rustc_hir_typeck/expr_use_visitor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
//! A different sort of visitor for walking fn bodies. Unlike the
//! normal visitor, which just walks the entire body in one shot, the
//! `ExprUseVisitor` determines how expressions are being used.
use std::cell::{Ref, RefCell};
use std::ops::Deref;
use std::slice::from_ref;
use hir::Expr;
use hir::def::DefKind;
use hir::pat_util::EnumerateAndAdjustIterator as _;
use rustc_abi::{FIRST_VARIANT, FieldIdx, VariantIdx};
use rustc_data_structures::fx::FxIndexMap;
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_hir::{HirId, PatKind};
use rustc_lint::LateContext;
use rustc_middle::hir::place::ProjectionKind;
// Export these here so that Clippy can use them.
pub use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection};
use rustc_middle::mir::FakeReadCause;
use rustc_middle::ty::{
self, AdtKind, BorrowKind, Ty, TyCtxt, TypeFoldable, TypeVisitableExt as _, adjustment,
};
use rustc_middle::{bug, span_bug};
use rustc_span::{ErrorGuaranteed, Span};
use rustc_trait_selection::infer::InferCtxtExt;
use tracing::{debug, trace};
use crate::fn_ctxt::FnCtxt;
/// This trait defines the callbacks you can expect to receive when
/// employing the ExprUseVisitor.
pub trait Delegate<'tcx> {
/// The value found at `place` is moved, depending
/// on `mode`. Where `diag_expr_id` is the id used for diagnostics for `place`.
///
/// Use of a `Copy` type in a ByValue context is considered a use
/// by `ImmBorrow` and `borrow` is called instead. This is because
/// a shared borrow is the "minimum access" that would be needed
/// to perform a copy.
///
///
/// The parameter `diag_expr_id` indicates the HIR id that ought to be used for
/// diagnostics. Around pattern matching such as `let pat = expr`, the diagnostic
/// id will be the id of the expression `expr` but the place itself will have
/// the id of the binding in the pattern `pat`.
fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId);
/// The value found at `place` is being borrowed with kind `bk`.
/// `diag_expr_id` is the id used for diagnostics (see `consume` for more details).
fn borrow(
&mut self,
place_with_id: &PlaceWithHirId<'tcx>,
diag_expr_id: HirId,
bk: ty::BorrowKind,
);
/// The value found at `place` is being copied.
/// `diag_expr_id` is the id used for diagnostics (see `consume` for more details).
fn copy(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
// In most cases, copying data from `x` is equivalent to doing `*&x`, so by default
// we treat a copy of `x` as a borrow of `x`.
self.borrow(place_with_id, diag_expr_id, ty::BorrowKind::Immutable)
}
/// The path at `assignee_place` is being assigned to.
/// `diag_expr_id` is the id used for diagnostics (see `consume` for more details).
fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: HirId);
/// The path at `binding_place` is a binding that is being initialized.
///
/// This covers cases such as `let x = 42;`
fn bind(&mut self, binding_place: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
// Bindings can normally be treated as a regular assignment, so by default we
// forward this to the mutate callback.
self.mutate(binding_place, diag_expr_id)
}
/// The `place` should be a fake read because of specified `cause`.
fn fake_read(
&mut self,
place_with_id: &PlaceWithHirId<'tcx>,
cause: FakeReadCause,
diag_expr_id: HirId,
);
}
impl<'tcx, D: Delegate<'tcx>> Delegate<'tcx> for &mut D {
fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
(**self).consume(place_with_id, diag_expr_id)
}
fn borrow(
&mut self,
place_with_id: &PlaceWithHirId<'tcx>,
diag_expr_id: HirId,
bk: ty::BorrowKind,
) {
(**self).borrow(place_with_id, diag_expr_id, bk)
}
fn copy(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
(**self).copy(place_with_id, diag_expr_id)
}
fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
(**self).mutate(assignee_place, diag_expr_id)
}
fn bind(&mut self, binding_place: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
(**self).bind(binding_place, diag_expr_id)
}
fn fake_read(
&mut self,
place_with_id: &PlaceWithHirId<'tcx>,
cause: FakeReadCause,
diag_expr_id: HirId,
) {
(**self).fake_read(place_with_id, cause, diag_expr_id)
}
}
pub trait TypeInformationCtxt<'tcx> {
type TypeckResults<'a>: Deref<Target = ty::TypeckResults<'tcx>>
where
Self: 'a;
type Error;
fn typeck_results(&self) -> Self::TypeckResults<'_>;
fn resolve_vars_if_possible<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T;
fn try_structurally_resolve_type(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
fn report_error(&self, span: Span, msg: impl ToString) -> Self::Error;
fn error_reported_in_ty(&self, ty: Ty<'tcx>) -> Result<(), Self::Error>;
fn tainted_by_errors(&self) -> Result<(), Self::Error>;
fn type_is_copy_modulo_regions(&self, ty: Ty<'tcx>) -> bool;
fn body_owner_def_id(&self) -> LocalDefId;
fn tcx(&self) -> TyCtxt<'tcx>;
}
impl<'tcx> TypeInformationCtxt<'tcx> for &FnCtxt<'_, 'tcx> {
type TypeckResults<'a>
= Ref<'a, ty::TypeckResults<'tcx>>
where
Self: 'a;
type Error = ErrorGuaranteed;
fn typeck_results(&self) -> Self::TypeckResults<'_> {
self.typeck_results.borrow()
}
fn resolve_vars_if_possible<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
self.infcx.resolve_vars_if_possible(t)
}
fn try_structurally_resolve_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
(**self).try_structurally_resolve_type(sp, ty)
}
fn report_error(&self, span: Span, msg: impl ToString) -> Self::Error {
self.dcx().span_delayed_bug(span, msg.to_string())
}
fn error_reported_in_ty(&self, ty: Ty<'tcx>) -> Result<(), Self::Error> {
ty.error_reported()
}
fn tainted_by_errors(&self) -> Result<(), ErrorGuaranteed> {
if let Some(guar) = self.infcx.tainted_by_errors() { Err(guar) } else { Ok(()) }
}
fn type_is_copy_modulo_regions(&self, ty: Ty<'tcx>) -> bool {
self.infcx.type_is_copy_modulo_regions(self.param_env, ty)
}
fn body_owner_def_id(&self) -> LocalDefId {
self.body_id
}
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'tcx> TypeInformationCtxt<'tcx> for (&LateContext<'tcx>, LocalDefId) {
type TypeckResults<'a>
= &'tcx ty::TypeckResults<'tcx>
where
Self: 'a;
type Error = !;
fn typeck_results(&self) -> Self::TypeckResults<'_> {
self.0.maybe_typeck_results().expect("expected typeck results")
}
fn try_structurally_resolve_type(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
// FIXME: Maybe need to normalize here.
ty
}
fn resolve_vars_if_possible<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
t
}
fn report_error(&self, span: Span, msg: impl ToString) -> ! {
span_bug!(span, "{}", msg.to_string())
}
fn error_reported_in_ty(&self, _ty: Ty<'tcx>) -> Result<(), !> {
Ok(())
}
fn tainted_by_errors(&self) -> Result<(), !> {
Ok(())
}
fn type_is_copy_modulo_regions(&self, ty: Ty<'tcx>) -> bool {
self.0.type_is_copy_modulo_regions(ty)
}
fn body_owner_def_id(&self) -> LocalDefId {
self.1
}
fn tcx(&self) -> TyCtxt<'tcx> {
self.0.tcx
}
}
/// The ExprUseVisitor type
///
/// This is the code that actually walks the tree.
pub struct ExprUseVisitor<'tcx, Cx: TypeInformationCtxt<'tcx>, D: Delegate<'tcx>> {
cx: Cx,
/// We use a `RefCell` here so that delegates can mutate themselves, but we can
/// still have calls to our own helper functions.
