rustc_span/
lib.rs

1//! Source positions and related helper functions.
2//!
3//! Important concepts in this module include:
4//!
5//! - the *span*, represented by [`SpanData`] and related types;
6//! - source code as represented by a [`SourceMap`]; and
7//! - interned strings, represented by [`Symbol`]s, with some common symbols available statically
8//!   in the [`sym`] module.
9//!
10//! Unlike most compilers, the span contains not only the position in the source code, but also
11//! various other metadata, such as the edition and macro hygiene. This metadata is stored in
12//! [`SyntaxContext`] and [`ExpnData`].
13//!
14//! ## Note
15//!
16//! This API is completely unstable and subject to change.
17
18// tidy-alphabetical-start
19#![allow(internal_features)]
20#![cfg_attr(bootstrap, feature(array_windows))]
21#![cfg_attr(target_arch = "loongarch64", feature(stdarch_loongarch))]
22#![feature(cfg_select)]
23#![feature(core_io_borrowed_buf)]
24#![feature(if_let_guard)]
25#![feature(map_try_insert)]
26#![feature(negative_impls)]
27#![feature(read_buf)]
28#![feature(rustc_attrs)]
29// tidy-alphabetical-end
30
31// The code produced by the `Encodable`/`Decodable` derive macros refer to
32// `rustc_span::Span{Encoder,Decoder}`. That's fine outside this crate, but doesn't work inside
33// this crate without this line making `rustc_span` available.
34extern crate self as rustc_span;
35
36use derive_where::derive_where;
37use rustc_data_structures::{AtomicRef, outline};
38use rustc_macros::{Decodable, Encodable, HashStable_Generic};
39use rustc_serialize::opaque::{FileEncoder, MemDecoder};
40use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
41use tracing::debug;
42
43mod caching_source_map_view;
44pub mod source_map;
45use source_map::{SourceMap, SourceMapInputs};
46
47pub use self::caching_source_map_view::CachingSourceMapView;
48use crate::fatal_error::FatalError;
49
50pub mod edition;
51use edition::Edition;
52pub mod hygiene;
53use hygiene::Transparency;
54pub use hygiene::{
55    DesugaringKind, ExpnData, ExpnHash, ExpnId, ExpnKind, LocalExpnId, MacroKind, SyntaxContext,
56};
57use rustc_data_structures::stable_hasher::HashingControls;
58pub mod def_id;
59use def_id::{CrateNum, DefId, DefIndex, DefPathHash, LOCAL_CRATE, LocalDefId, StableCrateId};
60pub mod edit_distance;
61mod span_encoding;
62pub use span_encoding::{DUMMY_SP, Span};
63
64pub mod symbol;
65pub use symbol::{
66    ByteSymbol, Ident, MacroRulesNormalizedIdent, Macros20NormalizedIdent, STDLIB_STABLE_CRATES,
67    Symbol, kw, sym,
68};
69
70mod analyze_source_file;
71pub mod fatal_error;
72
73pub mod profiling;
74
75use std::borrow::Cow;
76use std::cmp::{self, Ordering};
77use std::fmt::Display;
78use std::hash::Hash;
79use std::io::{self, Read};
80use std::ops::{Add, Range, Sub};
81use std::path::{Path, PathBuf};
82use std::str::FromStr;
83use std::sync::Arc;
84use std::{fmt, iter};
85
86use md5::{Digest, Md5};
87use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
88use rustc_data_structures::sync::{FreezeLock, FreezeWriteGuard, Lock};
89use rustc_data_structures::unord::UnordMap;
90use rustc_hashes::{Hash64, Hash128};
91use sha1::Sha1;
92use sha2::Sha256;
93
94#[cfg(test)]
95mod tests;
96
97/// Per-session global variables: this struct is stored in thread-local storage
98/// in such a way that it is accessible without any kind of handle to all
99/// threads within the compilation session, but is not accessible outside the
100/// session.
101pub struct SessionGlobals {
102    symbol_interner: symbol::Interner,
103    span_interner: Lock<span_encoding::SpanInterner>,
104    /// Maps a macro argument token into use of the corresponding metavariable in the macro body.
105    /// Collisions are possible and processed in `maybe_use_metavar_location` on best effort basis.
106    metavar_spans: MetavarSpansMap,
107    hygiene_data: Lock<hygiene::HygieneData>,
108
109    /// The session's source map, if there is one. This field should only be
110    /// used in places where the `Session` is truly not available, such as
111    /// `<Span as Debug>::fmt`.
