rustc_mir_dataflow/framework/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
//! A framework that can express both [gen-kill] and generic dataflow problems.
//!
//! To use this framework, implement the [`Analysis`] trait. There used to be a `GenKillAnalysis`
//! alternative trait for gen-kill analyses that would pre-compute the transfer function for each
//! block. It was intended as an optimization, but it ended up not being any faster than
//! `Analysis`.
//!
//! The `impls` module contains several examples of dataflow analyses.
//!
//! Then call `iterate_to_fixpoint` on your type that impls `Analysis` to get a `Results`. From
//! there, you can use a `ResultsCursor` to inspect the fixpoint solution to your dataflow problem
//! (good for inspecting a small number of locations), or implement the `ResultsVisitor` interface
//! and use `visit_results` (good for inspecting many or all locations). The following example uses
//! the `ResultsCursor` approach.
//!
//! ```ignore (cross-crate-imports)
//! use rustc_const_eval::dataflow::Analysis; // Makes `iterate_to_fixpoint` available.
//!
//! fn do_my_analysis(tcx: TyCtxt<'tcx>, body: &mir::Body<'tcx>) {
//!     let analysis = MyAnalysis::new()
//!         .iterate_to_fixpoint(tcx, body, None)
//!         .into_results_cursor(body);
//!
//!     // Print the dataflow state *after* each statement in the start block.
//!     for (_, statement_index) in body.block_data[START_BLOCK].statements.iter_enumerated() {
//!         cursor.seek_after(Location { block: START_BLOCK, statement_index });
//!         let state = cursor.get();
//!         println!("{:?}", state);
//!     }
//! }
//! ```
//!
//! [gen-kill]: https://en.wikipedia.org/wiki/Data-flow_analysis#Bit_vector_problems

use std::cmp::Ordering;

use rustc_data_structures::work_queue::WorkQueue;
use rustc_index::bit_set::{BitSet, MixedBitSet};
use rustc_index::{Idx, IndexVec};
use rustc_middle::bug;
use rustc_middle::mir::{self, BasicBlock, CallReturnPlaces, Location, TerminatorEdges, traversal};
use rustc_middle::ty::TyCtxt;
use tracing::error;

use self::graphviz::write_graphviz_results;
use super::fmt::DebugWithContext;

mod cursor;
mod direction;
pub mod fmt;
pub mod graphviz;
pub mod lattice;
mod results;
mod visitor;

pub use self::cursor::ResultsCursor;
pub use self::direction::{Backward, Direction, Forward};
pub use self::lattice::{JoinSemiLattice, MaybeReachable};
pub use self::results::{EntryStates, Results};
pub use self::visitor::{ResultsVisitor, visit_results};

/// Analysis domains are all bitsets of various kinds. This trait holds
/// operations needed by all of them.
pub trait BitSetExt<T> {
    fn contains(&self, elem: T) -> bool;
}

impl<T: Idx> BitSetExt<T> for BitSet<T> {
    fn contains(&self, elem: T) -> bool {
        self.contains(elem)
    }
}

impl<T: Idx> BitSetExt<T> for MixedBitSet<T> {
    fn contains(&self, elem: T) -> bool {
        self.contains(elem)
    }
}

/// A dataflow problem with an arbitrarily complex transfer function.
///
/// This trait specifies the lattice on which this analysis operates (the domain), its
/// initial value at the entry point of each basic block, and various operations.
///
/// # Convergence
///
/// When implementing this trait it's possible to choose a transfer function such that the analysis
/// does not reach fixpoint. To guarantee convergence, your transfer functions must maintain the
/// following invariant:
///
/// > If the dataflow state **before** some point in the program changes to be greater
/// than the prior state **before** that point, the dataflow state **after** that point must
/// also change to be greater than the prior state **after** that point.
///
/// This invariant guarantees that the dataflow state at a given point in the program increases
/// monotonically until fixpoint is reached. Note that this monotonicity requirement only applies
/// to the same point in the program at different points in time. The dataflow state at a given
/// point in the program may or may not be greater than the state at any preceding point.
pub trait Analysis<'tcx> {
    /// The type that holds the dataflow state at any given point in the program.
    type Domain: Clone + JoinSemiLattice;