delegate: RefCell<D>,
upvars: Option<&'tcx FxIndexMap<HirId, hir::Upvar>>,
}
impl<'a, 'tcx, D: Delegate<'tcx>> ExprUseVisitor<'tcx, (&'a LateContext<'tcx>, LocalDefId), D> {
pub fn for_clippy(cx: &'a LateContext<'tcx>, body_def_id: LocalDefId, delegate: D) -> Self {
Self::new((cx, body_def_id), delegate)
}
}
impl<'tcx, Cx: TypeInformationCtxt<'tcx>, D: Delegate<'tcx>> ExprUseVisitor<'tcx, Cx, D> {
/// Creates the ExprUseVisitor, configuring it with the various options provided:
///
/// - `delegate` -- who receives the callbacks
/// - `param_env` --- parameter environment for trait lookups (esp. pertaining to `Copy`)
/// - `typeck_results` --- typeck results for the code being analyzed
pub(crate) fn new(cx: Cx, delegate: D) -> Self {
ExprUseVisitor {
delegate: RefCell::new(delegate),
upvars: cx.tcx().upvars_mentioned(cx.body_owner_def_id()),
cx,
}
}
pub fn consume_body(&self, body: &hir::Body<'_>) -> Result<(), Cx::Error> {
for param in body.params {
let param_ty = self.pat_ty_adjusted(param.pat)?;
debug!("consume_body: param_ty = {:?}", param_ty);
let param_place = self.cat_rvalue(param.hir_id, param_ty);
self.walk_irrefutable_pat(¶m_place, param.pat)?;
}
self.consume_expr(body.value)?;
Ok(())
}
fn consume_or_copy(&self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
debug!("delegate_consume(place_with_id={:?})", place_with_id);
if self.cx.type_is_copy_modulo_regions(place_with_id.place.ty()) {
self.delegate.borrow_mut().copy(place_with_id, diag_expr_id);
} else {
self.delegate.borrow_mut().consume(place_with_id, diag_expr_id);
}
}
fn consume_exprs(&self, exprs: &[hir::Expr<'_>]) -> Result<(), Cx::Error> {
for expr in exprs {
self.consume_expr(expr)?;
}
Ok(())
}
// FIXME: It's suspicious that this is public; clippy should probably use `walk_expr`.
pub fn consume_expr(&self, expr: &hir::Expr<'_>) -> Result<(), Cx::Error> {
debug!("consume_expr(expr={:?})", expr);
let place_with_id = self.cat_expr(expr)?;
self.consume_or_copy(&place_with_id, place_with_id.hir_id);
self.walk_expr(expr)?;
Ok(())
}
fn mutate_expr(&self, expr: &hir::Expr<'_>) -> Result<(), Cx::Error> {
let place_with_id = self.cat_expr(expr)?;
self.delegate.borrow_mut().mutate(&place_with_id, place_with_id.hir_id);
self.walk_expr(expr)?;
Ok(())
}
fn borrow_expr(&self, expr: &hir::Expr<'_>, bk: ty::BorrowKind) -> Result<(), Cx::Error> {
debug!("borrow_expr(expr={:?}, bk={:?})", expr, bk);
let place_with_id = self.cat_expr(expr)?;
self.delegate.borrow_mut().borrow(&place_with_id, place_with_id.hir_id, bk);
self.walk_expr(expr)
}
pub fn walk_expr(&self, expr: &hir::Expr<'_>) -> Result<(), Cx::Error> {
debug!("walk_expr(expr={:?})", expr);
self.walk_adjustment(expr)?;
match expr.kind {
hir::ExprKind::Path(_) => {}
hir::ExprKind::Type(subexpr, _) => {
self.walk_expr(subexpr)?;
}
hir::ExprKind::UnsafeBinderCast(_, subexpr, _) => {
self.walk_expr(subexpr)?;
}
hir::ExprKind::Unary(hir::UnOp::Deref, base) => {
// *base
self.walk_expr(base)?;
}
hir::ExprKind::Field(base, _) => {
// base.f
self.walk_expr(base)?;
}
hir::ExprKind::Index(lhs, rhs, _) => {
// lhs[rhs]
self.walk_expr(lhs)?;
self.consume_expr(rhs)?;
}
hir::ExprKind::Call(callee, args) => {
// callee(args)
self.consume_expr(callee)?;
self.consume_exprs(args)?;
}
hir::ExprKind::MethodCall(.., receiver, args, _) => {
// callee.m(args)
self.consume_expr(receiver)?;
self.consume_exprs(args)?;
}
hir::ExprKind::Struct(_, fields, ref opt_with) => {
self.walk_struct_expr(fields, opt_with)?;
}
hir::ExprKind::Tup(exprs) => {
self.consume_exprs(exprs)?;
}
hir::ExprKind::If(cond_expr, then_expr, ref opt_else_expr) => {
self.consume_expr(cond_expr)?;
self.consume_expr(then_expr)?;
if let Some(else_expr) = *opt_else_expr {
self.consume_expr(else_expr)?;
}
}
hir::ExprKind::Let(hir::LetExpr { pat, init, .. }) => {
self.walk_local(init, pat, None, || self.borrow_expr(init, BorrowKind::Immutable))?;
}
hir::ExprKind::Match(discr, arms, _) => {
let discr_place = self.cat_expr(discr)?;
self.maybe_read_scrutinee(
discr,
discr_place.clone(),
arms.iter().map(|arm| arm.pat),
)?;
// treatment of the discriminant is handled while walking the arms.
for arm in arms {
self.walk_arm(&discr_place, arm)?;
}
}
hir::ExprKind::Array(exprs) => {
self.consume_exprs(exprs)?;
}
hir::ExprKind::AddrOf(_, m, base) => {
// &base
// make sure that the thing we are pointing out stays valid
// for the lifetime `scope_r` of the resulting ptr:
let bk = ty::BorrowKind::from_mutbl(m);
self.borrow_expr(base, bk)?;
}
hir::ExprKind::InlineAsm(asm) => {
for (op, _op_sp) in asm.operands {
match op {
hir::InlineAsmOperand::In { expr, .. } => {
self.consume_expr(expr)?;
}
hir::InlineAsmOperand::Out { expr: Some(expr), .. }
| hir::InlineAsmOperand::InOut { expr, .. } => {
self.mutate_expr(expr)?;
}
hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
self.consume_expr(in_expr)?;
if let Some(out_expr) = out_expr {
self.mutate_expr(out_expr)?;
}
}
hir::InlineAsmOperand::Out { expr: None, .. }
| hir::InlineAsmOperand::Const { .. }
| hir::InlineAsmOperand::SymFn { .. }
| hir::InlineAsmOperand::SymStatic { .. } => {}
hir::InlineAsmOperand::Label { block } => {
self.walk_block(block)?;
}
}
}
}
hir::ExprKind::Continue(..)
| hir::ExprKind::Lit(..)
| hir::ExprKind::ConstBlock(..)
| hir::ExprKind::OffsetOf(..)
