1use std::collections::VecDeque;
2use std::ffi::{CStr, CString};
3use std::fmt::Write;
4use std::path::Path;
5use std::sync::Once;
6use std::{ptr, slice, str};
78use libc::c_int;
9use rustc_codegen_ssa::base::wants_wasm_eh;
10use rustc_codegen_ssa::target_features::cfg_target_feature;
11use rustc_codegen_ssa::{TargetConfig, target_features};
12use rustc_data_structures::fx::FxHashSet;
13use rustc_data_structures::small_c_str::SmallCStr;
14use rustc_fs_util::path_to_c_string;
15use rustc_middle::bug;
16use rustc_session::Session;
17use rustc_session::config::{PrintKind, PrintRequest};
18use rustc_target::spec::{
19Abi, Arch, Env, MergeFunctions, Os, PanicStrategy, SmallDataThresholdSupport,
20};
21use smallvec::{SmallVec, smallvec};
2223use crate::back::write::create_informational_target_machine;
24use crate::{errors, llvm};
2526static INIT: Once = Once::new();
2728pub(crate) fn init(sess: &Session) {
29unsafe {
30// Before we touch LLVM, make sure that multithreading is enabled.
31if !llvm::LLVMIsMultithreaded().is_true() {
32::rustc_middle::util::bug::bug_fmt(format_args!("LLVM compiled without support for threads"));bug!("LLVM compiled without support for threads");
33 }
34INIT.call_once(|| {
35configure_llvm(sess);
36 });
37 }
38}
3940fn require_inited() {
41if !INIT.is_completed() {
42::rustc_middle::util::bug::bug_fmt(format_args!("LLVM is not initialized"));bug!("LLVM is not initialized");
43 }
44}
4546unsafe fn configure_llvm(sess: &Session) {
47let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
48let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
49let mut llvm_args = Vec::with_capacity(n_args + 1);
5051unsafe {
52 llvm::LLVMRustInstallErrorHandlers();
53 }
54// On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog
55 // box for the purpose of launching a debugger. However, on CI this will
56 // cause it to hang until it times out, which can take several hours.
57if std::env::var_os("CI").is_some() {
58unsafe {
59 llvm::LLVMRustDisableSystemDialogsOnCrash();
60 }
61 }
6263fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
64full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
65 }
6667let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref);
68let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref);
69let sess_args = cg_opts.chain(tg_opts);
7071let user_specified_args: FxHashSet<_> =
72sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
7374 {
75// This adds the given argument to LLVM. Unless `force` is true
76 // user specified arguments are *not* overridden.
77let mut add = |arg: &str, force: bool| {
78if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
79let s = CString::new(arg).unwrap();
80llvm_args.push(s.as_ptr());
81llvm_c_strs.push(s);
82 }
83 };
84// Set the llvm "program name" to make usage and invalid argument messages more clear.
85add("rustc -Cllvm-args=\"...\" with", true);
86if sess.opts.unstable_opts.time_llvm_passes {
87add("-time-passes", false);
88 }
89if sess.opts.unstable_opts.print_llvm_passes {
90add("-debug-pass=Structure", false);
91 }
92if sess.target.generate_arange_section
93 && !sess.opts.unstable_opts.no_generate_arange_section
94 {
95add("-generate-arange-section", false);
96 }
9798match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
99 MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
100 MergeFunctions::Aliases => {
101add("-mergefunc-use-aliases", false);
102 }
103 }
104105if wants_wasm_eh(sess) {
106add("-wasm-enable-eh", false);
107 }
108109if sess.target.os == Os::Emscripten110 && !sess.opts.unstable_opts.emscripten_wasm_eh
111 && sess.panic_strategy().unwinds()
112 {
113add("-enable-emscripten-cxx-exceptions", false);
114 }
115116// HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
117 // during inlining. Unfortunately these may block other optimizations.
118add("-preserve-alignment-assumptions-during-inlining=false", false);
119120// Use non-zero `import-instr-limit` multiplier for cold callsites.