112    source_map: Option<Arc<SourceMap>>,
113}
114
115impl SessionGlobals {
116    pub fn new(
117        edition: Edition,
118        extra_symbols: &[&'static str],
119        sm_inputs: Option<SourceMapInputs>,
120    ) -> SessionGlobals {
121        SessionGlobals {
122            symbol_interner: symbol::Interner::with_extra_symbols(extra_symbols),
123            span_interner: Lock::new(span_encoding::SpanInterner::default()),
124            metavar_spans: Default::default(),
125            hygiene_data: Lock::new(hygiene::HygieneData::new(edition)),
126            source_map: sm_inputs.map(|inputs| Arc::new(SourceMap::with_inputs(inputs))),
127        }
128    }
129}
130
131pub fn create_session_globals_then<R>(
132    edition: Edition,
133    extra_symbols: &[&'static str],
134    sm_inputs: Option<SourceMapInputs>,
135    f: impl FnOnce() -> R,
136) -> R {
137    assert!(
138        !SESSION_GLOBALS.is_set(),
139        "SESSION_GLOBALS should never be overwritten! \
140         Use another thread if you need another SessionGlobals"
141    );
142    let session_globals = SessionGlobals::new(edition, extra_symbols, sm_inputs);
143    SESSION_GLOBALS.set(&session_globals, f)
144}
145
146pub fn set_session_globals_then<R>(session_globals: &SessionGlobals, f: impl FnOnce() -> R) -> R {
147    assert!(
148        !SESSION_GLOBALS.is_set(),
149        "SESSION_GLOBALS should never be overwritten! \
150         Use another thread if you need another SessionGlobals"
151    );
152    SESSION_GLOBALS.set(session_globals, f)
153}
154
155/// No source map.
156pub fn create_session_if_not_set_then<R, F>(edition: Edition, f: F) -> R
157where
158    F: FnOnce(&SessionGlobals) -> R,
159{
160    if !SESSION_GLOBALS.is_set() {
161        let session_globals = SessionGlobals::new(edition, &[], None);
162        SESSION_GLOBALS.set(&session_globals, || SESSION_GLOBALS.with(f))
163    } else {
164        SESSION_GLOBALS.with(f)
165    }
166}
167
168#[inline]
169pub fn with_session_globals<R, F>(f: F) -> R
170where
171    F: FnOnce(&SessionGlobals) -> R,
172{
173    SESSION_GLOBALS.with(f)
174}
175
176/// Default edition, no source map.
177pub fn create_default_session_globals_then<R>(f: impl FnOnce() -> R) -> R {
178    create_session_globals_then(edition::DEFAULT_EDITION, &[], None, f)
179}
180
181// If this ever becomes non thread-local, `decode_syntax_context`
182// and `decode_expn_id` will need to be updated to handle concurrent
183// deserialization.
184scoped_tls::scoped_thread_local!(static SESSION_GLOBALS: SessionGlobals);
185
186#[derive(Default)]
187pub struct MetavarSpansMap(FreezeLock<UnordMap<Span, (Span, bool)>>);
188
189impl MetavarSpansMap {
190    pub fn insert(&self, span: Span, var_span: Span) -> bool {
191        match self.0.write().try_insert(span, (var_span, false)) {
192            Ok(_) => true,
193            Err(entry) => entry.entry.get().0 == var_span,
194        }
195    }
196
197    /// Read a span and record that it was read.
198    pub fn get(&self, span: Span) -> Option<Span> {
199        if let Some(mut mspans) = self.0.try_write() {
200            if let Some((var_span, read)) = mspans.get_mut(&span) {
201                *read = true;
202                Some(*var_span)
203            } else {
204                None
205            }
206        } else {
207            if let Some((span, true)) = self.0.read().get(&span) { Some(*span) } else { None }
208        }
209    }
210
211    /// Freeze the set, and return the spans which have been read.
212    ///
213    /// After this is frozen, no spans that have not been read can be read.
214    pub fn freeze_and_get_read_spans(&self) -> UnordMap<Span, Span> {
215        self.0.freeze().items().filter(|(_, (_, b))| *b).map(|(s1, (s2, _))| (*s1, *s2)).collect()
216    }
217}
218
219#[inline]
220pub fn with_metavar_spans<R>(f: impl FnOnce(&MetavarSpansMap) -> R) -> R {
221    with_session_globals(|session_globals| f(&session_globals.metavar_spans))
222}
223
224bitflags::bitflags! {
225    /// Scopes used to determined if it need to apply to `--remap-path-prefix`
226    #[derive(Debug, Eq, PartialEq, Clone, Copy, Ord, PartialOrd, Hash)]
227    pub struct RemapPathScopeComponents: u8 {
228        /// Apply remappings to the expansion of `std::file!()` macro
229        const MACRO = 1 << 0;
230        /// Apply remappings to printed compiler diagnostics
231        const DIAGNOSTICS = 1 << 1;
232        /// Apply remappings to debug information
233        const DEBUGINFO = 1 << 3;
234        /// Apply remappings to coverage information
235        const COVERAGE = 1 << 4;
236
237        /// An alias for `macro`, `debuginfo` and `coverage`. This ensures all paths in compiled
238        /// executables, libraries and objects are remapped but not elsewhere.
239        const OBJECT = Self::MACRO.bits() | Self::DEBUGINFO.bits() | Self::COVERAGE.bits();
240    }
241}
242
243impl<E: Encoder> Encodable<E> for RemapPathScopeComponents {
244    #[inline]
245    fn encode(&self, s: &mut E) {
246        s.emit_u8(self.bits());
247    }
248}
249
250impl<D: Decoder> Decodable<D> for RemapPathScopeComponents {
251    #[inline]
252    fn decode(s: &mut D) -> RemapPathScopeComponents {
253        RemapPathScopeComponents::from_bits(s.read_u8())
254            .expect("invalid bits for RemapPathScopeComponents")
255    }
256}
257
258/// A self-contained "real" filename.
