llpair, a, 0);
321            llpair = bx.insert_value(llpair, b, 1);
322            llpair
323        } else {
324            self.immediate()
325        }
326    }
327
328    /// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
329    pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
330        bx: &mut Bx,
331        llval: V,
332        layout: TyAndLayout<'tcx>,
333    ) -> Self {
334        let val = if let BackendRepr::ScalarPair(..) = layout.backend_repr {
335            debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
336
337            // Deconstruct the immediate aggregate.
338            let a_llval = bx.extract_value(llval, 0);
339            let b_llval = bx.extract_value(llval, 1);
340            OperandValue::Pair(a_llval, b_llval)
341        } else {
342            OperandValue::Immediate(llval)
343        };
344        OperandRef { val, layout, move_annotation: None }
345    }
346
347    pub(crate) fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
348        &self,
349        fx: &mut FunctionCx<'a, 'tcx, Bx>,
350        bx: &mut Bx,
351        i: usize,
352    ) -> Self {
353        let field = self.layout.field(bx.cx(), i);
354        let offset = self.layout.fields.offset(i);
355
356        if !bx.is_backend_ref(self.layout) && bx.is_backend_ref(field) {
357            // Part of https://github.com/rust-lang/compiler-team/issues/838
358            span_bug!(
359                fx.mir.span,
360                "Non-ref type {self:?} cannot project to ref field type {field:?}",
361            );
362        }
363
364        let val = if field.is_zst() {
365            OperandValue::ZeroSized
366        } else if field.size == self.layout.size {
367            assert_eq!(offset.bytes(), 0);
368            fx.codegen_transmute_operand(bx, *self, field)
369        } else {
370            let (in_scalar, imm) = match (self.val, self.layout.backend_repr) {
371                // Extract a scalar component from a pair.
372                (OperandValue::Pair(a_llval, b_llval), BackendRepr::ScalarPair(a, b)) => {
373                    if offset.bytes() == 0 {
374                        assert_eq!(field.size, a.size(bx.cx()));
375                        (Some(a), a_llval)
376                    } else {
377                        assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
378                        assert_eq!(field.size, b.size(bx.cx()));
379                        (Some(b), b_llval)
380                    }
381                }
382
383                _ => {
384                    span_bug!(fx.mir.span, "OperandRef::extract_field({:?}): not applicable", self)
385                }
386            };
387            OperandValue::Immediate(match field.backend_repr {
388                BackendRepr::SimdVector { .. } => imm,
389                BackendRepr::Scalar(out_scalar) => {
390                    let Some(in_scalar) = in_scalar else {
391                        span_bug!(
392                            fx.mir.span,
393                            "OperandRef::extract_field({:?}): missing input scalar for output scalar",
394                            self
395                        )
396                    };
397                    if in_scalar != out_scalar {
398                        // If the backend and backend_immediate types might differ,
399                        // flip back to the backend type then to the new immediate.
400                        // This avoids nop truncations, but still handles things like
401                        // Bools in union fields needs to be truncated.
402                        let backend = bx.from_immediate(imm);
403                        bx.to_immediate_scalar(backend, out_scalar)
404                    } else {
405                        imm
406                    }
407                }
408                BackendRepr::ScalarPair(_, _) | BackendRepr::Memory { .. } => bug!(),
409            })
410        };
411
412        OperandRef { val, layout: field, move_annotation: None }
413    }
414
415    /// Obtain the actual discriminant of a value.
416    #[instrument(level = "trace", skip(fx, bx))]
417    pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
418        self,
419        fx: &mut FunctionCx<'a, 'tcx, Bx>,
420        bx: &mut Bx,
421        cast_to: Ty<'tcx>,
422    ) -> V {
423        let dl = &bx.tcx().data_layout;
424        let cast_to_layout = bx.cx().layout_of(cast_to);
425        let cast_to = bx.cx().immediate_backend_type(cast_to_layout);
426
427        // We check uninhabitedness separately because a type like
428        // `enum Foo { Bar(i32, !) }` is still reported as `Variants::Single`,
429        // *not* as `Variants::Empty`.