    /// The direction of this analysis. Either `Forward` or `Backward`.
    type Direction: Direction = Forward;

    /// A descriptive name for this analysis. Used only for debugging.
    ///
    /// This name should be brief and contain no spaces, periods or other characters that are not
    /// suitable as part of a filename.
    const NAME: &'static str;

    /// Returns the initial value of the dataflow state upon entry to each basic block.
    fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain;

    /// Mutates the initial value of the dataflow state upon entry to the `START_BLOCK`.
    ///
    /// For backward analyses, initial state (besides the bottom value) is not yet supported. Trying
    /// to mutate the initial state will result in a panic.
    //
    // FIXME: For backward dataflow analyses, the initial state should be applied to every basic
    // block where control flow could exit the MIR body (e.g., those terminated with `return` or
    // `resume`). It's not obvious how to handle `yield` points in coroutines, however.
    fn initialize_start_block(&self, body: &mir::Body<'tcx>, state: &mut Self::Domain);

    /// Updates the current dataflow state with an "early" effect, i.e. one
    /// that occurs immediately before the given statement.
    ///
    /// This method is useful if the consumer of the results of this analysis only needs to observe
    /// *part* of the effect of a statement (e.g. for two-phase borrows). As a general rule,
    /// analyses should not implement this without also implementing
    /// `apply_primary_statement_effect`.
    fn apply_early_statement_effect(
        &mut self,
        _state: &mut Self::Domain,
        _statement: &mir::Statement<'tcx>,
        _location: Location,
    ) {
    }

    /// Updates the current dataflow state with the effect of evaluating a statement.
    fn apply_primary_statement_effect(
        &mut self,
        state: &mut Self::Domain,
        statement: &mir::Statement<'tcx>,
        location: Location,
    );

    /// Updates the current dataflow state with an effect that occurs immediately *before* the
    /// given terminator.
    ///
    /// This method is useful if the consumer of the results of this analysis needs only to observe
    /// *part* of the effect of a terminator (e.g. for two-phase borrows). As a general rule,
    /// analyses should not implement this without also implementing
    /// `apply_primary_terminator_effect`.
    fn apply_early_terminator_effect(
        &mut self,
        _state: &mut Self::Domain,
        _terminator: &mir::Terminator<'tcx>,
        _location: Location,
    ) {
    }

    /// Updates the current dataflow state with the effect of evaluating a terminator.
    ///
    /// The effect of a successful return from a `Call` terminator should **not** be accounted for
    /// in this function. That should go in `apply_call_return_effect`. For example, in the
    /// `InitializedPlaces` analyses, the return place for a function call is not marked as
    /// initialized here.
    fn apply_primary_terminator_effect<'mir>(
        &mut self,
        _state: &mut Self::Domain,
        terminator: &'mir mir::Terminator<'tcx>,
        _location: Location,
    ) -> TerminatorEdges<'mir, 'tcx> {
        terminator.edges()
    }

    /* Edge-specific effects */

    /// Updates the current dataflow state with the effect of a successful return from a `Call`
    /// terminator.
    ///
    /// This is separate from `apply_primary_terminator_effect` to properly track state across
    /// unwind edges.
    fn apply_call_return_effect(
        &mut self,
        _state: &mut Self::Domain,
        _block: BasicBlock,
        _return_places: CallReturnPlaces<'_, 'tcx>,
    ) {
    }