121add("-import-cold-multiplier=0.1", false);
122123if sess.print_llvm_stats() {
124add("-stats", false);
125 }
126127for arg in sess_args {
128 add(&(*arg), true);
129 }
130131match (
132sess.opts.unstable_opts.small_data_threshold,
133sess.target.small_data_threshold_support(),
134 ) {
135// Set up the small-data optimization limit for architectures that use
136 // an LLVM argument to control this.
137(Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => {
138add(&::alloc::__export::must_use({
::alloc::fmt::format(format_args!("--{0}={1}", arg, threshold))
})format!("--{arg}={threshold}"), false)
139 }
140_ => (),
141 };
142 }
143144if sess.opts.unstable_opts.llvm_time_trace {
145unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() };
146 }
147148 rustc_llvm::initialize_available_targets();
149150unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) };
151}
152153pub(crate) fn time_trace_profiler_finish(file_name: &Path) {
154unsafe {
155let file_name = path_to_c_string(file_name);
156 llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr());
157 }
158}
159160enum TargetFeatureFoldStrength<'a> {
161// The feature is only tied when enabling the feature, disabling
162 // this feature shouldn't disable the tied feature.
163EnableOnly(&'a str),
164// The feature is tied for both enabling and disabling this feature.
165Both(&'a str),
166}
167168impl<'a> TargetFeatureFoldStrength<'a> {
169fn as_str(&self) -> &'a str {
170match self {
171 TargetFeatureFoldStrength::EnableOnly(feat) => feat,
172 TargetFeatureFoldStrength::Both(feat) => feat,
173 }
174 }
175}
176177pub(crate) struct LLVMFeature<'a> {
178 llvm_feature_name: &'a str,
179 dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>,
180}
181182impl<'a> LLVMFeature<'a> {
183fn new(llvm_feature_name: &'a str) -> Self {
184Self { llvm_feature_name, dependencies: SmallVec::new() }
185 }
186187fn with_dependencies(
188 llvm_feature_name: &'a str,
189 dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>,
190 ) -> Self {
191Self { llvm_feature_name, dependencies }
192 }
193}
194195impl<'a> IntoIteratorfor LLVMFeature<'a> {
196type Item = &'a str;
197type IntoIter = impl Iterator<Item = &'a str>;
198199fn into_iter(self) -> Self::IntoIter {
200let dependencies = self.dependencies.into_iter().map(|feat| feat.as_str());
201 std::iter::once(self.llvm_feature_name).chain(dependencies)
202 }
203}
204205/// Convert a Rust feature name to an LLVM feature name. Returning `None` means the
206/// feature should be skipped, usually because it is not supported by the current
207/// LLVM version.
208///
209/// WARNING: the features after applying `to_llvm_features` must be known
210/// to LLVM or the feature detection code will walk past the end of the feature
211/// array, leading to crashes.
212///
213/// To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td
214/// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
215///
216/// Check the current rustc fork of LLVM in the repo at
217/// <https://github.com/rust-lang/llvm-project/>. The commit in use can be found via the
218/// `llvm-project` submodule in <https://github.com/rust-lang/rust/tree/HEAD/src> Though note that
219/// Rust can also be build with an external precompiled version of LLVM which might lead to failures
220/// if the oldest tested / supported LLVM version doesn't yet support the relevant intrinsics.
221pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
222let (major, _, _) = get_version();
223match sess.target.arch {
224 Arch::AArch64 | Arch::Arm64EC => {
225match s {
226"rcpc2" => Some(LLVMFeature::new("rcpc-immo")),
227"dpb" => Some(LLVMFeature::new("ccpp")),
228"dpb2" => Some(LLVMFeature::new("ccdp")),
229"frintts" => Some(LLVMFeature::new("fptoint")),
230"fcma" => Some(LLVMFeature::new("complxnum")),
231"pmuv3" => Some(LLVMFeature::new("perfmon")),
232"paca" => Some(LLVMFeature::new("pauth")),
233"pacg" => Some(LLVMFeature::new("pauth")),
234"flagm2" => Some(LLVMFeature::new("altnzcv")),
235// Rust ties fp and neon together.