259///
260/// It is produced by `SourceMap::to_real_filename`.
261///
262/// `RealFileName` represents a filename that may have been (partly) remapped
263/// by `--remap-path-prefix` and `-Zremap-path-scope`.
264///
265/// It also contains an embedabble component which gives a working directory
266/// and a maybe-remapped maybe-aboslote name. This is useful for debuginfo where
267/// some formats and tools highly prefer absolute paths.
268///
269/// ## Consistency across compiler sessions
270///
271/// The type-system, const-eval and other parts of the compiler rely on `FileName`
272/// and by extension `RealFileName` to be consistent across compiler sessions.
273///
274/// Otherwise unsoudness (like rust-lang/rust#148328) may occur.
275///
276/// As such this type is self-sufficient and consistent in it's output.
277///
278/// The [`RealFileName::path`] and [`RealFileName::embeddable_name`] methods
279/// are guaranteed to always return the same output across compiler sessions.
280///
281/// ## Usage
282///
283/// Creation of a [`RealFileName`] should be done using
284/// [`FilePathMapping::to_real_filename`][rustc_span::source_map::FilePathMapping::to_real_filename].
285///
286/// Retrieving a path can be done in two main ways:
287///  - by using [`RealFileName::path`] with a given scope (should be preferred)
288///  - or by using [`RealFileName::embeddable_name`] with a given scope
289#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Decodable, Encodable)]
290pub struct RealFileName {
291    /// The local name (always present in the original crate)
292    local: Option<InnerRealFileName>,
293    /// The maybe remapped part. Correspond to `local` when no remapped happened.
294    maybe_remapped: InnerRealFileName,
295    /// The remapped scopes. Any active scope MUST use `maybe_virtual`
296    scopes: RemapPathScopeComponents,
297}
298
299/// The inner workings of `RealFileName`.
300///
301/// It contains the `name`, `working_directory` and `embeddable_name` components.
302#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Decodable, Encodable, Hash)]
303struct InnerRealFileName {
304    /// The name.
305    name: PathBuf,
306    /// The working directory associated with the embeddable name.
307    working_directory: PathBuf,
308    /// The embeddable name.
309    embeddable_name: PathBuf,
310}
311
312impl Hash for RealFileName {
313    #[inline]
314    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
315        // To prevent #70924 from happening again we should only hash the
316        // remapped path if that exists. This is because remapped paths to
317        // sysroot crates (/rust/$hash or /rust/$version) remain stable even
318        // if the corresponding local path changes.
319        if !self.was_fully_remapped() {
320            self.local.hash(state);
321        }
322        self.maybe_remapped.hash(state);
323        self.scopes.bits().hash(state);
324    }
325}
326
327impl RealFileName {
328    /// Returns the associated path for the given remapping scope.
329    ///
330    /// ## Panic
331    ///
332    /// Only one scope components can be given to this function.
333    #[inline]
334    pub fn path(&self, scope: RemapPathScopeComponents) -> &Path {
335        assert!(
336            scope.bits().count_ones() == 1,
337            "one and only one scope should be passed to `RealFileName::path`: {scope:?}"
338        );
339        if !self.scopes.contains(scope)
340            && let Some(local_name) = &self.local
341        {
342            local_name.name.as_path()
343        } else {
344            self.maybe_remapped.name.as_path()
345        }
346    }
347
348    /// Returns the working directory and embeddable path for the given remapping scope.
349    ///
350    /// Useful for embedding a mostly abosolute path (modulo remapping) in the compiler outputs.
351    ///
352    /// The embedabble path is not guaranteed to be an absolute path, nor is it garuenteed
353    /// that the working directory part is always a prefix of embeddable path.
354    ///
355    /// ## Panic
356    ///
357    /// Only one scope components can be given to this function.
358    #[inline]
359    pub fn embeddable_name(&self, scope: RemapPathScopeComponents) -> (&Path, &Path) {
360        assert!(
361            scope.bits().count_ones() == 1,
362            "one and only one scope should be passed to `RealFileName::embeddable_path`: {scope:?}"
363        );
364        if !self.scopes.contains(scope)
365            && let Some(local_name) = &self.local
366        {
367            (&local_name.working_directory, &local_name.embeddable_name)
368        } else {
369            (&self.maybe_remapped.working_directory, &self.maybe_remapped.embeddable_name)
370        }
371    }
372
373    /// Returns the path suitable for reading from the file system on the local host,
374    /// if this information exists.
375    ///
376    /// May not exists if the filename was imported from another crate.
377    ///
378    /// Avoid embedding this in build artifacts; prefer `path()` or `embeddable_name()`.
379    #[inline]
380    pub fn local_path(&self) -> Option<&Path> {
381        if self.was_not_remapped() {
382            Some(&self.maybe_remapped.name)
383        } else if let Some(local) = &self.local {
384            Some(&local.name)
385        } else {
386            None
387        }
388    }
389
390    /// Returns the path suitable for reading from the file system on the local host,
391    /// if this information exists.