430        if self.layout.is_uninhabited() {
431            return bx.cx().const_poison(cast_to);
432        }
433
434        let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
435            Variants::Empty => unreachable!("we already handled uninhabited types"),
436            Variants::Single { index } => {
437                let discr_val =
438                    if let Some(discr) = self.layout.ty.discriminant_for_variant(bx.tcx(), index) {
439                        discr.val
440                    } else {
441                        // This arm is for types which are neither enums nor coroutines,
442                        // and thus for which the only possible "variant" should be the first one.
443                        assert_eq!(index, FIRST_VARIANT);
444                        // There's thus no actual discriminant to return, so we return
445                        // what it would have been if this was a single-variant enum.
446                        0
447                    };
448                return bx.cx().const_uint_big(cast_to, discr_val);
449            }
450            Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
451                (tag, tag_encoding, tag_field)
452            }
453        };
454
455        // Read the tag/niche-encoded discriminant from memory.
456        let tag_op = match self.val {
457            OperandValue::ZeroSized => bug!(),
458            OperandValue::Immediate(_) | OperandValue::Pair(_, _) => {
459                self.extract_field(fx, bx, tag_field.as_usize())
460            }
461            OperandValue::Ref(place) => {
462                let tag = place.with_type(self.layout).project_field(bx, tag_field.as_usize());
463                bx.load_operand(tag)
464            }
465        };
466        let tag_imm = tag_op.immediate();
467
468        // Decode the discriminant (specifically if it's niche-encoded).
469        match *tag_encoding {
470            TagEncoding::Direct => {
471                let signed = match tag_scalar.primitive() {
472                    // We use `i1` for bytes that are always `0` or `1`,
473                    // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
474                    // let LLVM interpret the `i1` as signed, because
475                    // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
476                    Primitive::Int(_, signed) => !tag_scalar.is_bool() && signed,
477                    _ => false,
478                };
479                bx.intcast(tag_imm, cast_to, signed)
480            }
481            TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
482                // Cast to an integer so we don't have to treat a pointer as a
483                // special case.
484                let (tag, tag_llty) = match tag_scalar.primitive() {
485                    // FIXME(erikdesjardins): handle non-default addrspace ptr sizes
486                    Primitive::Pointer(_) => {
487                        let t = bx.type_from_integer(dl.ptr_sized_integer());
488                        let tag = bx.ptrtoint(tag_imm, t);
489                        (tag, t)
490                    }
491                    _ => (tag_imm, bx.cx().immediate_backend_type(tag_op.layout)),
492                };
493
494                // `layout_sanity_check` ensures that we only get here for cases where the discriminant
495                // value and the variant index match, since that's all `Niche` can encode.
496
497                let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
498                let niche_start_const = bx.cx().const_uint_big(tag_llty, niche_start);
499
500                // We have a subrange `niche_start..=niche_end` inside `range`.
501                // If the value of the tag is inside this subrange, it's a
502                // "niche value", an increment of the discriminant. Otherwise it
503                // indicates the untagged variant.
504                // A general algorithm to extract the discriminant from the tag
505                // is:
506                // relative_tag = tag - niche_start
507                // is_niche = relative_tag <= (ule) relative_max
508                // discr = if is_niche {
509                //     cast(relative_tag) + niche_variants.start()
510                // } else {
511                //     untagged_variant
512                // }
513                // However, we will likely be able to emit simpler code.
514                let (is_niche, tagged_discr, delta) = if relative_max == 0 {
515                    // Best case scenario: only one tagged variant. This will
516                    // likely become just a comparison and a jump.
517                    // The algorithm is:
518                    // is_niche = tag == niche_start
519                    // discr = if is_niche {
520                    //     niche_start
521                    // } else {
522                    //     untagged_variant
523                    // }
524                    let is_niche = bx.icmp(IntPredicate::IntEQ, tag, niche_start_const);
525                    let tagged_discr =
526                        bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64);
527                    (is_niche, tagged_discr, 0)
528                } else {
529                    // Thanks to parameter attributes and load metadata, LLVM already knows
530                    // the general valid range of the tag. It's possible, though, for there
531                    // to be an impossible value *in the middle*, which those ranges don't
532                    // communicate, so it's worth an `assume` to let the optimizer know.