| hir::ExprKind::Err(_) => {}
hir::ExprKind::Loop(blk, ..) => {
self.walk_block(blk)?;
}
hir::ExprKind::Unary(_, lhs) => {
self.consume_expr(lhs)?;
}
hir::ExprKind::Binary(_, lhs, rhs) => {
self.consume_expr(lhs)?;
self.consume_expr(rhs)?;
}
hir::ExprKind::Block(blk, _) => {
self.walk_block(blk)?;
}
hir::ExprKind::Break(_, ref opt_expr) | hir::ExprKind::Ret(ref opt_expr) => {
if let Some(expr) = *opt_expr {
self.consume_expr(expr)?;
}
}
hir::ExprKind::Become(call) => {
self.consume_expr(call)?;
}
hir::ExprKind::Assign(lhs, rhs, _) => {
self.mutate_expr(lhs)?;
self.consume_expr(rhs)?;
}
hir::ExprKind::Cast(base, _) => {
self.consume_expr(base)?;
}
hir::ExprKind::DropTemps(expr) => {
self.consume_expr(expr)?;
}
hir::ExprKind::AssignOp(_, lhs, rhs) => {
if self.cx.typeck_results().is_method_call(expr) {
self.consume_expr(lhs)?;
} else {
self.mutate_expr(lhs)?;
}
self.consume_expr(rhs)?;
}
hir::ExprKind::Repeat(base, _) => {
self.consume_expr(base)?;
}
hir::ExprKind::Closure(closure) => {
self.walk_captures(closure)?;
}
hir::ExprKind::Yield(value, _) => {
self.consume_expr(value)?;
}
}
Ok(())
}
fn walk_stmt(&self, stmt: &hir::Stmt<'_>) -> Result<(), Cx::Error> {
match stmt.kind {
hir::StmtKind::Let(hir::LetStmt { pat, init: Some(expr), els, .. }) => {
self.walk_local(expr, pat, *els, || Ok(()))?;
}
hir::StmtKind::Let(_) => {}
hir::StmtKind::Item(_) => {
// We don't visit nested items in this visitor,
// only the fn body we were given.
}
hir::StmtKind::Expr(expr) | hir::StmtKind::Semi(expr) => {
self.consume_expr(expr)?;
}
}
Ok(())
}
fn maybe_read_scrutinee<'t>(
&self,
discr: &Expr<'_>,
discr_place: PlaceWithHirId<'tcx>,
pats: impl Iterator<Item = &'t hir::Pat<'t>>,
) -> Result<(), Cx::Error> {
// Matching should not always be considered a use of the place, hence
// discr does not necessarily need to be borrowed.
// We only want to borrow discr if the pattern contain something other
// than wildcards.
let mut needs_to_be_read = false;
for pat in pats {
self.cat_pattern(discr_place.clone(), pat, &mut |place, pat| {
match &pat.kind {
PatKind::Binding(.., opt_sub_pat) => {
// If the opt_sub_pat is None, then the binding does not count as
// a wildcard for the purpose of borrowing discr.
if opt_sub_pat.is_none() {
needs_to_be_read = true;
}
}
PatKind::Never => {
// A never pattern reads the value.
// FIXME(never_patterns): does this do what I expect?
needs_to_be_read = true;
}
PatKind::Path(qpath) => {
// A `Path` pattern is just a name like `Foo`. This is either a
// named constant or else it refers to an ADT variant
let res = self.cx.typeck_results().qpath_res(qpath, pat.hir_id);
match res {
Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) => {
// Named constants have to be equated with the value
// being matched, so that's a read of the value being matched.
//
// FIXME: We don't actually reads for ZSTs.
needs_to_be_read = true;
}
_ => {
// Otherwise, this is a struct/enum variant, and so it's
// only a read if we need to read the discriminant.
needs_to_be_read |=
self.is_multivariant_adt(place.place.ty(), pat.span);
}
}
}
PatKind::TupleStruct(..) | PatKind::Struct(..) | PatKind::Tuple(..) => {
// For `Foo(..)`, `Foo { ... }` and `(...)` patterns, check if we are matching
// against a multivariant enum or struct. In that case, we have to read
// the discriminant. Otherwise this kind of pattern doesn't actually
// read anything (we'll get invoked for the `...`, which may indeed
// perform some reads).
let place_ty = place.place.ty();
needs_to_be_read |= self.is_multivariant_adt(place_ty, pat.span);
}
PatKind::Expr(_) | PatKind::Range(..) => {
// If the PatKind is a Lit or a Range then we want
// to borrow discr.
needs_to_be_read = true;
}
PatKind::Slice(lhs, wild, rhs) => {
// We don't need to test the length if the pattern is `[..]`
if matches!((lhs, wild, rhs), (&[], Some(_), &[]))
// Arrays have a statically known size, so
// there is no need to read their length
|| place.place.ty().peel_refs().is_array()
{
} else {
needs_to_be_read = true;
}
}
PatKind::Or(_)
| PatKind::Box(_)
| PatKind::Deref(_)
| PatKind::Ref(..)
| PatKind::Guard(..)
| PatKind::Wild
| PatKind::Err(_) => {
// If the PatKind is Or, Box, or Ref, the decision is made later
// as these patterns contains subpatterns
// If the PatKind is Wild or Err, the decision is made based on the other patterns
// being examined
}
}
Ok(())
})?
}
if needs_to_be_read {
self.borrow_expr(discr, BorrowKind::Immutable)?;
} else {
let closure_def_id = match discr_place.place.base {
PlaceBase::Upvar(upvar_id) => Some(upvar_id.closure_expr_id),
_ => None,
};
self.delegate.borrow_mut().fake_read(
&discr_place,
FakeReadCause::ForMatchedPlace(closure_def_id),
discr_place.hir_id,
);
// We always want to walk the discriminant. We want to make sure, for instance,
// that the discriminant has been initialized.
self.walk_expr(discr)?;
}
Ok(())
}
fn walk_local<F>(
&self,
expr: &hir::Expr<'_>,
pat: &hir::Pat<'_>,
els: Option<&hir::Block<'_>>,
mut f: F,
) -> Result<(), Cx::Error>
where
F: FnMut() -> Result<(), Cx::Error>,
{
self.walk_expr(expr)?;
let expr_place = self.cat_expr(expr)?;
f()?;
if let Some(els) = els {
// borrowing because we need to test the discriminant
self.maybe_read_scrutinee(expr, expr_place.clone(), from_ref(pat).iter())?;
self.walk_block(els)?;
}
self.walk_irrefutable_pat(&expr_place, pat)?;
Ok(())
}
/// Indicates that the value of `blk` will be consumed, meaning either copied or moved
/// depending on its type.
fn walk_block(&self, blk: &hir::Block<'_>) -> Result<(), Cx::Error> {
debug!("walk_block(blk.hir_id={})", blk.hir_id);
for stmt in blk.stmts {
self.walk_stmt(stmt)?;
}
if let Some(tail_expr) = blk.expr {
self.consume_expr(tail_expr)?;
}
Ok(())
}
fn walk_struct_expr<'hir>(
&self,
fields: &[hir::ExprField<'_>],
opt_with: &hir::StructTailExpr<'hir>,
) -> Result<(), Cx::Error> {
// Consume the expressions supplying values for each field.
for field in fields {
self.consume_expr(field.expr)?;
// The struct path probably didn't resolve
if self.cx.typeck_results().opt_field_index(field.hir_id).is_none() {
self.cx
.tcx()
.dcx()
.span_delayed_bug(field.span, "couldn't resolve index for field");
}
}
let with_expr = match *opt_with {
hir::StructTailExpr::Base(w) => &*w,
hir::StructTailExpr::DefaultFields(_) | hir::StructTailExpr::None => {
return Ok(());
}
};
let with_place = self.cat_expr(with_expr)?;
// Select just those fields of the `with`
// expression that will actually be used
match self.cx.try_structurally_resolve_type(with_expr.span, with_place.place.ty()).kind() {
ty::Adt(adt, args) if adt.is_struct() => {
// Consume those fields of the with expression that are needed.
for (f_index, with_field) in adt.non_enum_variant().fields.iter_enumerated() {
let is_mentioned = fields.iter().any(|f| {
self.cx.typeck_results().opt_field_index(f.hir_id) == Some(f_index)
});
if !is_mentioned {
let field_place = self.cat_projection(
with_expr.hir_id,
with_place.clone(),
with_field.ty(self.cx.tcx(), args),
ProjectionKind::Field(f_index, FIRST_VARIANT),
);
self.consume_or_copy(&field_place, field_place.hir_id);
}
}
}
_ => {
// the base expression should always evaluate to a
// struct; however, when EUV is run during typeck, it
// may not. This will generate an error earlier in typeck,
// so we can just ignore it.