392    ///
393    /// May not exists if the filename was imported from another crate.
394    ///
395    /// Avoid embedding this in build artifacts; prefer `path()` or `embeddable_name()`.
396    #[inline]
397    pub fn into_local_path(self) -> Option<PathBuf> {
398        if self.was_not_remapped() {
399            Some(self.maybe_remapped.name)
400        } else if let Some(local) = self.local {
401            Some(local.name)
402        } else {
403            None
404        }
405    }
406
407    /// Returns whenever the filename was remapped.
408    #[inline]
409    pub(crate) fn was_remapped(&self) -> bool {
410        !self.scopes.is_empty()
411    }
412
413    /// Returns whenever the filename was fully remapped.
414    #[inline]
415    fn was_fully_remapped(&self) -> bool {
416        self.scopes.is_all()
417    }
418
419    /// Returns whenever the filename was not remapped.
420    #[inline]
421    fn was_not_remapped(&self) -> bool {
422        self.scopes.is_empty()
423    }
424
425    /// Returns an empty `RealFileName`
426    ///
427    /// Useful as the working directory input to `SourceMap::to_real_filename`.
428    #[inline]
429    pub fn empty() -> RealFileName {
430        RealFileName {
431            local: Some(InnerRealFileName {
432                name: PathBuf::new(),
433                working_directory: PathBuf::new(),
434                embeddable_name: PathBuf::new(),
435            }),
436            maybe_remapped: InnerRealFileName {
437                name: PathBuf::new(),
438                working_directory: PathBuf::new(),
439                embeddable_name: PathBuf::new(),
440            },
441            scopes: RemapPathScopeComponents::empty(),
442        }
443    }
444
445    /// Returns a `RealFileName` that is completely remapped without any local components.
446    ///
447    /// Only exposed for the purpose of `-Zsimulate-remapped-rust-src-base`.
448    pub fn from_virtual_path(path: &Path) -> RealFileName {
449        let name = InnerRealFileName {
450            name: path.to_owned(),
451            embeddable_name: path.to_owned(),
452            working_directory: PathBuf::new(),
453        };
454        RealFileName { local: None, maybe_remapped: name, scopes: RemapPathScopeComponents::all() }
455    }
456
457    /// Update the filename for encoding in the crate metadata.
458    ///
459    /// Currently it's about removing the local part when the filename
460    /// is either fully remapped or not remapped at all.
461    #[inline]
462    pub fn update_for_crate_metadata(&mut self) {
463        if self.was_fully_remapped() || self.was_not_remapped() {
464            // NOTE: This works because when the filename is fully
465            // remapped, we don't care about the `local` part,
466            // and when the filename is not remapped at all,
467            // `maybe_remapped` and `local` are equal.
468            self.local = None;
469        }
470    }
471
472    /// Internal routine to display the filename.
473    ///
474    /// Users should always use the `RealFileName::path` method or `FileName` methods instead.
475    fn to_string_lossy<'a>(&'a self, display_pref: FileNameDisplayPreference) -> Cow<'a, str> {
476        match display_pref {
477            FileNameDisplayPreference::Remapped => self.maybe_remapped.name.to_string_lossy(),
478            FileNameDisplayPreference::Local => {
479                self.local.as_ref().unwrap_or(&self.maybe_remapped).name.to_string_lossy()
480            }
481            FileNameDisplayPreference::Short => self
482                .maybe_remapped
483                .name
484                .file_name()
485                .map_or_else(|| "".into(), |f| f.to_string_lossy()),
486            FileNameDisplayPreference::Scope(scope) => self.path(scope).to_string_lossy(),
487        }
488    }
489}
490
491/// Differentiates between real files and common virtual files.
492#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Hash, Decodable, Encodable)]
493pub enum FileName {
494    Real(RealFileName),
495    /// Strings provided as `--cfg [cfgspec]`.
496    CfgSpec(Hash64),
497    /// Command line.
498    Anon(Hash64),
499    /// Hack in `src/librustc_ast/parse.rs`.
500    // FIXME(jseyfried)
501    MacroExpansion(Hash64),
502    ProcMacroSourceCode(Hash64),
503    /// Strings provided as crate attributes in the CLI.
504    CliCrateAttr(Hash64),
505    /// Custom sources for explicit parser calls from plugins and drivers.
506    Custom(String),
507    DocTest(PathBuf, isize),
508    /// Post-substitution inline assembly from LLVM.
509    InlineAsm(Hash64),
510}
511
512pub struct FileNameDisplay<'a> {
513    inner: &'a FileName,
514    display_pref: FileNameDisplayPreference,
515}
516
517// Internal enum. Should not be exposed.