533                    // Most importantly, this means when optimizing a variant test like
534                    // `SELECT(is_niche, complex, CONST) == CONST` it's ok to simplify that
535                    // to `!is_niche` because the `complex` part can't possibly match.
536                    //
537                    // This was previously asserted on `tagged_discr` below, where the
538                    // impossible value is more obvious, but that caused an intermediate
539                    // value to become multi-use and thus not optimize, so instead this
540                    // assumes on the original input which is always multi-use. See
541                    // <https://github.com/llvm/llvm-project/issues/134024#issuecomment-3131782555>
542                    //
543                    // FIXME: If we ever get range assume operand bundles in LLVM (so we
544                    // don't need the `icmp`s in the instruction stream any more), it
545                    // might be worth moving this back to being on the switch argument
546                    // where it's more obviously applicable.
547                    if niche_variants.contains(&untagged_variant)
548                        && bx.cx().sess().opts.optimize != OptLevel::No
549                    {
550                        let impossible = niche_start
551                            .wrapping_add(u128::from(untagged_variant.as_u32()))
552                            .wrapping_sub(u128::from(niche_variants.start().as_u32()));
553                        let impossible = bx.cx().const_uint_big(tag_llty, impossible);
554                        let ne = bx.icmp(IntPredicate::IntNE, tag, impossible);
555                        bx.assume(ne);
556                    }
557
558                    // With multiple niched variants we'll have to actually compute
559                    // the variant index from the stored tag.
560                    //
561                    // However, there's still one small optimization we can often do for
562                    // determining *whether* a tag value is a natural value or a niched
563                    // variant. The general algorithm involves a subtraction that often
564                    // wraps in practice, making it tricky to analyse. However, in cases
565                    // where there are few enough possible values of the tag that it doesn't
566                    // need to wrap around, we can instead just look for the contiguous
567                    // tag values on the end of the range with a single comparison.
568                    //
569                    // For example, take the type `enum Demo { A, B, Untagged(bool) }`.
570                    // The `bool` is {0, 1}, and the two other variants are given the
571                    // tags {2, 3} respectively. That means the `tag_range` is
572                    // `[0, 3]`, which doesn't wrap as unsigned (nor as signed), so
573                    // we can test for the niched variants with just `>= 2`.
574                    //
575                    // That means we're looking either for the niche values *above*
576                    // the natural values of the untagged variant:
577                    //
578                    //             niche_start                  niche_end
579                    //                  |                           |
580                    //                  v                           v
581                    // MIN -------------+---------------------------+---------- MAX
582                    //         ^        |         is niche          |
583                    //         |        +---------------------------+
584                    //         |                                    |
585                    //   tag_range.start                      tag_range.end
586                    //
587                    // Or *below* the natural values:
588                    //
589                    //    niche_start              niche_end
590                    //         |                       |
591                    //         v                       v
592                    // MIN ----+-----------------------+---------------------- MAX
593                    //         |       is niche        |           ^
594                    //         +-----------------------+           |
595                    //         |                                   |
596                    //   tag_range.start                      tag_range.end
597                    //
598                    // With those two options and having the flexibility to choose
599                    // between a signed or unsigned comparison on the tag, that
600                    // covers most realistic scenarios. The tests have a (contrived)
601                    // example of a 1-byte enum with over 128 niched variants which
602                    // wraps both as signed as unsigned, though, and for something
603                    // like that we're stuck with the general algorithm.