236"neon" => Some(LLVMFeature::with_dependencies(
237"neon",
238{
let count = 0usize + 1usize;
let mut vec = ::smallvec::SmallVec::new();
if count <= vec.inline_size() {
vec.push(TargetFeatureFoldStrength::Both("fp-armv8"));
vec
} else {
::smallvec::SmallVec::from_vec(<[_]>::into_vec(::alloc::boxed::box_new([TargetFeatureFoldStrength::Both("fp-armv8")])))
}
}smallvec![TargetFeatureFoldStrength::Both("fp-armv8")],
239 )),
240// In LLVM neon implicitly enables fp, but we manually enable
241 // neon when a feature only implicitly enables fp
242"fhm" => Some(LLVMFeature::new("fp16fml")),
243"fp16" => Some(LLVMFeature::new("fullfp16")),
244// Filter out features that are not supported by the current LLVM version
245"fpmr" => None, // only existed in 18
246 // Withdrawn by ARM; removed from LLVM in 22
247"tme" if major >= 22 => None,
248 s => Some(LLVMFeature::new(s)),
249 }
250 }
251 Arch::Arm => match s {
252"fp16" => Some(LLVMFeature::new("fullfp16")),
253 s => Some(LLVMFeature::new(s)),
254 },
255256// Filter out features that are not supported by the current LLVM version
257Arch::LoongArch32 | Arch::LoongArch64 => match s {
258"32s" if major < 21 => None,
259 s => Some(LLVMFeature::new(s)),
260 },
261 Arch::PowerPC | Arch::PowerPC64 => match s {
262"power8-crypto" => Some(LLVMFeature::new("crypto")),
263 s => Some(LLVMFeature::new(s)),
264 },
265 Arch::RiscV32 | Arch::RiscV64 => match s {
266// Filter out Rust-specific *virtual* target feature
267"zkne_or_zknd" => None,
268 s => Some(LLVMFeature::new(s)),
269 },
270 Arch::Sparc | Arch::Sparc64 => match s {
271"leoncasa" => Some(LLVMFeature::new("hasleoncasa")),
272 s => Some(LLVMFeature::new(s)),
273 },
274 Arch::Wasm32 | Arch::Wasm64 => match s {
275"gc" if major < 22 => None,
276 s => Some(LLVMFeature::new(s)),
277 },
278 Arch::X86 | Arch::X86_64 => {
279match s {
280"sse4.2" => Some(LLVMFeature::with_dependencies(
281"sse4.2",
282{
let count = 0usize + 1usize;
let mut vec = ::smallvec::SmallVec::new();
if count <= vec.inline_size() {
vec.push(TargetFeatureFoldStrength::EnableOnly("crc32"));
vec
} else {
::smallvec::SmallVec::from_vec(<[_]>::into_vec(::alloc::boxed::box_new([TargetFeatureFoldStrength::EnableOnly("crc32")])))
}
}smallvec![TargetFeatureFoldStrength::EnableOnly("crc32")],
283 )),
284"pclmulqdq" => Some(LLVMFeature::new("pclmul")),
285"rdrand" => Some(LLVMFeature::new("rdrnd")),
286"bmi1" => Some(LLVMFeature::new("bmi")),
287"cmpxchg16b" => Some(LLVMFeature::new("cx16")),
288"lahfsahf" => Some(LLVMFeature::new("sahf")),
289// Enable the evex512 target feature if an avx512 target feature is enabled.