518#[derive(Clone, Copy)]
519enum FileNameDisplayPreference {
520    Remapped,
521    Local,
522    Short,
523    Scope(RemapPathScopeComponents),
524}
525
526impl fmt::Display for FileNameDisplay<'_> {
527    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
528        use FileName::*;
529        match *self.inner {
530            Real(ref name) => {
531                write!(fmt, "{}", name.to_string_lossy(self.display_pref))
532            }
533            CfgSpec(_) => write!(fmt, "<cfgspec>"),
534            MacroExpansion(_) => write!(fmt, "<macro expansion>"),
535            Anon(_) => write!(fmt, "<anon>"),
536            ProcMacroSourceCode(_) => write!(fmt, "<proc-macro source code>"),
537            CliCrateAttr(_) => write!(fmt, "<crate attribute>"),
538            Custom(ref s) => write!(fmt, "<{s}>"),
539            DocTest(ref path, _) => write!(fmt, "{}", path.display()),
540            InlineAsm(_) => write!(fmt, "<inline asm>"),
541        }
542    }
543}
544
545impl<'a> FileNameDisplay<'a> {
546    pub fn to_string_lossy(&self) -> Cow<'a, str> {
547        match self.inner {
548            FileName::Real(inner) => inner.to_string_lossy(self.display_pref),
549            _ => Cow::from(self.to_string()),
550        }
551    }
552}
553
554impl FileName {
555    pub fn is_real(&self) -> bool {
556        use FileName::*;
557        match *self {
558            Real(_) => true,
559            Anon(_)
560            | MacroExpansion(_)
561            | ProcMacroSourceCode(_)
562            | CliCrateAttr(_)
563            | Custom(_)
564            | CfgSpec(_)
565            | DocTest(_, _)
566            | InlineAsm(_) => false,
567        }
568    }
569
570    /// Returns the path suitable for reading from the file system on the local host,
571    /// if this information exists.
572    ///
573    /// Avoid embedding this in build artifacts. Prefer using the `display` method.
574    #[inline]
575    pub fn prefer_remapped_unconditionally(&self) -> FileNameDisplay<'_> {
576        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Remapped }
577    }
578
579    /// Returns the path suitable for reading from the file system on the local host,
580    /// if this information exists.
581    ///
582    /// Avoid embedding this in build artifacts. Prefer using the `display` method.
583    #[inline]
584    pub fn prefer_local_unconditionally(&self) -> FileNameDisplay<'_> {
585        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Local }
586    }
587
588    /// Returns a short (either the filename or an empty string).
589    #[inline]
590    pub fn short(&self) -> FileNameDisplay<'_> {
591        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Short }
592    }
593
594    /// Returns a `Display`-able path for the given scope.
595    #[inline]
596    pub fn display(&self, scope: RemapPathScopeComponents) -> FileNameDisplay<'_> {
597        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Scope(scope) }
598    }
599
600    pub fn macro_expansion_source_code(src: &str) -> FileName {
601        let mut hasher = StableHasher::new();
602        src.hash(&mut hasher);
603        FileName::MacroExpansion(hasher.finish())
604    }
605
606    pub fn anon_source_code(src: &str) -> FileName {
607        let mut hasher = StableHasher::new();
608        src.hash(&mut hasher);
609        FileName::Anon(hasher.finish())
610    }
611
612    pub fn proc_macro_source_code(src: &str) -> FileName {
613        let mut hasher = StableHasher::new();
614        src.hash(&mut hasher);
615        FileName::ProcMacroSourceCode(hasher.finish())
616    }
617
618    pub fn cfg_spec_source_code(src: &str) -> FileName {
619        let mut hasher = StableHasher::new();
620        src.hash(&mut hasher);
621        FileName::CfgSpec(hasher.finish())
622    }
623
624    pub fn cli_crate_attr_source_code(src: &str) -> FileName {
625        let mut hasher = StableHasher::new();
626        src.hash(&mut hasher);
627        FileName::CliCrateAttr(hasher.finish())
628    }
629
630    pub fn doc_test_source_code(path: PathBuf, line: isize) -> FileName {
631        FileName::DocTest(path, line)
632    }
633
634    pub fn inline_asm_source_code(src: &str) -> FileName {
635        let mut hasher = StableHasher::new();
636        src.hash(&mut hasher);
637        FileName::InlineAsm(hasher.finish())
638    }
639
640    /// Returns the path suitable for reading from the file system on the local host,
641    /// if this information exists.
642    ///
643    /// Avoid embedding this in build artifacts.
644    pub fn into_local_path(self) -> Option<PathBuf> {
645        match self {
646            FileName::Real(path) => path.into_local_path(),
647            FileName::DocTest(path, _) => Some(path),
648            _ => None,
649        }
650    }
651}
652
653/// Represents a span.
654///
655/// Spans represent a region of code, used for error reporting. Positions in spans
656/// are *absolute* positions from the beginning of the [`SourceMap`], not positions
657/// relative to [`SourceFile`]s. Methods on the `SourceMap` can be used to relate spans back
658/// to the original source.
659///
660/// You must be careful if the span crosses more than one file, since you will not be
661/// able to use many of the functions on spans in source_map and you cannot assume
662/// that the length of the span is equal to `span.hi - span.lo`; there may be space in the
663/// [`BytePos`] range between files.
664///
665/// `SpanData` is public because `Span` uses a thread-local interner and can't be
666/// sent to other threads, but some pieces of performance infra run in a separate thread.