604
605                    let tag_range = tag_scalar.valid_range(&dl);
606                    let tag_size = tag_scalar.size(&dl);
607                    let niche_end = u128::from(relative_max).wrapping_add(niche_start);
608                    let niche_end = tag_size.truncate(niche_end);
609
610                    let relative_discr = bx.sub(tag, niche_start_const);
611                    let cast_tag = bx.intcast(relative_discr, cast_to, false);
612                    let is_niche = if tag_range.no_unsigned_wraparound(tag_size) == Ok(true) {
613                        if niche_start == tag_range.start {
614                            let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
615                            bx.icmp(IntPredicate::IntULE, tag, niche_end_const)
616                        } else {
617                            assert_eq!(niche_end, tag_range.end);
618                            bx.icmp(IntPredicate::IntUGE, tag, niche_start_const)
619                        }
620                    } else if tag_range.no_signed_wraparound(tag_size) == Ok(true) {
621                        if niche_start == tag_range.start {
622                            let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
623                            bx.icmp(IntPredicate::IntSLE, tag, niche_end_const)
624                        } else {
625                            assert_eq!(niche_end, tag_range.end);
626                            bx.icmp(IntPredicate::IntSGE, tag, niche_start_const)
627                        }
628                    } else {
629                        bx.icmp(
630                            IntPredicate::IntULE,
631                            relative_discr,
632                            bx.cx().const_uint(tag_llty, relative_max as u64),
633                        )
634                    };
635
636                    (is_niche, cast_tag, niche_variants.start().as_u32() as u128)
637                };
638
639                let tagged_discr = if delta == 0 {
640                    tagged_discr
641                } else {
642                    bx.add(tagged_discr, bx.cx().const_uint_big(cast_to, delta))
643                };
644
645                let untagged_variant_const =
646                    bx.cx().const_uint(cast_to, u64::from(untagged_variant.as_u32()));
647
648                let discr = bx.select(is_niche, tagged_discr, untagged_variant_const);
649
650                // In principle we could insert assumes on the possible range of `discr`, but
651                // currently in LLVM this isn't worth it because the original `tag` will
652                // have either a `range` parameter attribute or `!range` metadata,
653                // or come from a `transmute` that already `assume`d it.
654
655                discr
656            }
657        }
658    }
659}
660
661/// Each of these variants starts out as `Either::Right` when it's uninitialized,
662/// then setting the field changes that to `Either::Left` with the backend value.
663#[derive(Debug, Copy, Clone)]
664enum OperandValueBuilder<V> {
665    ZeroSized,
666    Immediate(Either<V, abi::Scalar>),
667    Pair(Either<V, abi::Scalar>, Either<V, abi::Scalar>),
668    /// `repr(simd)` types need special handling because they each have a non-empty
669    /// array field (which uses [`OperandValue::Ref`]) despite the SIMD type itself
670    /// using [`OperandValue::Immediate`] which for any other kind of type would
671    /// mean that its one non-ZST field would also be [`OperandValue::Immediate`].
672    Vector(Either<V, ()>),
673}
674
675/// Allows building up an `OperandRef` by setting fields one at a time.
676#[derive(Debug, Copy, Clone)]
677pub(super) struct OperandRefBuilder<'tcx, V> {
678    val: OperandValueBuilder<V>,
679    layout: TyAndLayout<'tcx>,
680}
681
682impl<'a, 'tcx, V: CodegenObject> OperandRefBuilder<'tcx, V> {
683    /// Creates an uninitialized builder for an instance of the `layout`.
684    ///
685    /// ICEs for [`BackendRepr::Memory`] types (other than ZSTs), which should
686    /// be built up inside a [`PlaceRef`] instead as they need an allocated place
687    /// into which to write the values of the fields.
688    pub(super) fn new(layout: TyAndLayout<'tcx>) -> Self {
689        let val = match layout.backend_repr {
690            BackendRepr::Memory { .. } if layout.is_zst() => OperandValueBuilder::ZeroSized,
691            BackendRepr::Scalar(s) => OperandValueBuilder::Immediate(Either::Right(s)),
692            BackendRepr::ScalarPair(a, b) => {
693                OperandValueBuilder::Pair(Either::Right(a), Either::Right(b))
694            }
695            BackendRepr::SimdVector { .. } => OperandValueBuilder::Vector(Either::Right(())),
696            BackendRepr::Memory { .. } => {
697                bug!("Cannot use non-ZST Memory-ABI type in operand builder: {layout:?}");
698            }
699        };
700        OperandRefBuilder { val, layout }
701    }
702
703    pub(super) fn insert_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
704        &mut self,
705        bx: &mut Bx,
706        variant: VariantIdx,
707        field: FieldIdx,
708        field_operand: OperandRef<'tcx, V>,
709    ) {
710        if let OperandValue::ZeroSized = field_operand.val {
711            // A ZST never adds any state, so just ignore it.