290s if s.starts_with("avx512") && major < 22 => Some(LLVMFeature::with_dependencies(
291s,
292{
let count = 0usize + 1usize;
let mut vec = ::smallvec::SmallVec::new();
if count <= vec.inline_size() {
vec.push(TargetFeatureFoldStrength::EnableOnly("evex512"));
vec
} else {
::smallvec::SmallVec::from_vec(<[_]>::into_vec(::alloc::boxed::box_new([TargetFeatureFoldStrength::EnableOnly("evex512")])))
}
}smallvec![TargetFeatureFoldStrength::EnableOnly("evex512")],
293 )),
294"avx10.1" if major < 22 => Some(LLVMFeature::new("avx10.1-512")),
295"avx10.2" if major < 22 => Some(LLVMFeature::new("avx10.2-512")),
296"apxf" => Some(LLVMFeature::with_dependencies(
297"egpr",
298{
let count =
0usize + 1usize + 1usize + 1usize + 1usize + 1usize + 1usize + 1usize;
let mut vec = ::smallvec::SmallVec::new();
if count <= vec.inline_size() {
vec.push(TargetFeatureFoldStrength::Both("push2pop2"));
vec.push(TargetFeatureFoldStrength::Both("ppx"));
vec.push(TargetFeatureFoldStrength::Both("ndd"));
vec.push(TargetFeatureFoldStrength::Both("ccmp"));
vec.push(TargetFeatureFoldStrength::Both("cf"));
vec.push(TargetFeatureFoldStrength::Both("nf"));
vec.push(TargetFeatureFoldStrength::Both("zu"));
vec
} else {
::smallvec::SmallVec::from_vec(<[_]>::into_vec(::alloc::boxed::box_new([TargetFeatureFoldStrength::Both("push2pop2"),
TargetFeatureFoldStrength::Both("ppx"),
TargetFeatureFoldStrength::Both("ndd"),
TargetFeatureFoldStrength::Both("ccmp"),
TargetFeatureFoldStrength::Both("cf"),
TargetFeatureFoldStrength::Both("nf"),
TargetFeatureFoldStrength::Both("zu")])))
}
}smallvec![
299 TargetFeatureFoldStrength::Both("push2pop2"),
300 TargetFeatureFoldStrength::Both("ppx"),
301 TargetFeatureFoldStrength::Both("ndd"),
302 TargetFeatureFoldStrength::Both("ccmp"),
303 TargetFeatureFoldStrength::Both("cf"),
304 TargetFeatureFoldStrength::Both("nf"),
305 TargetFeatureFoldStrength::Both("zu"),
306 ],
307 )),
308 s => Some(LLVMFeature::new(s)),
309 }
310 }
311_ => Some(LLVMFeature::new(s)),
312 }
313}
314315/// Used to generate cfg variables and apply features.
316/// Must express features in the way Rust understands them.
317///
318/// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen.
319pub(crate) fn target_config(sess: &Session) -> TargetConfig {
320let target_machine = create_informational_target_machine(sess, true);
321322let (unstable_target_features, target_features) = cfg_target_feature(
323sess,
324 |feature| {
325to_llvm_features(sess, feature)
326 .map(|f| SmallVec::<[&str; 2]>::from_iter(f.into_iter()))
327 .unwrap_or_default()
328 },
329 |feature| {
330// This closure determines whether the target CPU has the feature according to LLVM. We do
331 // *not* consider the `-Ctarget-feature`s here, as that will be handled later in
332 // `cfg_target_feature`.
333if let Some(feat) = to_llvm_features(sess, feature) {
334// All the LLVM features this expands to must be enabled.
335for llvm_feature in feat {
336let cstr = SmallCStr::new(llvm_feature);
337// `LLVMRustHasFeature` is moderately expensive. On targets with many
338 // features (e.g. x86) these calls take a non-trivial fraction of runtime
339 // when compiling very small programs.
340if !unsafe { llvm::LLVMRustHasFeature(target_machine.raw(), cstr.as_ptr()) } {
341return false;
342 }
343 }
344true
345} else {
346false
347}
348 },
349 );
350351let mut cfg = TargetConfig {
352target_features,
353unstable_target_features,
354 has_reliable_f16: true,
355 has_reliable_f16_math: true,
356 has_reliable_f128: true,
357 has_reliable_f128_math: true,
358 };
359360update_target_reliable_float_cfg(sess, &mut cfg);
361cfg362}
363364/// Determine whether or not experimental float types are reliable based on known bugs.