667/// Using `Span` is generally preferred.
668#[derive(Clone, Copy, Hash, PartialEq, Eq)]
669#[derive_where(PartialOrd, Ord)]
670pub struct SpanData {
671    pub lo: BytePos,
672    pub hi: BytePos,
673    /// Information about where the macro came from, if this piece of
674    /// code was created by a macro expansion.
675    #[derive_where(skip)]
676    // `SyntaxContext` does not implement `Ord`.
677    // The other fields are enough to determine in-file order.
678    pub ctxt: SyntaxContext,
679    #[derive_where(skip)]
680    // `LocalDefId` does not implement `Ord`.
681    // The other fields are enough to determine in-file order.
682    pub parent: Option<LocalDefId>,
683}
684
685impl SpanData {
686    #[inline]
687    pub fn span(&self) -> Span {
688        Span::new(self.lo, self.hi, self.ctxt, self.parent)
689    }
690    #[inline]
691    pub fn with_lo(&self, lo: BytePos) -> Span {
692        Span::new(lo, self.hi, self.ctxt, self.parent)
693    }
694    #[inline]
695    pub fn with_hi(&self, hi: BytePos) -> Span {
696        Span::new(self.lo, hi, self.ctxt, self.parent)
697    }
698    /// Avoid if possible, `Span::map_ctxt` should be preferred.
699    #[inline]
700    fn with_ctxt(&self, ctxt: SyntaxContext) -> Span {
701        Span::new(self.lo, self.hi, ctxt, self.parent)
702    }
703    /// Avoid if possible, `Span::with_parent` should be preferred.
704    #[inline]
705    fn with_parent(&self, parent: Option<LocalDefId>) -> Span {
706        Span::new(self.lo, self.hi, self.ctxt, parent)
707    }
708    /// Returns `true` if this is a dummy span with any hygienic context.
709    #[inline]
710    pub fn is_dummy(self) -> bool {
711        self.lo.0 == 0 && self.hi.0 == 0
712    }
713    /// Returns `true` if `self` fully encloses `other`.
714    pub fn contains(self, other: Self) -> bool {
715        self.lo <= other.lo && other.hi <= self.hi
716    }
717}
718
719impl Default for SpanData {
720    fn default() -> Self {
721        Self { lo: BytePos(0), hi: BytePos(0), ctxt: SyntaxContext::root(), parent: None }
722    }
723}
724
725impl PartialOrd for Span {
726    fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
727        PartialOrd::partial_cmp(&self.data(), &rhs.data())
728    }
729}
730impl Ord for Span {
731    fn cmp(&self, rhs: &Self) -> Ordering {
732        Ord::cmp(&self.data(), &rhs.data())
733    }
734}
735
736impl Span {
737    #[inline]
738    pub fn lo(self) -> BytePos {
739        self.data().lo
740    }
741    #[inline]
742    pub fn with_lo(self, lo: BytePos) -> Span {
743        self.data().with_lo(lo)
744    }
745    #[inline]
746    pub fn hi(self) -> BytePos {
747        self.data().hi
748    }
749    #[inline]
750    pub fn with_hi(self, hi: BytePos) -> Span {
751        self.data().with_hi(hi)
752    }
753    #[inline]
754    pub fn with_ctxt(self, ctxt: SyntaxContext) -> Span {
755        self.map_ctxt(|_| ctxt)
756    }
757
758    #[inline]
759    pub fn is_visible(self, sm: &SourceMap) -> bool {
760        !self.is_dummy() && sm.is_span_accessible(self)
761    }
762
763    /// Returns whether this span originates in a foreign crate's external macro.
764    ///
765    /// This is used to test whether a lint should not even begin to figure out whether it should
766    /// be reported on the current node.
767    #[inline]
768    pub fn in_external_macro(self, sm: &SourceMap) -> bool {
769        self.ctxt().in_external_macro(sm)
770    }
771
772    /// Returns `true` if `span` originates in a derive-macro's expansion.
773    pub fn in_derive_expansion(self) -> bool {
774        matches!(self.ctxt().outer_expn_data().kind, ExpnKind::Macro(MacroKind::Derive, _))
775    }
776
777    /// Return whether `span` is generated by `async` or `await`.
778    pub fn is_from_async_await(self) -> bool {
779        matches!(
780            self.ctxt().outer_expn_data().kind,
781            ExpnKind::Desugaring(DesugaringKind::Async | DesugaringKind::Await),
782        )
783    }
784
785    /// Gate suggestions that would not be appropriate in a context the user didn't write.
786    pub fn can_be_used_for_suggestions(self) -> bool {
787        !self.from_expansion()
788        // FIXME: If this span comes from a `derive` macro but it points at code the user wrote,
789        // the callsite span and the span will be pointing at different places. It also means that
790        // we can safely provide suggestions on this span.
791            || (self.in_derive_expansion()
792                && self.parent_callsite().map(|p| (p.lo(), p.hi())) != Some((self.lo(), self.hi())))
793    }
794
795    #[inline]
796    pub fn with_root_ctxt(lo: BytePos, hi: BytePos) -> Span {
797        Span::new(lo, hi, SyntaxContext::root(), None)
798    }
799
800    /// Returns a new span representing an empty span at the beginning of this span.