if self.cx.tainted_by_errors().is_ok() {
span_bug!(with_expr.span, "with expression doesn't evaluate to a struct");
}
}
}
// walk the with expression so that complex expressions
// are properly handled.
self.walk_expr(with_expr)?;
Ok(())
}
/// Invoke the appropriate delegate calls for anything that gets
/// consumed or borrowed as part of the automatic adjustment
/// process.
fn walk_adjustment(&self, expr: &hir::Expr<'_>) -> Result<(), Cx::Error> {
let typeck_results = self.cx.typeck_results();
let adjustments = typeck_results.expr_adjustments(expr);
let mut place_with_id = self.cat_expr_unadjusted(expr)?;
for adjustment in adjustments {
debug!("walk_adjustment expr={:?} adj={:?}", expr, adjustment);
match adjustment.kind {
adjustment::Adjust::NeverToAny | adjustment::Adjust::Pointer(_) => {
// Creating a closure/fn-pointer or unsizing consumes
// the input and stores it into the resulting rvalue.
self.consume_or_copy(&place_with_id, place_with_id.hir_id);
}
adjustment::Adjust::Deref(None) => {}
// Autoderefs for overloaded Deref calls in fact reference
// their receiver. That is, if we have `(*x)` where `x`
// is of type `Rc<T>`, then this in fact is equivalent to
// `x.deref()`. Since `deref()` is declared with `&self`,
// this is an autoref of `x`.
adjustment::Adjust::Deref(Some(ref deref)) => {
let bk = ty::BorrowKind::from_mutbl(deref.mutbl);
self.delegate.borrow_mut().borrow(&place_with_id, place_with_id.hir_id, bk);
}
adjustment::Adjust::Borrow(ref autoref) => {
self.walk_autoref(expr, &place_with_id, autoref);
}
adjustment::Adjust::ReborrowPin(mutbl) => {
// Reborrowing a Pin is like a combinations of a deref and a borrow, so we do
// both.
let bk = match mutbl {
ty::Mutability::Not => ty::BorrowKind::Immutable,
ty::Mutability::Mut => ty::BorrowKind::Mutable,
};
self.delegate.borrow_mut().borrow(&place_with_id, place_with_id.hir_id, bk);
}
}
place_with_id = self.cat_expr_adjusted(expr, place_with_id, adjustment)?;
}
Ok(())
}
/// Walks the autoref `autoref` applied to the autoderef'd
/// `expr`. `base_place` is the mem-categorized form of `expr`
/// after all relevant autoderefs have occurred.
fn walk_autoref(
&self,
expr: &hir::Expr<'_>,
base_place: &PlaceWithHirId<'tcx>,
autoref: &adjustment::AutoBorrow,
) {
debug!(
"walk_autoref(expr.hir_id={} base_place={:?} autoref={:?})",
expr.hir_id, base_place, autoref
);
match *autoref {
adjustment::AutoBorrow::Ref(m) => {
self.delegate.borrow_mut().borrow(
base_place,
base_place.hir_id,
ty::BorrowKind::from_mutbl(m.into()),
);
}
adjustment::AutoBorrow::RawPtr(m) => {
debug!("walk_autoref: expr.hir_id={} base_place={:?}", expr.hir_id, base_place);
self.delegate.borrow_mut().borrow(
base_place,
base_place.hir_id,
ty::BorrowKind::from_mutbl(m),
);
}
}
}
fn walk_arm(
&self,
discr_place: &PlaceWithHirId<'tcx>,
arm: &hir::Arm<'_>,
) -> Result<(), Cx::Error> {
let closure_def_id = match discr_place.place.base {
PlaceBase::Upvar(upvar_id) => Some(upvar_id.closure_expr_id),
_ => None,
};
self.delegate.borrow_mut().fake_read(
discr_place,
FakeReadCause::ForMatchedPlace(closure_def_id),
discr_place.hir_id,
);
self.walk_pat(discr_place, arm.pat, arm.guard.is_some())?;
if let Some(ref e) = arm.guard {
self.consume_expr(e)?;
}
self.consume_expr(arm.body)?;
Ok(())
}
/// Walks a pat that occurs in isolation (i.e., top-level of fn argument or
/// let binding, and *not* a match arm or nested pat.)
fn walk_irrefutable_pat(
&self,
discr_place: &PlaceWithHirId<'tcx>,
pat: &hir::Pat<'_>,
) -> Result<(), Cx::Error> {
let closure_def_id = match discr_place.place.base {
PlaceBase::Upvar(upvar_id) => Some(upvar_id.closure_expr_id),
_ => None,
};
self.delegate.borrow_mut().fake_read(
discr_place,
FakeReadCause::ForLet(closure_def_id),
discr_place.hir_id,
);
self.walk_pat(discr_place, pat, false)?;
Ok(())
}
/// The core driver for walking a pattern
fn walk_pat(
&self,
discr_place: &PlaceWithHirId<'tcx>,
pat: &hir::Pat<'_>,
has_guard: bool,
) -> Result<(), Cx::Error> {
debug!("walk_pat(discr_place={:?}, pat={:?}, has_guard={:?})", discr_place, pat, has_guard);
let tcx = self.cx.tcx();
self.cat_pattern(discr_place.clone(), pat, &mut |place, pat| {
if let PatKind::Binding(_, canonical_id, ..) = pat.kind {
debug!("walk_pat: binding place={:?} pat={:?}", place, pat);
if let Some(bm) =
self.cx.typeck_results().extract_binding_mode(tcx.sess, pat.hir_id, pat.span)
{
debug!("walk_pat: pat.hir_id={:?} bm={:?}", pat.hir_id, bm);
// pat_ty: the type of the binding being produced.
let pat_ty = self.node_ty(pat.hir_id)?;
debug!("walk_pat: pat_ty={:?}", pat_ty);
let def = Res::Local(canonical_id);
if let Ok(ref binding_place) = self.cat_res(pat.hir_id, pat.span, pat_ty, def) {
self.delegate.borrow_mut().bind(binding_place, binding_place.hir_id);
}
// Subtle: MIR desugaring introduces immutable borrows for each pattern
// binding when lowering pattern guards to ensure that the guard does not
// modify the scrutinee.
if has_guard {
self.delegate.borrow_mut().borrow(
place,
discr_place.hir_id,
BorrowKind::Immutable,
);
}
// It is also a borrow or copy/move of the value being matched.
// In a cases of pattern like `let pat = upvar`, don't use the span
// of the pattern, as this just looks confusing, instead use the span
// of the discriminant.
match bm.0 {
hir::ByRef::Yes(m) => {
let bk = ty::BorrowKind::from_mutbl(m);
self.delegate.borrow_mut().borrow(place, discr_place.hir_id, bk);
}
hir::ByRef::No => {
debug!("walk_pat binding consuming pat");
self.consume_or_copy(place, discr_place.hir_id);
}
}
}
} else if let PatKind::Deref(subpattern) = pat.kind {
// A deref pattern is a bit special: the binding mode of its inner bindings
// determines whether to borrow *at the level of the deref pattern* rather than
// borrowing the bound place (since that inner place is inside the temporary that
// stores the result of calling `deref()`/`deref_mut()` so can't be captured).
let mutable = self.cx.typeck_results().pat_has_ref_mut_binding(subpattern);
let mutability = if mutable { hir::Mutability::Mut } else { hir::Mutability::Not };
let bk = ty::BorrowKind::from_mutbl(mutability);
self.delegate.borrow_mut().borrow(place, discr_place.hir_id, bk);
}
Ok(())
})
}
/// Handle the case where the current body contains a closure.
///
/// When the current body being handled is a closure, then we must make sure that
/// - The parent closure only captures Places from the nested closure that are not local to it.