365fn update_target_reliable_float_cfg(sess: &Session, cfg: &mut TargetConfig) {
366let target_arch = &sess.target.arch;
367let target_os = &sess.target.options.os;
368let target_env = &sess.target.options.env;
369let target_abi = &sess.target.options.abi;
370let target_pointer_width = sess.target.pointer_width;
371let version = get_version();
372let (major, _, _) = version;
373374cfg.has_reliable_f16 = match (target_arch, target_os) {
375// LLVM crash without neon <https://github.com/llvm/llvm-project/issues/129394> (fixed in LLVM 20.1.1)
376(Arch::AArch64, _)
377if !cfg.target_features.iter().any(|f| f.as_str() == "neon")
378 && version < (20, 1, 1) =>
379 {
380false
381}
382// Unsupported <https://github.com/llvm/llvm-project/issues/94434> (fixed in llvm22)
383(Arch::Arm64EC, _) if major < 22 => false,
384// Selection failure <https://github.com/llvm/llvm-project/issues/50374> (fixed in llvm21)
385(Arch::S390x, _) if major < 21 => false,
386// MinGW ABI bugs <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054>
387(Arch::X86_64, Os::Windows) if *target_env == Env::Gnu && *target_abi != Abi::Llvm => false,
388// Infinite recursion <https://github.com/llvm/llvm-project/issues/97981>
389(Arch::CSky, _) if major < 22 => false, // (fixed in llvm22)
390(Arch::Hexagon, _) if major < 21 => false, // (fixed in llvm21)
391(Arch::LoongArch32 | Arch::LoongArch64, _) if major < 21 => false, // (fixed in llvm21)
392(Arch::PowerPC | Arch::PowerPC64, _) if major < 22 => false, // (fixed in llvm22)
393(Arch::Sparc | Arch::Sparc64, _) if major < 22 => false, // (fixed in llvm22)
394(Arch::Wasm32 | Arch::Wasm64, _) if major < 22 => false, // (fixed in llvm22)
395 // `f16` support only requires that symbols converting to and from `f32` are available. We
396 // provide these in `compiler-builtins`, so `f16` should be available on all platforms that
397 // do not have other ABI issues or LLVM crashes.
398_ => true,
399 };
400401cfg.has_reliable_f128 = match (target_arch, target_os) {
402// Unsupported https://github.com/llvm/llvm-project/issues/121122
403(Arch::AmdGpu, _) => false,
404// Unsupported <https://github.com/llvm/llvm-project/issues/94434>
405(Arch::Arm64EC, _) => false,
406// Selection bug <https://github.com/llvm/llvm-project/issues/96432> (fixed in LLVM 20.1.0)
407(Arch::Mips64 | Arch::Mips64r6, _) if version < (20, 1, 0) => false,
408// Selection bug <https://github.com/llvm/llvm-project/issues/95471>. This issue is closed
409 // but basic math still does not work.
410(Arch::Nvptx64, _) => false,
411// ABI bugs <https://github.com/rust-lang/rust/issues/125109> et al. (full
412 // list at <https://github.com/rust-lang/rust/issues/116909>)
413(Arch::PowerPC | Arch::PowerPC64, _) => false,
414// ABI unsupported <https://github.com/llvm/llvm-project/issues/41838>
415(Arch::Sparc, _) => false,
416// Stack alignment bug <https://github.com/llvm/llvm-project/issues/77401>. NB: tests may
417 // not fail if our compiler-builtins is linked. (fixed in llvm21)
418(Arch::X86, _) if major < 21 => false,
419// MinGW ABI bugs <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054>
420(Arch::X86_64, Os::Windows) if *target_env == Env::Gnu && *target_abi != Abi::Llvm => false,
421// There are no known problems on other platforms, so the only requirement is that symbols
422 // are available. `compiler-builtins` provides all symbols required for core `f128`
423 // support, so this should work for everything else.
424_ => true,
425 };
426427// Assume that working `f16` means working `f16` math for most platforms, since
428 // operations just go through `f32`.
429cfg.has_reliable_f16_math = cfg.has_reliable_f16;
430431cfg.has_reliable_f128_math = match (target_arch, target_os) {
432// LLVM lowers `fp128` math to `long double` symbols even on platforms where
433 // `long double` is not IEEE binary128. See
434 // <https://github.com/llvm/llvm-project/issues/44744>.