712            // This special-casing is worth it because of things like
713            // `Result<!, !>` where `Ok(never)` is legal to write,
714            // but the type shows as FieldShape::Primitive so we can't
715            // actually look at the layout for the field being set.
716            return;
717        }
718
719        let is_zero_offset = if let abi::FieldsShape::Primitive = self.layout.fields {
720            // The other branch looking at field layouts ICEs for primitives,
721            // so we need to handle them separately.
722            // Because we handled ZSTs above (like the metadata in a thin pointer),
723            // the only possibility is that we're setting the one-and-only field.
724            assert!(!self.layout.is_zst());
725            assert_eq!(variant, FIRST_VARIANT);
726            assert_eq!(field, FieldIdx::ZERO);
727            true
728        } else {
729            let variant_layout = self.layout.for_variant(bx.cx(), variant);
730            let field_offset = variant_layout.fields.offset(field.as_usize());
731            field_offset == Size::ZERO
732        };
733
734        let mut update = |tgt: &mut Either<V, abi::Scalar>, src, from_scalar| {
735            let to_scalar = tgt.unwrap_right();
736            // We transmute here (rather than just `from_immediate`) because in
737            // `Result<usize, *const ()>` the field of the `Ok` is an integer,
738            // but the corresponding scalar in the enum is a pointer.
739            let imm = transmute_scalar(bx, src, from_scalar, to_scalar);
740            *tgt = Either::Left(imm);
741        };
742
743        match (field_operand.val, field_operand.layout.backend_repr) {
744            (OperandValue::ZeroSized, _) => unreachable!("Handled above"),
745            (OperandValue::Immediate(v), BackendRepr::Scalar(from_scalar)) => match &mut self.val {
746                OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
747                    update(val, v, from_scalar);
748                }
749                OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
750                    update(fst, v, from_scalar);
751                }
752                OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
753                    update(snd, v, from_scalar);
754                }
755                _ => {
756                    bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
757                }
758            },
759            (OperandValue::Immediate(v), BackendRepr::SimdVector { .. }) => match &mut self.val {
760                OperandValueBuilder::Vector(val @ Either::Right(())) if is_zero_offset => {
761                    *val = Either::Left(v);
762                }
763                _ => {
764                    bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
765                }
766            },
767            (OperandValue::Pair(a, b), BackendRepr::ScalarPair(from_sa, from_sb)) => {
768                match &mut self.val {
769                    OperandValueBuilder::Pair(fst @ Either::Right(_), snd @ Either::Right(_)) => {
770                        update(fst, a, from_sa);
771                        update(snd, b, from_sb);
772                    }
773                    _ => bug!(
774                        "Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}"
775                    ),
776                }
777            }
778            (OperandValue::Ref(place), BackendRepr::Memory { .. }) => match &mut self.val {
779                OperandValueBuilder::Vector(val @ Either::Right(())) => {
780                    let ibty = bx.cx().immediate_backend_type(self.layout);
781                    let simd = bx.load_from_place(ibty, place);
782                    *val = Either::Left(simd);
783                }
784                _ => {
785                    bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
786                }
787            },
788            _ => bug!("Operand cannot be used with `insert_field`: {field_operand:?}"),
789        }
790    }
791
792    /// Insert the immediate value `imm` for field `f` in the *type itself*,
793    /// rather than into one of the variants.
794    ///
795    /// Most things want [`Self::insert_field`] instead, but this one is
796    /// necessary for writing things like enum tags that aren't in any variant.
797    pub(super) fn insert_imm(&mut self, f: FieldIdx, imm: V) {
798        let field_offset = self.layout.fields.offset(f.as_usize());
799        let is_zero_offset = field_offset == Size::ZERO;
800        match &mut self.val {
801            OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
802                *val = Either::Left(imm);
803            }
804            OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
805                *fst = Either::Left(imm);
806            }
807            OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
808                *snd = Either::Left(imm);
809            }
810            _ => bug!("Tried to insert {imm:?} into field {f:?} of {self:?}"),
811        }
812    }
813
814    /// After having set all necessary fields, this converts the builder back
815    /// to the normal `OperandRef`.