///
/// In the following example the closures `c` only captures `p.x` even though `incr`
/// is a capture of the nested closure
///
/// ```
/// struct P { x: i32 }
/// let mut p = P { x: 4 };
/// let c = || {
/// let incr = 10;
/// let nested = || p.x += incr;
/// };
/// ```
///
/// - When reporting the Place back to the Delegate, ensure that the UpvarId uses the enclosing
/// closure as the DefId.
fn walk_captures(&self, closure_expr: &hir::Closure<'_>) -> Result<(), Cx::Error> {
fn upvar_is_local_variable(
upvars: Option<&FxIndexMap<HirId, hir::Upvar>>,
upvar_id: HirId,
body_owner_is_closure: bool,
) -> bool {
upvars.map(|upvars| !upvars.contains_key(&upvar_id)).unwrap_or(body_owner_is_closure)
}
debug!("walk_captures({:?})", closure_expr);
let tcx = self.cx.tcx();
let closure_def_id = closure_expr.def_id;
// For purposes of this function, coroutine and closures are equivalent.
let body_owner_is_closure = matches!(
tcx.hir().body_owner_kind(self.cx.body_owner_def_id()),
hir::BodyOwnerKind::Closure
);
// If we have a nested closure, we want to include the fake reads present in the nested closure.
if let Some(fake_reads) = self.cx.typeck_results().closure_fake_reads.get(&closure_def_id) {
for (fake_read, cause, hir_id) in fake_reads.iter() {
match fake_read.base {
PlaceBase::Upvar(upvar_id) => {
if upvar_is_local_variable(
self.upvars,
upvar_id.var_path.hir_id,
body_owner_is_closure,
) {
// The nested closure might be fake reading the current (enclosing) closure's local variables.
// The only places we want to fake read before creating the parent closure are the ones that
// are not local to it/ defined by it.
//
// ```rust,ignore(cannot-test-this-because-pseudo-code)
// let v1 = (0, 1);
// let c = || { // fake reads: v1
// let v2 = (0, 1);
// let e = || { // fake reads: v1, v2
// let (_, t1) = v1;
// let (_, t2) = v2;
// }
// }
// ```
// This check is performed when visiting the body of the outermost closure (`c`) and ensures
// that we don't add a fake read of v2 in c.
continue;
}
}
_ => {
bug!(
"Do not know how to get HirId out of Rvalue and StaticItem {:?}",
fake_read.base
);
}
};
self.delegate.borrow_mut().fake_read(
&PlaceWithHirId { place: fake_read.clone(), hir_id: *hir_id },
*cause,
*hir_id,
);
}
}
if let Some(min_captures) =
self.cx.typeck_results().closure_min_captures.get(&closure_def_id)
{
for (var_hir_id, min_list) in min_captures.iter() {
if self
.upvars
.map_or(body_owner_is_closure, |upvars| !upvars.contains_key(var_hir_id))
{
// The nested closure might be capturing the current (enclosing) closure's local variables.
// We check if the root variable is ever mentioned within the enclosing closure, if not
// then for the current body (if it's a closure) these aren't captures, we will ignore them.
continue;
}
for captured_place in min_list {
let place = &captured_place.place;
let capture_info = captured_place.info;
let place_base = if body_owner_is_closure {
// Mark the place to be captured by the enclosing closure
PlaceBase::Upvar(ty::UpvarId::new(*var_hir_id, self.cx.body_owner_def_id()))
} else {
// If the body owner isn't a closure then the variable must
// be a local variable
PlaceBase::Local(*var_hir_id)
};
let closure_hir_id = tcx.local_def_id_to_hir_id(closure_def_id);
let place_with_id = PlaceWithHirId::new(
capture_info
.path_expr_id
.unwrap_or(capture_info.capture_kind_expr_id.unwrap_or(closure_hir_id)),
place.base_ty,
place_base,
place.projections.clone(),
);
match capture_info.capture_kind {
ty::UpvarCapture::ByValue => {
self.consume_or_copy(&place_with_id, place_with_id.hir_id);
}
ty::UpvarCapture::ByRef(upvar_borrow) => {
self.delegate.borrow_mut().borrow(
&place_with_id,
place_with_id.hir_id,
upvar_borrow,
);
}
}
}
}
}
Ok(())
}
}
/// The job of the categorization methods is to analyze an expression to
/// determine what kind of memory is used in evaluating it (for example,
/// where dereferences occur and what kind of pointer is dereferenced;
/// whether the memory is mutable, etc.).
///
/// Categorization effectively transforms all of our expressions into
/// expressions of the following forms (the actual enum has many more
/// possibilities, naturally, but they are all variants of these base
/// forms):
/// ```ignore (not-rust)
/// E = rvalue // some computed rvalue
/// | x // address of a local variable or argument
/// | *E // deref of a ptr
/// | E.comp // access to an interior component
/// ```
/// Imagine a routine ToAddr(Expr) that evaluates an expression and returns an
/// address where the result is to be found. If Expr is a place, then this
/// is the address of the place. If `Expr` is an rvalue, this is the address of
/// some temporary spot in memory where the result is stored.
///
/// Now, `cat_expr()` classifies the expression `Expr` and the address `A = ToAddr(Expr)`
/// as follows:
///
/// - `cat`: what kind of expression was this? This is a subset of the
/// full expression forms which only includes those that we care about
/// for the purpose of the analysis.
/// - `mutbl`: mutability of the address `A`.
/// - `ty`: the type of data found at the address `A`.
///
/// The resulting categorization tree differs somewhat from the expressions
/// themselves. For example, auto-derefs are explicit. Also, an index `a[b]` is
/// decomposed into two operations: a dereference to reach the array data and
/// then an index to jump forward to the relevant item.
///
/// ## By-reference upvars
///
/// One part of the codegen which may be non-obvious is that we translate
/// closure upvars into the dereference of a borrowed pointer; this more closely
/// resembles the runtime codegen. So, for example, if we had:
///
/// let mut x = 3;
/// let y = 5;
/// let inc = || x += y;
///
/// Then when we categorize `x` (*within* the closure) we would yield a
/// result of `*x'`, effectively, where `x'` is a `Categorization::Upvar` reference
/// tied to `x`. The type of `x'` will be a borrowed pointer.
impl<'tcx, Cx: TypeInformationCtxt<'tcx>, D: Delegate<'tcx>> ExprUseVisitor<'tcx, Cx, D> {
fn resolve_type_vars_or_error(
&self,
id: HirId,
ty: Option<Ty<'tcx>>,
) -> Result<Ty<'tcx>, Cx::Error> {
match ty {
Some(ty) => {
let ty = self.cx.resolve_vars_if_possible(ty);
self.cx.error_reported_in_ty(ty)?;
if ty.is_ty_var() {
debug!("resolve_type_vars_or_error: infer var from {:?}", ty);
Err(self
.cx
.report_error(self.cx.tcx().hir().span(id), "encountered type variable"))
} else {
Ok(ty)
}
}
None => {
// FIXME: We shouldn't be relying on the infcx being tainted.
self.cx.tainted_by_errors()?;
bug!(
"no type for node {} in mem_categorization",
self.cx.tcx().hir().node_to_string(id)
);
}
}
}
fn node_ty(&self, hir_id: HirId) -> Result<Ty<'tcx>, Cx::Error> {
self.resolve_type_vars_or_error(hir_id, self.cx.typeck_results().node_type_opt(hir_id))
}
fn expr_ty(&self, expr: &hir::Expr<'_>) -> Result<Ty<'tcx>, Cx::Error> {
self.resolve_type_vars_or_error(expr.hir_id, self.cx.typeck_results().expr_ty_opt(expr))
}
fn expr_ty_adjusted(&self, expr: &hir::Expr<'_>) -> Result<Ty<'tcx>, Cx::Error> {
self.resolve_type_vars_or_error(
expr.hir_id,
self.cx.typeck_results().expr_ty_adjusted_opt(expr),
)
}
/// Returns the type of value that this pattern matches against.