    /// Updates the current dataflow state with the effect of taking a particular branch in a
    /// `SwitchInt` terminator.
    ///
    /// Unlike the other edge-specific effects, which are allowed to mutate `Self::Domain`
    /// directly, overriders of this method must pass a callback to
    /// `SwitchIntEdgeEffects::apply`. The callback will be run once for each outgoing edge and
    /// will have access to the dataflow state that will be propagated along that edge.
    ///
    /// This interface is somewhat more complex than the other visitor-like "effect" methods.
    /// However, it is both more ergonomic—callers don't need to recompute or cache information
    /// about a given `SwitchInt` terminator for each one of its edges—and more efficient—the
    /// engine doesn't need to clone the exit state for a block unless
    /// `SwitchIntEdgeEffects::apply` is actually called.
    fn apply_switch_int_edge_effects(
        &mut self,
        _block: BasicBlock,
        _discr: &mir::Operand<'tcx>,
        _apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
    ) {
    }

    /* Extension methods */

    /// Finds the fixpoint for this dataflow problem.
    ///
    /// You shouldn't need to override this. Its purpose is to enable method chaining like so:
    ///
    /// ```ignore (cross-crate-imports)
    /// let results = MyAnalysis::new(tcx, body)
    ///     .iterate_to_fixpoint(tcx, body, None)
    ///     .into_results_cursor(body);
    /// ```
    /// You can optionally add a `pass_name` to the graphviz output for this particular run of a
    /// dataflow analysis. Some analyses are run multiple times in the compilation pipeline.
    /// Without a `pass_name` to differentiates them, only the results for the latest run will be
    /// saved.
    fn iterate_to_fixpoint<'mir>(
        mut self,
        tcx: TyCtxt<'tcx>,
        body: &'mir mir::Body<'tcx>,
        pass_name: Option<&'static str>,
    ) -> Results<'tcx, Self>
    where
        Self: Sized,
        Self::Domain: DebugWithContext<Self>,
    {
        let mut entry_states =
            IndexVec::from_fn_n(|_| self.bottom_value(body), body.basic_blocks.len());
        self.initialize_start_block(body, &mut entry_states[mir::START_BLOCK]);

        if Self::Direction::IS_BACKWARD && entry_states[mir::START_BLOCK] != self.bottom_value(body)
        {
            bug!("`initialize_start_block` is not yet supported for backward dataflow analyses");
        }

        let mut dirty_queue: WorkQueue<BasicBlock> = WorkQueue::with_none(body.basic_blocks.len());

        if Self::Direction::IS_FORWARD {
            for (bb, _) in traversal::reverse_postorder(body) {
                dirty_queue.insert(bb);
            }
        } else {
            // Reverse post-order on the reverse CFG may generate a better iteration order for
            // backward dataflow analyses, but probably not enough to matter.
            for (bb, _) in traversal::postorder(body) {
                dirty_queue.insert(bb);
            }
        }

        // `state` is not actually used between iterations;
        // this is just an optimization to avoid reallocating
        // every iteration.
        let mut state = self.bottom_value(body);
        while let Some(bb) = dirty_queue.pop() {
            // Set the state to the entry state of the block.
            // This is equivalent to `state = entry_states[bb].clone()`,
            // but it saves an allocation, thus improving compile times.
            state.clone_from(&entry_states[bb]);

            Self::Direction::apply_effects_in_block(
                &mut self,
                body,
                &mut state,
                bb,
                &body[bb],
                |target: BasicBlock, state: &Self::Domain| {
                    let set_changed = entry_states[target].join(state);
                    if set_changed {
                        dirty_queue.insert(target);
                    }
                },
            );
        }

        let mut results = Results { analysis: self, entry_states };

        if tcx.sess.opts.unstable_opts.dump_mir_dataflow {
            let res = write_graphviz_results(tcx, body, &mut results, pass_name);
            if let Err(e) = res {
                error!("Failed to write graphviz dataflow results: {}", e);
            }
        }

        results
    }
}

/// The legal operations for a transfer function in a gen/kill problem.
pub trait GenKill<T> {
    /// Inserts `elem` into the state vector.
    fn gen_(&mut self, elem: T);