801    #[inline]
802    pub fn shrink_to_lo(self) -> Span {
803        let span = self.data_untracked();
804        span.with_hi(span.lo)
805    }
806    /// Returns a new span representing an empty span at the end of this span.
807    #[inline]
808    pub fn shrink_to_hi(self) -> Span {
809        let span = self.data_untracked();
810        span.with_lo(span.hi)
811    }
812
813    #[inline]
814    /// Returns `true` if `hi == lo`.
815    pub fn is_empty(self) -> bool {
816        let span = self.data_untracked();
817        span.hi == span.lo
818    }
819
820    /// Returns `self` if `self` is not the dummy span, and `other` otherwise.
821    pub fn substitute_dummy(self, other: Span) -> Span {
822        if self.is_dummy() { other } else { self }
823    }
824
825    /// Returns `true` if `self` fully encloses `other`.
826    pub fn contains(self, other: Span) -> bool {
827        let span = self.data();
828        let other = other.data();
829        span.contains(other)
830    }
831
832    /// Returns `true` if `self` touches `other`.
833    pub fn overlaps(self, other: Span) -> bool {
834        let span = self.data();
835        let other = other.data();
836        span.lo < other.hi && other.lo < span.hi
837    }
838
839    /// Returns `true` if `self` touches or adjoins `other`.
840    pub fn overlaps_or_adjacent(self, other: Span) -> bool {
841        let span = self.data();
842        let other = other.data();
843        span.lo <= other.hi && other.lo <= span.hi
844    }
845
846    /// Returns `true` if the spans are equal with regards to the source text.
847    ///
848    /// Use this instead of `==` when either span could be generated code,
849    /// and you only care that they point to the same bytes of source text.
850    pub fn source_equal(self, other: Span) -> bool {
851        let span = self.data();
852        let other = other.data();
853        span.lo == other.lo && span.hi == other.hi
854    }
855
856    /// Returns `Some(span)`, where the start is trimmed by the end of `other`.
857    pub fn trim_start(self, other: Span) -> Option<Span> {
858        let span = self.data();
859        let other = other.data();
860        if span.hi > other.hi { Some(span.with_lo(cmp::max(span.lo, other.hi))) } else { None }
861    }
862
863    /// Returns `Some(span)`, where the end is trimmed by the start of `other`.
864    pub fn trim_end(self, other: Span) -> Option<Span> {
865        let span = self.data();
866        let other = other.data();
867        if span.lo < other.lo { Some(span.with_hi(cmp::min(span.hi, other.lo))) } else { None }
868    }
869
870    /// Returns the source span -- this is either the supplied span, or the span for
871    /// the macro callsite that expanded to it.
872    pub fn source_callsite(self) -> Span {
873        let ctxt = self.ctxt();
874        if !ctxt.is_root() { ctxt.outer_expn_data().call_site.source_callsite() } else { self }
875    }
876
877    /// Returns the call-site span of the last macro expansion which produced this `Span`.
878    /// (see [`ExpnData::call_site`]). Returns `None` if this is not an expansion.
879    pub fn parent_callsite(self) -> Option<Span> {
880        let ctxt = self.ctxt();
881        (!ctxt.is_root()).then(|| ctxt.outer_expn_data().call_site)
882    }
883
884    /// Find the first ancestor span that's contained within `outer`.
885    ///
886    /// This method traverses the macro expansion ancestors until it finds the first span
887    /// that's contained within `outer`.
888    ///
889    /// The span returned by this method may have a different [`SyntaxContext`] than `outer`.
890    /// If you need to extend the span, use [`find_ancestor_inside_same_ctxt`] instead,
891    /// because joining spans with different syntax contexts can create unexpected results.
892    ///
893    /// This is used to find the span of the macro call when a parent expr span, i.e. `outer`, is known.
894    ///
895    /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt
896    pub fn find_ancestor_inside(mut self, outer: Span) -> Option<Span> {
897        while !outer.contains(self) {
898            self = self.parent_callsite()?;
899        }
900        Some(self)
901    }
902
903    /// Find the first ancestor span with the same [`SyntaxContext`] as `other`.
904    ///
905    /// This method traverses the macro expansion ancestors until it finds a span
906    /// that has the same [`SyntaxContext`] as `other`.
907    ///
908    /// Like [`find_ancestor_inside_same_ctxt`], but specifically for when spans might not
909    /// overlap. Take care when using this, and prefer [`find_ancestor_inside`] or
910    /// [`find_ancestor_inside_same_ctxt`] when you know that the spans are nested (modulo
911    /// macro expansion).
912    ///
913    /// [`find_ancestor_inside`]: Self::find_ancestor_inside
914    /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt
915    pub fn find_ancestor_in_same_ctxt(mut self, other: Span) -> Option<Span> {
916        while !self.eq_ctxt(other) {
917            self = self.parent_callsite()?;
918        }
919        Some(self)
920    }
921
922    /// Find the first ancestor span that's contained within `outer` and
923    /// has the same [`SyntaxContext`] as `outer`.