/// Some non-obvious cases:
///
/// - a `ref x` binding matches against a value of type `T` and gives
/// `x` the type `&T`; we return `T`.
/// - a pattern with implicit derefs (thanks to default binding
/// modes #42640) may look like `Some(x)` but in fact have
/// implicit deref patterns attached (e.g., it is really
/// `&Some(x)`). In that case, we return the "outermost" type
/// (e.g., `&Option<T>`).
fn pat_ty_adjusted(&self, pat: &hir::Pat<'_>) -> Result<Ty<'tcx>, Cx::Error> {
// Check for implicit `&` types wrapping the pattern; note
// that these are never attached to binding patterns, so
// actually this is somewhat "disjoint" from the code below
// that aims to account for `ref x`.
if let Some(vec) = self.cx.typeck_results().pat_adjustments().get(pat.hir_id) {
if let Some(first_ty) = vec.first() {
debug!("pat_ty(pat={:?}) found adjusted ty `{:?}`", pat, first_ty);
return Ok(*first_ty);
}
} else if let PatKind::Ref(subpat, _) = pat.kind
&& self.cx.typeck_results().skipped_ref_pats().contains(pat.hir_id)
{
return self.pat_ty_adjusted(subpat);
}
self.pat_ty_unadjusted(pat)
}
/// Like `TypeckResults::pat_ty`, but ignores implicit `&` patterns.
fn pat_ty_unadjusted(&self, pat: &hir::Pat<'_>) -> Result<Ty<'tcx>, Cx::Error> {
let base_ty = self.node_ty(pat.hir_id)?;
trace!(?base_ty);
// This code detects whether we are looking at a `ref x`,
// and if so, figures out what the type *being borrowed* is.
match pat.kind {
PatKind::Binding(..) => {
let bm = *self
.cx
.typeck_results()
.pat_binding_modes()
.get(pat.hir_id)
.expect("missing binding mode");
if matches!(bm.0, hir::ByRef::Yes(_)) {
// a bind-by-ref means that the base_ty will be the type of the ident itself,
// but what we want here is the type of the underlying value being borrowed.
// So peel off one-level, turning the &T into T.
match self
.cx
.try_structurally_resolve_type(pat.span, base_ty)
.builtin_deref(false)
{
Some(ty) => Ok(ty),
None => {
debug!("By-ref binding of non-derefable type");
Err(self
.cx
.report_error(pat.span, "by-ref binding of non-derefable type"))
}
}
} else {
Ok(base_ty)
}
}
_ => Ok(base_ty),
}
}
fn cat_expr(&self, expr: &hir::Expr<'_>) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
self.cat_expr_(expr, self.cx.typeck_results().expr_adjustments(expr))
}
/// This recursion helper avoids going through *too many*
/// adjustments, since *only* non-overloaded deref recurses.
fn cat_expr_(
&self,
expr: &hir::Expr<'_>,
adjustments: &[adjustment::Adjustment<'tcx>],
) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
match adjustments.split_last() {
None => self.cat_expr_unadjusted(expr),
Some((adjustment, previous)) => {
self.cat_expr_adjusted_with(expr, || self.cat_expr_(expr, previous), adjustment)
}
}
}
fn cat_expr_adjusted(
&self,
expr: &hir::Expr<'_>,
previous: PlaceWithHirId<'tcx>,
adjustment: &adjustment::Adjustment<'tcx>,
) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
self.cat_expr_adjusted_with(expr, || Ok(previous), adjustment)
}
fn cat_expr_adjusted_with<F>(
&self,
expr: &hir::Expr<'_>,
previous: F,
adjustment: &adjustment::Adjustment<'tcx>,
) -> Result<PlaceWithHirId<'tcx>, Cx::Error>
where
F: FnOnce() -> Result<PlaceWithHirId<'tcx>, Cx::Error>,
{
let target = self.cx.resolve_vars_if_possible(adjustment.target);
match adjustment.kind {
adjustment::Adjust::Deref(overloaded) => {
// Equivalent to *expr or something similar.
let base = if let Some(deref) = overloaded {
let ref_ty = Ty::new_ref(
self.cx.tcx(),
self.cx.tcx().lifetimes.re_erased,
target,
deref.mutbl,
);
self.cat_rvalue(expr.hir_id, ref_ty)
} else {
previous()?
};
self.cat_deref(expr.hir_id, base)
}
adjustment::Adjust::NeverToAny
| adjustment::Adjust::Pointer(_)
| adjustment::Adjust::Borrow(_)
| adjustment::Adjust::ReborrowPin(..) => {
// Result is an rvalue.
Ok(self.cat_rvalue(expr.hir_id, target))
}
}
}
fn cat_expr_unadjusted(&self, expr: &hir::Expr<'_>) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
let expr_ty = self.expr_ty(expr)?;
match expr.kind {
hir::ExprKind::Unary(hir::UnOp::Deref, e_base) => {
if self.cx.typeck_results().is_method_call(expr) {
self.cat_overloaded_place(expr, e_base)
} else {
let base = self.cat_expr(e_base)?;
self.cat_deref(expr.hir_id, base)
}
}
hir::ExprKind::Field(base, _) => {
let base = self.cat_expr(base)?;
debug!(?base);
let field_idx = self
.cx
.typeck_results()
.field_indices()
.get(expr.hir_id)
.cloned()
.expect("Field index not found");
Ok(self.cat_projection(
expr.hir_id,
base,
expr_ty,
ProjectionKind::Field(field_idx, FIRST_VARIANT),
))
}
hir::ExprKind::Index(base, _, _) => {
if self.cx.typeck_results().is_method_call(expr) {
// If this is an index implemented by a method call, then it
// will include an implicit deref of the result.
// The call to index() returns a `&T` value, which
// is an rvalue. That is what we will be
// dereferencing.
self.cat_overloaded_place(expr, base)
} else {
let base = self.cat_expr(base)?;
Ok(self.cat_projection(expr.hir_id, base, expr_ty, ProjectionKind::Index))
}
}
hir::ExprKind::Path(ref qpath) => {
let res = self.cx.typeck_results().qpath_res(qpath, expr.hir_id);
self.cat_res(expr.hir_id, expr.span, expr_ty, res)
}
// both type ascription and unsafe binder casts don't affect
// the place-ness of the subexpression.
hir::ExprKind::Type(e, _) => self.cat_expr(e),
hir::ExprKind::UnsafeBinderCast(_, e, _) => self.cat_expr(e),
hir::ExprKind::AddrOf(..)
| hir::ExprKind::Call(..)
| hir::ExprKind::Assign(..)
| hir::ExprKind::AssignOp(..)
| hir::ExprKind::Closure { .. }
| hir::ExprKind::Ret(..)
| hir::ExprKind::Become(..)
| hir::ExprKind::Unary(..)
| hir::ExprKind::Yield(..)
| hir::ExprKind::MethodCall(..)
| hir::ExprKind::Cast(..)
| hir::ExprKind::DropTemps(..)
| hir::ExprKind::Array(..)
| hir::ExprKind::If(..)
| hir::ExprKind::Tup(..)
| hir::ExprKind::Binary(..)
| hir::ExprKind::Block(..)
| hir::ExprKind::Let(..)
| hir::ExprKind::Loop(..)
| hir::ExprKind::Match(..)
| hir::ExprKind::Lit(..)
| hir::ExprKind::ConstBlock(..)
| hir::ExprKind::Break(..)
| hir::ExprKind::Continue(..)
| hir::ExprKind::Struct(..)
| hir::ExprKind::Repeat(..)
| hir::ExprKind::InlineAsm(..)
| hir::ExprKind::OffsetOf(..)
| hir::ExprKind::Err(_) => Ok(self.cat_rvalue(expr.hir_id, expr_ty)),
}
}
fn cat_res(
&self,
hir_id: HirId,
span: Span,
expr_ty: Ty<'tcx>,
res: Res,
) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
match res {
Res::Def(
DefKind::Ctor(..)
| DefKind::Const
| DefKind::ConstParam
| DefKind::AssocConst
| DefKind::Fn
| DefKind::AssocFn,
_,
)
| Res::SelfCtor(..) => Ok(self.cat_rvalue(hir_id, expr_ty)),
Res::Def(DefKind::Static { .. }, _) => {
Ok(PlaceWithHirId::new(hir_id, expr_ty, PlaceBase::StaticItem, Vec::new()))
}
Res::Local(var_id) => {
if self.upvars.is_some_and(|upvars| upvars.contains_key(&var_id)) {
self.cat_upvar(hir_id, var_id)
} else {
Ok(PlaceWithHirId::new(hir_id, expr_ty, PlaceBase::Local(var_id), Vec::new()))
}
}
def => span_bug!(span, "unexpected definition in memory categorization: {:?}", def),
}
}
/// Categorize an upvar.