816    ///
817    /// ICEs if any required fields were not set.
818    pub(super) fn build(&self, cx: &impl CodegenMethods<'tcx, Value = V>) -> OperandRef<'tcx, V> {
819        let OperandRefBuilder { val, layout } = *self;
820
821        // For something like `Option::<u32>::None`, it's expected that the
822        // payload scalar will not actually have been set, so this converts
823        // unset scalars to corresponding `undef` values so long as the scalar
824        // from the layout allows uninit.
825        let unwrap = |r: Either<V, abi::Scalar>| match r {
826            Either::Left(v) => v,
827            Either::Right(s) if s.is_uninit_valid() => {
828                let bty = cx.type_from_scalar(s);
829                cx.const_undef(bty)
830            }
831            Either::Right(_) => bug!("OperandRef::build called while fields are missing {self:?}"),
832        };
833
834        let val = match val {
835            OperandValueBuilder::ZeroSized => OperandValue::ZeroSized,
836            OperandValueBuilder::Immediate(v) => OperandValue::Immediate(unwrap(v)),
837            OperandValueBuilder::Pair(a, b) => OperandValue::Pair(unwrap(a), unwrap(b)),
838            OperandValueBuilder::Vector(v) => match v {
839                Either::Left(v) => OperandValue::Immediate(v),
840                Either::Right(())
841                    if let BackendRepr::SimdVector { element, .. } = layout.backend_repr
842                        && element.is_uninit_valid() =>
843                {
844                    let bty = cx.immediate_backend_type(layout);
845                    OperandValue::Immediate(cx.const_undef(bty))
846                }
847                Either::Right(()) => {
848                    bug!("OperandRef::build called while fields are missing {self:?}")
849                }
850            },
851        };
852        OperandRef { val, layout, move_annotation: None }
853    }
854}
855
856/// Default size limit for move/copy annotations (in bytes). 64 bytes is a common size of a cache
857/// line, and the assumption is that anything this size or below is very cheap to move/copy, so only
858/// annotate copies larger than this.
859const MOVE_ANNOTATION_DEFAULT_LIMIT: u64 = 65;
860
861impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
862    /// Returns an `OperandValue` that's generally UB to use in any way.
863    ///
864    /// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
865    /// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
866    ///
867    /// Supports sized types only.
868    pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
869        bx: &mut Bx,
870        layout: TyAndLayout<'tcx>,
871    ) -> OperandValue<V> {
872        assert!(layout.is_sized());
873        if layout.is_zst() {
874            OperandValue::ZeroSized
875        } else if bx.cx().is_backend_immediate(layout) {
876            let ibty = bx.cx().immediate_backend_type(layout);
877            OperandValue::Immediate(bx.const_poison(ibty))
878        } else if bx.cx().is_backend_scalar_pair(layout) {
879            let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
880            let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
881            OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
882        } else {
883            let ptr = bx.cx().type_ptr();
884            OperandValue::Ref(PlaceValue::new_sized(bx.const_poison(ptr), layout.align.abi))
885        }
886    }
887
888    pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
889        self,
890        bx: &mut Bx,
891        dest: PlaceRef<'tcx, V>,
892    ) {
893        self.store_with_flags(bx, dest, MemFlags::empty());
894    }
895
896    pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
897        self,
898        bx: &mut Bx,
899        dest: PlaceRef<'tcx, V>,
900    ) {
901        self.store_with_flags(bx, dest, MemFlags::VOLATILE);
902    }
903
904    pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
905        self,
906        bx: &mut Bx,
907        dest: PlaceRef<'tcx, V>,
908    ) {
909        self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
910    }
911
912    pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
913        self,
914        bx: &mut Bx,
915        dest: PlaceRef<'tcx, V>,
916    ) {
917        self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
918    }
919
920    pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
921        self,
922        bx: &mut Bx,
923        dest: PlaceRef<'tcx, V>,
924        flags: MemFlags,
925    ) {
926        debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
927        match self {
928            OperandValue::ZeroSized => {
929                // Avoid generating stores of zero-sized values, because the only way to have a
930                // zero-sized value is through `undef`/`poison`, and the store itself is useless.