435 //
436 // This rules out anything that doesn't have `long double` = `binary128`; <= 32 bits
437 // (ld is `f64`), anything other than Linux (Windows and MacOS use `f64`), and `x86`
438 // (ld is 80-bit extended precision).
439 //
440 // musl does not implement the symbols required for f128 math at all.
441_ if *target_env == Env::Musl => false,
442 (Arch::X86_64, _) => false,
443 (_, Os::Linux) if target_pointer_width == 64 => true,
444_ => false,
445 } && cfg.has_reliable_f128;
446}
447448pub(crate) fn print_version() {
449let (major, minor, patch) = get_version();
450{
::std::io::_print(format_args!("LLVM version: {0}.{1}.{2}\n", major,
minor, patch));
};println!("LLVM version: {major}.{minor}.{patch}");
451}
452453pub(crate) fn get_version() -> (u32, u32, u32) {
454// Can be called without initializing LLVM
455unsafe {
456 (llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
457 }
458}
459460pub(crate) fn print_passes() {
461// Can be called without initializing LLVM
462unsafe {
463 llvm::LLVMRustPrintPasses();
464 }
465}
466467fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
468let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
469let mut ret = Vec::with_capacity(len);
470for i in 0..len {
471unsafe {
472let mut feature = ptr::null();
473let mut desc = ptr::null();
474 llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
475if feature.is_null() || desc.is_null() {
476::rustc_middle::util::bug::bug_fmt(format_args!("LLVM returned a `null` target feature string"));bug!("LLVM returned a `null` target feature string");
477 }
478let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
479::rustc_middle::util::bug::bug_fmt(format_args!("LLVM returned a non-utf8 feature string: {0}",
e));bug!("LLVM returned a non-utf8 feature string: {}", e);
480 });
481let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
482::rustc_middle::util::bug::bug_fmt(format_args!("LLVM returned a non-utf8 feature string: {0}",
e));bug!("LLVM returned a non-utf8 feature string: {}", e);
483 });
484 ret.push((feature, desc));
485 }
486 }
487ret488}
489490pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) {
491require_inited();
492let tm = create_informational_target_machine(sess, false);
493match req.kind {
494 PrintKind::TargetCPUs => print_target_cpus(sess, tm.raw(), out),
495 PrintKind::TargetFeatures => print_target_features(sess, tm.raw(), out),
496_ => ::rustc_middle::util::bug::bug_fmt(format_args!("rustc_codegen_llvm can\'t handle print request: {0:?}",
req))bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
497 }
498}
499500fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
501let cpu_names = llvm::build_string(|s| unsafe {
502 llvm::LLVMRustPrintTargetCPUs(&tm, s);
503 })
504 .unwrap();
505506struct Cpu<'a> {
507 cpu_name: &'a str,
508 remark: String,
509 }
510// Compare CPU against current target to label the default.
511let target_cpu = handle_native(&sess.target.cpu);
512let make_remark = |cpu_name| {
513if cpu_name == target_cpu {
514// FIXME(#132514): This prints the LLVM target string, which can be
515 // different from the Rust target string. Is that intended?
516let target = &sess.target.llvm_target;
517::alloc::__export::must_use({
::alloc::fmt::format(format_args!(" - This is the default target CPU for the current build target (currently {0}).",
target))
})format!(
518" - This is the default target CPU for the current build target (currently {target})."
519)520 } else {
521"".to_owned()
522 }
523 };
524let mut cpus = cpu_names525 .lines()
526 .map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) })
527 .collect::<VecDeque<_>>();
528529// Only print the "native" entry when host and target are the same arch,
530 // since otherwise it could be wrong or misleading.
531if sess.host.arch == sess.target.arch {
532let host = get_host_cpu_name();
533cpus.push_front(Cpu {
534 cpu_name: "native",
535 remark: ::alloc::__export::must_use({
::alloc::fmt::format(format_args!(" - Select the CPU of the current host (currently {0}).",
host))
})format!(" - Select the CPU of the current host (currently {host})."),
536 });
537 }
538539let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0);
540out.write_fmt(format_args!("Available CPUs for this target:\n"))writeln!(out, "Available CPUs for this target:").unwrap();
541for Cpu { cpu_name, remark } in cpus {
542// Only pad the CPU name if there's a remark to print after it.