///
/// Note: the actual upvar access contains invisible derefs of closure
/// environment and upvar reference as appropriate. Only regionck cares
/// about these dereferences, so we let it compute them as needed.
fn cat_upvar(&self, hir_id: HirId, var_id: HirId) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
let closure_expr_def_id = self.cx.body_owner_def_id();
let upvar_id = ty::UpvarId {
var_path: ty::UpvarPath { hir_id: var_id },
closure_expr_id: closure_expr_def_id,
};
let var_ty = self.node_ty(var_id)?;
Ok(PlaceWithHirId::new(hir_id, var_ty, PlaceBase::Upvar(upvar_id), Vec::new()))
}
fn cat_rvalue(&self, hir_id: HirId, expr_ty: Ty<'tcx>) -> PlaceWithHirId<'tcx> {
PlaceWithHirId::new(hir_id, expr_ty, PlaceBase::Rvalue, Vec::new())
}
fn cat_projection(
&self,
node: HirId,
base_place: PlaceWithHirId<'tcx>,
ty: Ty<'tcx>,
kind: ProjectionKind,
) -> PlaceWithHirId<'tcx> {
let place_ty = base_place.place.ty();
let mut projections = base_place.place.projections;
let node_ty = self.cx.typeck_results().node_type(node);
// Opaque types can't have field projections, but we can instead convert
// the current place in-place (heh) to the hidden type, and then apply all
// follow up projections on that.
if node_ty != place_ty
&& self
.cx
.try_structurally_resolve_type(
self.cx.tcx().hir().span(base_place.hir_id),
place_ty,
)
.is_impl_trait()
{
projections.push(Projection { kind: ProjectionKind::OpaqueCast, ty: node_ty });
}
projections.push(Projection { kind, ty });
PlaceWithHirId::new(node, base_place.place.base_ty, base_place.place.base, projections)
}
fn cat_overloaded_place(
&self,
expr: &hir::Expr<'_>,
base: &hir::Expr<'_>,
) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
// Reconstruct the output assuming it's a reference with the
// same region and mutability as the receiver. This holds for
// `Deref(Mut)::Deref(_mut)` and `Index(Mut)::index(_mut)`.
let place_ty = self.expr_ty(expr)?;
let base_ty = self.expr_ty_adjusted(base)?;
let ty::Ref(region, _, mutbl) =
*self.cx.try_structurally_resolve_type(base.span, base_ty).kind()
else {
span_bug!(expr.span, "cat_overloaded_place: base is not a reference");
};
let ref_ty = Ty::new_ref(self.cx.tcx(), region, place_ty, mutbl);
let base = self.cat_rvalue(expr.hir_id, ref_ty);
self.cat_deref(expr.hir_id, base)
}
fn cat_deref(
&self,
node: HirId,
base_place: PlaceWithHirId<'tcx>,
) -> Result<PlaceWithHirId<'tcx>, Cx::Error> {
let base_curr_ty = base_place.place.ty();
let deref_ty = match self
.cx
.try_structurally_resolve_type(
self.cx.tcx().hir().span(base_place.hir_id),
base_curr_ty,
)
.builtin_deref(true)
{
Some(ty) => ty,
None => {
debug!("explicit deref of non-derefable type: {:?}", base_curr_ty);
return Err(self.cx.report_error(
self.cx.tcx().hir().span(node),
"explicit deref of non-derefable type",
));
}
};
let mut projections = base_place.place.projections;
projections.push(Projection { kind: ProjectionKind::Deref, ty: deref_ty });
Ok(PlaceWithHirId::new(node, base_place.place.base_ty, base_place.place.base, projections))
}
/// Returns the variant index for an ADT used within a Struct or TupleStruct pattern
/// Here `pat_hir_id` is the HirId of the pattern itself.
fn variant_index_for_adt(
&self,
qpath: &hir::QPath<'_>,
pat_hir_id: HirId,
span: Span,
) -> Result<VariantIdx, Cx::Error> {
let res = self.cx.typeck_results().qpath_res(qpath, pat_hir_id);
let ty = self.cx.typeck_results().node_type(pat_hir_id);
let ty::Adt(adt_def, _) = self.cx.try_structurally_resolve_type(span, ty).kind() else {
return Err(self
.cx
.report_error(span, "struct or tuple struct pattern not applied to an ADT"));
};
match res {
Res::Def(DefKind::Variant, variant_id) => Ok(adt_def.variant_index_with_id(variant_id)),
Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_id) => {
Ok(adt_def.variant_index_with_ctor_id(variant_ctor_id))
}
Res::Def(DefKind::Ctor(CtorOf::Struct, ..), _)
| Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _)
| Res::SelfCtor(..)
| Res::SelfTyParam { .. }
| Res::SelfTyAlias { .. } => {
// Structs and Unions have only have one variant.
Ok(FIRST_VARIANT)
}
_ => bug!("expected ADT path, found={:?}", res),
}
}
/// Returns the total number of fields in an ADT variant used within a pattern.
/// Here `pat_hir_id` is the HirId of the pattern itself.
fn total_fields_in_adt_variant(
&self,
pat_hir_id: HirId,
variant_index: VariantIdx,
span: Span,
) -> Result<usize, Cx::Error> {
let ty = self.cx.typeck_results().node_type(pat_hir_id);
match self.cx.try_structurally_resolve_type(span, ty).kind() {
ty::Adt(adt_def, _) => Ok(adt_def.variant(variant_index).fields.len()),
_ => {
self.cx
.tcx()
.dcx()
.span_bug(span, "struct or tuple struct pattern not applied to an ADT");
}
}
}
/// Returns the total number of fields in a tuple used within a Tuple pattern.
/// Here `pat_hir_id` is the HirId of the pattern itself.
fn total_fields_in_tuple(&self, pat_hir_id: HirId, span: Span) -> Result<usize, Cx::Error> {
let ty = self.cx.typeck_results().node_type(pat_hir_id);
match self.cx.try_structurally_resolve_type(span, ty).kind() {
ty::Tuple(args) => Ok(args.len()),
_ => Err(self.cx.report_error(span, "tuple pattern not applied to a tuple")),
}
}
/// Here, `place` is the `PlaceWithHirId` being matched and pat is the pattern it
/// is being matched against.
///
/// In general, the way that this works is that we walk down the pattern,
/// constructing a `PlaceWithHirId` that represents the path that will be taken
/// to reach the value being matched.
fn cat_pattern<F>(
&self,
mut place_with_id: PlaceWithHirId<'tcx>,
pat: &hir::Pat<'_>,
op: &mut F,
) -> Result<(), Cx::Error>
where
F: FnMut(&PlaceWithHirId<'tcx>, &hir::Pat<'_>) -> Result<(), Cx::Error>,
{
// If (pattern) adjustments are active for this pattern, adjust the `PlaceWithHirId` correspondingly.