    /// Removes `elem` from the state vector.
    fn kill(&mut self, elem: T);

    /// Calls `gen` for each element in `elems`.
    fn gen_all(&mut self, elems: impl IntoIterator<Item = T>) {
        for elem in elems {
            self.gen_(elem);
        }
    }

    /// Calls `kill` for each element in `elems`.
    fn kill_all(&mut self, elems: impl IntoIterator<Item = T>) {
        for elem in elems {
            self.kill(elem);
        }
    }
}

impl<T: Idx> GenKill<T> for BitSet<T> {
    fn gen_(&mut self, elem: T) {
        self.insert(elem);
    }

    fn kill(&mut self, elem: T) {
        self.remove(elem);
    }
}

impl<T: Idx> GenKill<T> for MixedBitSet<T> {
    fn gen_(&mut self, elem: T) {
        self.insert(elem);
    }

    fn kill(&mut self, elem: T) {
        self.remove(elem);
    }
}

impl<T, S: GenKill<T>> GenKill<T> for MaybeReachable<S> {
    fn gen_(&mut self, elem: T) {
        match self {
            // If the state is not reachable, adding an element does nothing.
            MaybeReachable::Unreachable => {}
            MaybeReachable::Reachable(set) => set.gen_(elem),
        }
    }

    fn kill(&mut self, elem: T) {
        match self {
            // If the state is not reachable, killing an element does nothing.
            MaybeReachable::Unreachable => {}
            MaybeReachable::Reachable(set) => set.kill(elem),
        }
    }
}

// NOTE: DO NOT CHANGE VARIANT ORDER. The derived `Ord` impls rely on the current order.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Effect {
    /// The "early" effect (e.g., `apply_early_statement_effect`) for a statement/terminator.
    Early,

    /// The "primary" effect (e.g., `apply_primary_statement_effect`) for a statement/terminator.
    Primary,
}

impl Effect {
    const fn at_index(self, statement_index: usize) -> EffectIndex {
        EffectIndex { effect: self, statement_index }
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct EffectIndex {
    statement_index: usize,
    effect: Effect,
}

impl EffectIndex {
    fn next_in_forward_order(self) -> Self {
        match self.effect {
            Effect::Early => Effect::Primary.at_index(self.statement_index),
            Effect::Primary => Effect::Early.at_index(self.statement_index + 1),
        }
    }

    fn next_in_backward_order(self) -> Self {
        match self.effect {
            Effect::Early => Effect::Primary.at_index(self.statement_index),
            Effect::Primary => Effect::Early.at_index(self.statement_index - 1),
        }
    }

    /// Returns `true` if the effect at `self` should be applied earlier than the effect at `other`
    /// in forward order.
    fn precedes_in_forward_order(self, other: Self) -> bool {
        let ord = self
            .statement_index
            .cmp(&other.statement_index)
            .then_with(|| self.effect.cmp(&other.effect));
        ord == Ordering::Less
    }

    /// Returns `true` if the effect at `self` should be applied earlier than the effect at `other`
    /// in backward order.
    fn precedes_in_backward_order(self, other: Self) -> bool {
        let ord = other
            .statement_index
            .cmp(&self.statement_index)
            .then_with(|| self.effect.cmp(&other.effect));
        ord == Ordering::Less
    }
}

pub struct SwitchIntTarget {
    pub value: Option<u128>,
    pub target: BasicBlock,
}

/// A type that records the edge-specific effects for a `SwitchInt` terminator.
pub trait SwitchIntEdgeEffects<D> {
    /// Calls `apply_edge_effect` for each outgoing edge from a `SwitchInt` terminator and
    /// records the results.
    fn apply(&mut self, apply_edge_effect: impl FnMut(&mut D, SwitchIntTarget));
}

#[cfg(test)]
mod tests;