543let width = if remark.is_empty() { 0 } else { max_name_width };
544out.write_fmt(format_args!(" {0:<1$}{2}\n", cpu_name, width, remark))writeln!(out, " {cpu_name:<width$}{remark}").unwrap();
545 }
546}
547548fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
549let mut llvm_target_features = llvm_target_features(tm);
550let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
551let mut rustc_target_features = sess552 .target
553 .rust_target_features()
554 .iter()
555 .filter_map(|(feature, gate, _implied)| {
556if !gate.in_cfg() {
557// Only list (experimentally) supported features.
558return None;
559 }
560// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these
561 // strings.
562let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
563let desc =
564match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
565Some(index) => {
566known_llvm_target_features.insert(llvm_feature);
567llvm_target_features[index].1
568}
569None => "",
570 };
571572Some((*feature, desc))
573 })
574 .collect::<Vec<_>>();
575576// Since we add this at the end ...
577rustc_target_features.extend_from_slice(&[(
578"crt-static",
579"Enables C Run-time Libraries to be statically linked",
580 )]);
581// ... we need to sort the list again.
582rustc_target_features.sort();
583584llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
585586let max_feature_len = llvm_target_features587 .iter()
588 .chain(rustc_target_features.iter())
589 .map(|(feature, _desc)| feature.len())
590 .max()
591 .unwrap_or(0);
592593out.write_fmt(format_args!("Features supported by rustc for this target:\n"))writeln!(out, "Features supported by rustc for this target:").unwrap();
594for (feature, desc) in &rustc_target_features {
595out.write_fmt(format_args!(" {0:1$} - {2}.\n", feature, max_feature_len,
desc))writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
596 }
597out.write_fmt(format_args!("\nCode-generation features supported by LLVM for this target:\n"))writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap();
598for (feature, desc) in &llvm_target_features {
599out.write_fmt(format_args!(" {0:1$} - {2}.\n", feature, max_feature_len,
desc))writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
600 }
601if llvm_target_features.is_empty() {
602out.write_fmt(format_args!(" Target features listing is not supported by this LLVM version.\n"))writeln!(out, " Target features listing is not supported by this LLVM version.")603 .unwrap();
604 }
605out.write_fmt(format_args!("\nUse +feature to enable a feature, or -feature to disable it.\n"))writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap();
606out.write_fmt(format_args!("For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n\n"))writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n")607 .unwrap();
608out.write_fmt(format_args!("Code-generation features cannot be used in cfg or #[target_feature],\n"))writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap();
609out.write_fmt(format_args!("and may be renamed or removed in a future version of LLVM or rustc.\n\n"))writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
610}
611612/// Returns the host CPU name, according to LLVM.
613fn get_host_cpu_name() -> &'static str {
614let mut len = 0;
615// SAFETY: The underlying C++ global function returns a `StringRef` that
616 // isn't tied to any particular backing buffer, so it must be 'static.
617let slice: &'static [u8] = unsafe {
618let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
619if !!ptr.is_null() {
::core::panicking::panic("assertion failed: !ptr.is_null()")
};assert!(!ptr.is_null());
620 slice::from_raw_parts(ptr, len)
621 };
622 str::from_utf8(slice).expect("host CPU name should be UTF-8")
623}
624625/// If the given string is `"native"`, returns the host CPU name according to
626/// LLVM. Otherwise, the string is returned as-is.
627fn handle_native(cpu_name: &str) -> &str {
628match cpu_name {
629"native" => get_host_cpu_name(),
630_ => cpu_name,
631 }
632}
633634pub(crate) fn target_cpu(sess: &Session) -> &str {
635let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu);
636handle_native(cpu_name)
637}
638639/// The target features for compiler flags other than `-Ctarget-features`.