// `PlaceWithHirId`s are constructed differently from patterns. For example, in
//
// ```
// match foo {
// &&Some(x, ) => { ... },
// _ => { ... },
// }
// ```
//
// the pattern `&&Some(x,)` is represented as `Ref { Ref { TupleStruct }}`. To build the
// corresponding `PlaceWithHirId` we start with the `PlaceWithHirId` for `foo`, and then, by traversing the
// pattern, try to answer the question: given the address of `foo`, how is `x` reached?
//
// `&&Some(x,)` `place_foo`
// `&Some(x,)` `deref { place_foo}`
// `Some(x,)` `deref { deref { place_foo }}`
// `(x,)` `field0 { deref { deref { place_foo }}}` <- resulting place
//
// The above example has no adjustments. If the code were instead the (after adjustments,
// equivalent) version
//
// ```
// match foo {
// Some(x, ) => { ... },
// _ => { ... },
// }
// ```
//
// Then we see that to get the same result, we must start with
// `deref { deref { place_foo }}` instead of `place_foo` since the pattern is now `Some(x,)`
// and not `&&Some(x,)`, even though its assigned type is that of `&&Some(x,)`.
for _ in
0..self.cx.typeck_results().pat_adjustments().get(pat.hir_id).map_or(0, |v| v.len())
{
debug!("applying adjustment to place_with_id={:?}", place_with_id);
place_with_id = self.cat_deref(pat.hir_id, place_with_id)?;
}
let place_with_id = place_with_id; // lose mutability
debug!("applied adjustment derefs to get place_with_id={:?}", place_with_id);
// Invoke the callback, but only now, after the `place_with_id` has adjusted.
//
// To see that this makes sense, consider `match &Some(3) { Some(x) => { ... }}`. In that
// case, the initial `place_with_id` will be that for `&Some(3)` and the pattern is `Some(x)`. We
// don't want to call `op` with these incompatible values. As written, what happens instead
// is that `op` is called with the adjusted place (that for `*&Some(3)`) and the pattern
// `Some(x)` (which matches). Recursing once more, `*&Some(3)` and the pattern `Some(x)`
// result in the place `Downcast<Some>(*&Some(3)).0` associated to `x` and invoke `op` with
// that (where the `ref` on `x` is implied).
op(&place_with_id, pat)?;
match pat.kind {
PatKind::Tuple(subpats, dots_pos) => {
// (p1, ..., pN)
let total_fields = self.total_fields_in_tuple(pat.hir_id, pat.span)?;
for (i, subpat) in subpats.iter().enumerate_and_adjust(total_fields, dots_pos) {
let subpat_ty = self.pat_ty_adjusted(subpat)?;
let projection_kind =
ProjectionKind::Field(FieldIdx::from_usize(i), FIRST_VARIANT);
let sub_place = self.cat_projection(
pat.hir_id,
place_with_id.clone(),
subpat_ty,
projection_kind,
);
self.cat_pattern(sub_place, subpat, op)?;
}
}
PatKind::TupleStruct(ref qpath, subpats, dots_pos) => {
// S(p1, ..., pN)
let variant_index = self.variant_index_for_adt(qpath, pat.hir_id, pat.span)?;
let total_fields =
self.total_fields_in_adt_variant(pat.hir_id, variant_index, pat.span)?;
for (i, subpat) in subpats.iter().enumerate_and_adjust(total_fields, dots_pos) {
let subpat_ty = self.pat_ty_adjusted(subpat)?;
let projection_kind =
ProjectionKind::Field(FieldIdx::from_usize(i), variant_index);
let sub_place = self.cat_projection(
pat.hir_id,
place_with_id.clone(),
subpat_ty,
projection_kind,
);
self.cat_pattern(sub_place, subpat, op)?;
}
}
PatKind::Struct(ref qpath, field_pats, _) => {
// S { f1: p1, ..., fN: pN }
let variant_index = self.variant_index_for_adt(qpath, pat.hir_id, pat.span)?;
for fp in field_pats {
let field_ty = self.pat_ty_adjusted(fp.pat)?;
let field_index = self
.cx
.typeck_results()
.field_indices()
.get(fp.hir_id)
.cloned()
.expect("no index for a field");
let field_place = self.cat_projection(
pat.hir_id,
place_with_id.clone(),
field_ty,
ProjectionKind::Field(field_index, variant_index),
);
self.cat_pattern(field_place, fp.pat, op)?;
}
}
PatKind::Or(pats) => {
for pat in pats {
self.cat_pattern(place_with_id.clone(), pat, op)?;
}
}
PatKind::Binding(.., Some(subpat)) | PatKind::Guard(subpat, _) => {
self.cat_pattern(place_with_id, subpat, op)?;
}
PatKind::Ref(subpat, _)
if self.cx.typeck_results().skipped_ref_pats().contains(pat.hir_id) =>
{
self.cat_pattern(place_with_id, subpat, op)?;
}
PatKind::Box(subpat) | PatKind::Ref(subpat, _) => {
// box p1, &p1, &mut p1. we can ignore the mutability of
// PatKind::Ref since that information is already contained
// in the type.
let subplace = self.cat_deref(pat.hir_id, place_with_id)?;
self.cat_pattern(subplace, subpat, op)?;
}
PatKind::Deref(subpat) => {
let mutable = self.cx.typeck_results().pat_has_ref_mut_binding(subpat);
let mutability = if mutable { hir::Mutability::Mut } else { hir::Mutability::Not };
let re_erased = self.cx.tcx().lifetimes.re_erased;
let ty = self.pat_ty_adjusted(subpat)?;
let ty = Ty::new_ref(self.cx.tcx(), re_erased, ty, mutability);
// A deref pattern generates a temporary.
let place = self.cat_rvalue(pat.hir_id, ty);
self.cat_pattern(place, subpat, op)?;
}
PatKind::Slice(before, ref slice, after) => {
let Some(element_ty) = self
.cx
.try_structurally_resolve_type(pat.span, place_with_id.place.ty())
.builtin_index()
else {
debug!("explicit index of non-indexable type {:?}", place_with_id);
return Err(self
.cx
.report_error(pat.span, "explicit index of non-indexable type"));
};
let elt_place = self.cat_projection(
pat.hir_id,
place_with_id.clone(),
element_ty,
ProjectionKind::Index,
);
for before_pat in before {
self.cat_pattern(elt_place.clone(), before_pat, op)?;
}
if let Some(slice_pat) = *slice {
let slice_pat_ty = self.pat_ty_adjusted(slice_pat)?;
let slice_place = self.cat_projection(
pat.hir_id,
place_with_id,
slice_pat_ty,
ProjectionKind::Subslice,
);
self.cat_pattern(slice_place, slice_pat, op)?;
}
for after_pat in after {
self.cat_pattern(elt_place.clone(), after_pat, op)?;
}
}
PatKind::Path(_)
| PatKind::Binding(.., None)
| PatKind::Expr(..)
| PatKind::Range(..)
| PatKind::Never
| PatKind::Wild
| PatKind::Err(_) => {
// always ok
}
}
Ok(())
}
fn is_multivariant_adt(&self, ty: Ty<'tcx>, span: Span) -> bool {
if let ty::Adt(def, _) = self.cx.try_structurally_resolve_type(span, ty).kind() {
// Note that if a non-exhaustive SingleVariant is defined in another crate, we need
// to assume that more cases will be added to the variant in the future. This mean
// that we should handle non-exhaustive SingleVariant the same way we would handle
// a MultiVariant.
// If the variant is not local it must be defined in another crate.
let is_non_exhaustive = match def.adt_kind() {
AdtKind::Struct | AdtKind::Union => {
def.non_enum_variant().is_field_list_non_exhaustive()
}
AdtKind::Enum => def.is_variant_list_non_exhaustive(),
};
def.variants().len() > 1 || (!def.did().is_local() && is_non_exhaustive)
} else {
false
}
}
}