931            }
932            OperandValue::Ref(val) => {
933                assert!(dest.layout.is_sized(), "cannot directly store unsized values");
934                if val.llextra.is_some() {
935                    bug!("cannot directly store unsized values");
936                }
937                bx.typed_place_copy_with_flags(dest.val, val, dest.layout, flags);
938            }
939            OperandValue::Immediate(s) => {
940                let val = bx.from_immediate(s);
941                bx.store_with_flags(val, dest.val.llval, dest.val.align, flags);
942            }
943            OperandValue::Pair(a, b) => {
944                let BackendRepr::ScalarPair(a_scalar, b_scalar) = dest.layout.backend_repr else {
945                    bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
946                };
947                let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
948
949                let val = bx.from_immediate(a);
950                let align = dest.val.align;
951                bx.store_with_flags(val, dest.val.llval, align, flags);
952
953                let llptr = bx.inbounds_ptradd(dest.val.llval, bx.const_usize(b_offset.bytes()));
954                let val = bx.from_immediate(b);
955                let align = dest.val.align.restrict_for_offset(b_offset);
956                bx.store_with_flags(val, llptr, align, flags);
957            }
958        }
959    }
960}
961
962impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
963    fn maybe_codegen_consume_direct(
964        &mut self,
965        bx: &mut Bx,
966        place_ref: mir::PlaceRef<'tcx>,
967    ) -> Option<OperandRef<'tcx, Bx::Value>> {
968        debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
969
970        match self.locals[place_ref.local] {
971            LocalRef::Operand(mut o) => {
972                // We only need to handle the projections that
973                // `LocalAnalyzer::process_place` let make it here.
974                for elem in place_ref.projection {
975                    match *elem {
976                        mir::ProjectionElem::Field(f, _) => {
977                            assert!(
978                                !o.layout.ty.is_any_ptr(),
979                                "Bad PlaceRef: destructing pointers should use cast/PtrMetadata, \
980                                 but tried to access field {f:?} of pointer {o:?}",
981                            );
982                            o = o.extract_field(self, bx, f.index());
983                        }
984                        mir::PlaceElem::Downcast(_, vidx) => {
985                            debug_assert_eq!(
986                                o.layout.variants,
987                                abi::Variants::Single { index: vidx },
988                            );
989                            let layout = o.layout.for_variant(bx.cx(), vidx);
990                            o = OperandRef { layout, ..o }
991                        }
992                        _ => return None,
993                    }
994                }
995
996                Some(o)
997            }
998            LocalRef::PendingOperand => {
999                bug!("use of {:?} before def", place_ref);
1000            }
1001            LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
1002                // watch out for locals that do not have an
1003                // alloca; they are handled somewhat differently
1004                None
1005            }
1006        }
1007    }
1008
1009    pub fn codegen_consume(
1010        &mut self,
1011        bx: &mut Bx,
1012        place_ref: mir::PlaceRef<'tcx>,
1013    ) -> OperandRef<'tcx, Bx::Value> {
1014        debug!("codegen_consume(place_ref={:?})", place_ref);
1015
1016        let ty = self.monomorphized_place_ty(place_ref);
1017        let layout = bx.cx().layout_of(ty);
1018
1019        // ZSTs don't require any actual memory access.
1020        if layout.is_zst() {
1021            return OperandRef::zero_sized(layout);
1022        }
1023
1024        if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
1025            return o;
1026        }
1027
1028        // for most places, to consume them we just load them
1029        // out from their home
1030        let place = self.codegen_place(bx, place_ref);
1031        bx.load_operand(place)
1032    }
1033
1034    pub fn codegen_operand(
1035        &mut self,
1036        bx: &mut Bx,
1037        operand: &mir::Operand<'tcx>,
1038    ) -> OperandRef<'tcx, Bx::Value> {
1039        debug!("codegen_operand(operand={:?})", operand);
1040
1041        match *operand {
1042            mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
1043                let kind = match operand {
1044                    mir::Operand::Move(_) => LangItem::CompilerMove,
1045                    mir::Operand::Copy(_) => LangItem::CompilerCopy,
1046                    _ => unreachable!(),
1047                };
1048
1049                // Check if we should annotate this move/copy for profiling
1050                let move_annotation = self.move_copy_annotation_instance(bx, place.as_ref(), kind);
1051
1052                OperandRef { move_annotation, ..self.codegen_consume(bx, place.as_ref()) }
1053            }
1054
1055            mir::Operand::Constant(ref constant) => {
1056                let constant_ty = self.monomorphize(constant.ty());
1057                // Most SIMD vector constants should be passed as immediates.