640fn llvm_features_by_flags(sess: &Session, features: &mut Vec<String>) {
641if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind {
642features.push("+exception-handling".into());
643 }
644645 target_features::retpoline_features_by_flags(sess, features);
646647// -Zfixed-x18
648if sess.opts.unstable_opts.fixed_x18 {
649if sess.target.arch != Arch::AArch64 {
650sess.dcx().emit_fatal(errors::FixedX18InvalidArch { arch: sess.target.arch.desc() });
651 } else {
652features.push("+reserve-x18".into());
653 }
654 }
655}
656657/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
658/// `--target` and similar).
659pub(crate) fn global_llvm_features(sess: &Session, only_base_features: bool) -> Vec<String> {
660// Features that come earlier are overridden by conflicting features later in the string.
661 // Typically we'll want more explicit settings to override the implicit ones, so:
662 //
663 // * Features from -Ctarget-cpu=*; are overridden by [^1]
664 // * Features implied by --target; are overridden by
665 // * Features from -Ctarget-feature; are overridden by
666 // * function specific features.
667 //
668 // [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
669 // through LLVM TargetMachine implementation.
670 //
671 // FIXME(nagisa): it isn't clear what's the best interaction between features implied by
672 // `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
673 // override anything that's implicit, so e.g. when there's no `--target` flag, features implied
674 // the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both
675 // `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
676 // flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
677 // should be taken in cases like these.
678let mut features = ::alloc::vec::Vec::new()vec![];
679680// -Ctarget-cpu=native
681match sess.opts.cg.target_cpu {
682Some(ref s) if s == "native" => {
683// We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set
684 // that for LLVM, so the features implied by that CPU name will be available everywhere.
685 // However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if
686 // some of the instructions are available or not. So we have to also explicitly ask for
687 // the exact set of features available on the host, and enable all of them.
688let features_string = unsafe {
689let ptr = llvm::LLVMGetHostCPUFeatures();
690let features_string = if !ptr.is_null() {
691CStr::from_ptr(ptr)
692 .to_str()
693 .unwrap_or_else(|e| {
694::rustc_middle::util::bug::bug_fmt(format_args!("LLVM returned a non-utf8 features string: {0}",
e));bug!("LLVM returned a non-utf8 features string: {}", e);
695 })
696 .to_owned()
697 } else {
698::rustc_middle::util::bug::bug_fmt(format_args!("could not allocate host CPU features, LLVM returned a `null` string"));bug!("could not allocate host CPU features, LLVM returned a `null` string");
699 };
700701 llvm::LLVMDisposeMessage(ptr);
702703features_string704 };
705features.extend(features_string.split(',').map(String::from));
706 }
707Some(_) | None => {}
708 };
709710let mut extend_backend_features = |feature: &str, enable: bool| {
711let enable_disable = if enable { '+' } else { '-' };
712// We run through `to_llvm_features` when
713 // passing requests down to LLVM. This means that all in-language
714 // features also work on the command line instead of having two
715 // different names when the LLVM name and the Rust name differ.
716let Some(llvm_feature) = to_llvm_features(sess, feature) else { return };
717718features.extend(
719 std::iter::once(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("{0}{1}", enable_disable,
llvm_feature.llvm_feature_name))
})format!("{}{}", enable_disable, llvm_feature.llvm_feature_name)).chain(
720llvm_feature.dependencies.into_iter().filter_map(move |feat| {
721match (enable, feat) {
722 (_, TargetFeatureFoldStrength::Both(f))
723 | (true, TargetFeatureFoldStrength::EnableOnly(f)) => {
724Some(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("{0}{1}", enable_disable, f))
})format!("{enable_disable}{f}"))
725 }
726_ => None,
727 }
728 }),
729 ),
730 );
731 };
732733// Features implied by an implicit or explicit `--target`.
734target_features::target_spec_to_backend_features(sess, &mut extend_backend_features);
735736// -Ctarget-features
737if !only_base_features {
738 target_features::flag_to_backend_features(sess, extend_backend_features);
739 }
740741// We add this in the "base target" so that these show up in `sess.unstable_target_features`.
742llvm_features_by_flags(sess, &mut features);
743744features745}
746747pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> {
748let name = sess.opts.unstable_opts.tune_cpu.as_ref()?;
749Some(handle_native(name))
750}