1058                // (In particular, some intrinsics really rely on this.)
1059                if constant_ty.is_simd() {
1060                    // However, some SIMD types do not actually use the vector ABI
1061                    // (in particular, packed SIMD types do not). Ensure we exclude those.
1062                    let layout = bx.layout_of(constant_ty);
1063                    if let BackendRepr::SimdVector { .. } = layout.backend_repr {
1064                        let (llval, ty) = self.immediate_const_vector(bx, constant);
1065                        return OperandRef {
1066                            val: OperandValue::Immediate(llval),
1067                            layout: bx.layout_of(ty),
1068                            move_annotation: None,
1069                        };
1070                    }
1071                }
1072                self.eval_mir_constant_to_operand(bx, constant)
1073            }
1074        }
1075    }
1076
1077    /// Creates an `Instance` for annotating a move/copy operation at codegen time.
1078    ///
1079    /// Returns `Some(instance)` if the operation should be annotated with debug info, `None`
1080    /// otherwise. The instance represents a monomorphized `compiler_move<T, SIZE>` or
1081    /// `compiler_copy<T, SIZE>` function that can be used to create debug scopes.
1082    ///
1083    /// There are a number of conditions that must be met for an annotation to be created, but aside
1084    /// from the basics (annotation is enabled, we're generating debuginfo), the primary concern is
1085    /// moves/copies which could result in a real `memcpy`. So we check for the size limit, but also
1086    /// that the underlying representation of the type is in memory.
1087    fn move_copy_annotation_instance(
1088        &self,
1089        bx: &Bx,
1090        place: mir::PlaceRef<'tcx>,
1091        kind: LangItem,
1092    ) -> Option<ty::Instance<'tcx>> {
1093        let tcx = bx.tcx();
1094        let sess = tcx.sess;
1095
1096        // Skip if we're not generating debuginfo
1097        if sess.opts.debuginfo == DebugInfo::None {
1098            return None;
1099        }
1100
1101        // Check if annotation is enabled and get size limit (otherwise skip)
1102        let size_limit = match sess.opts.unstable_opts.annotate_moves {
1103            AnnotateMoves::Disabled => return None,
1104            AnnotateMoves::Enabled(None) => MOVE_ANNOTATION_DEFAULT_LIMIT,
1105            AnnotateMoves::Enabled(Some(limit)) => limit,
1106        };
1107
1108        let ty = self.monomorphized_place_ty(place);
1109        let layout = bx.cx().layout_of(ty);
1110        let ty_size = layout.size.bytes();
1111
1112        // Only annotate if type has a memory representation and exceeds size limit (and has a
1113        // non-zero size)
1114        if layout.is_zst()
1115            || ty_size < size_limit
1116            || !matches!(layout.backend_repr, BackendRepr::Memory { .. })
1117        {
1118            return None;
1119        }
1120
1121        // Look up the DefId for compiler_move or compiler_copy lang item
1122        let def_id = tcx.lang_items().get(kind)?;
1123
1124        // Create generic args: compiler_move<T, SIZE> or compiler_copy<T, SIZE>
1125        let size_const = ty::Const::from_target_usize(tcx, ty_size);
1126        let generic_args = tcx.mk_args(&[ty.into(), size_const.into()]);
1127
1128        // Create the Instance
1129        let typing_env = self.mir.typing_env(tcx);
1130        let instance = ty::Instance::expect_resolve(
1131            tcx,
1132            typing_env,
1133            def_id,
1134            generic_args,
1135            rustc_span::DUMMY_SP, // span only used for error messages
1136        );
1137
1138        Some(instance)
1139    }
1140}