924    ///
925    /// This method traverses the macro expansion ancestors until it finds a span
926    /// that is both contained within `outer` and has the same [`SyntaxContext`] as `outer`.
927    ///
928    /// This method is the combination of [`find_ancestor_inside`] and
929    /// [`find_ancestor_in_same_ctxt`] and should be preferred when extending the returned span.
930    /// If you do not need to modify the span, use [`find_ancestor_inside`] instead.
931    ///
932    /// [`find_ancestor_inside`]: Self::find_ancestor_inside
933    /// [`find_ancestor_in_same_ctxt`]: Self::find_ancestor_in_same_ctxt
934    pub fn find_ancestor_inside_same_ctxt(mut self, outer: Span) -> Option<Span> {
935        while !outer.contains(self) || !self.eq_ctxt(outer) {
936            self = self.parent_callsite()?;
937        }
938        Some(self)
939    }
940
941    /// Find the first ancestor span that does not come from an external macro.
942    ///
943    /// This method traverses the macro expansion ancestors until it finds a span
944    /// that is either from user-written code or from a local macro (defined in the current crate).
945    ///
946    /// External macros are those defined in dependencies or the standard library.
947    /// This method is useful for reporting errors in user-controllable code and avoiding
948    /// diagnostics inside external macros.
949    ///
950    /// # See also
951    ///
952    /// - [`Self::find_ancestor_not_from_macro`]
953    /// - [`Self::in_external_macro`]
954    pub fn find_ancestor_not_from_extern_macro(mut self, sm: &SourceMap) -> Option<Span> {
955        while self.in_external_macro(sm) {
956            self = self.parent_callsite()?;
957        }
958        Some(self)
959    }
960
961    /// Find the first ancestor span that does not come from any macro expansion.
962    ///
963    /// This method traverses the macro expansion ancestors until it finds a span
964    /// that originates from user-written code rather than any macro-generated code.
965    ///
966    /// This method is useful for reporting errors at the exact location users wrote code
967    /// and providing suggestions at directly editable locations.
968    ///
969    /// # See also
970    ///
971    /// - [`Self::find_ancestor_not_from_extern_macro`]
972    /// - [`Span::from_expansion`]
973    pub fn find_ancestor_not_from_macro(mut self) -> Option<Span> {
974        while self.from_expansion() {
975            self = self.parent_callsite()?;
976        }
977        Some(self)
978    }
979
980    /// Edition of the crate from which this span came.
981    pub fn edition(self) -> edition::Edition {
982        self.ctxt().edition()
983    }
984
985    /// Is this edition 2015?
986    #[inline]
987    pub fn is_rust_2015(self) -> bool {
988        self.edition().is_rust_2015()
989    }
990
991    /// Are we allowed to use features from the Rust 2018 edition?
992    #[inline]
993    pub fn at_least_rust_2018(self) -> bool {
994        self.edition().at_least_rust_2018()
995    }
996
997    /// Are we allowed to use features from the Rust 2021 edition?
998    #[inline]
999    pub fn at_least_rust_2021(self) -> bool {
1000        self.edition().at_least_rust_2021()
1001    }
1002
1003    /// Are we allowed to use features from the Rust 2024 edition?
1004    #[inline]
1005    pub fn at_least_rust_2024(self) -> bool {
1006        self.edition().at_least_rust_2024()
1007    }
1008
1009    /// Returns the source callee.
1010    ///
1011    /// Returns `None` if the supplied span has no expansion trace,
1012    /// else returns the `ExpnData` for the macro definition
1013    /// corresponding to the source callsite.
1014    pub fn source_callee(self) -> Option<ExpnData> {
1015        let mut ctxt = self.ctxt();
1016        let mut opt_expn_data = None;
1017        while !ctxt.is_root() {
1018            let expn_data = ctxt.outer_expn_data();
1019            ctxt = expn_data.call_site.ctxt();
1020            opt_expn_data = Some(expn_data);
1021        }
1022        opt_expn_data
1023    }
1024
1025    /// Checks if a span is "internal" to a macro in which `#[unstable]`
1026    /// items can be used (that is, a macro marked with
1027    /// `#[allow_internal_unstable]`).
1028    pub fn allows_unstable(self, feature: Symbol) -> bool {
1029        self.ctxt()
1030            .outer_expn_data()
1031            .allow_internal_unstable
1032            .is_some_and(|features| features.contains(&feature))
1033    }
1034
1035    /// Checks if this span arises from a compiler desugaring of kind `kind`.
1036    pub fn is_desugaring(self, kind: DesugaringKind) -> bool {
1037        match self.ctxt().outer_expn_data().kind {
1038            ExpnKind::Desugaring(k) => k == kind,
1039            _ => false,
1040        }
1041    }
1042
1043    /// Returns the compiler desugaring that created this span, or `None`
1044    /// if this span is not from a desugaring.
1045    pub fn desugaring_kind(self) -> Option<DesugaringKind> {
1046        match self.ctxt().outer_expn_data().kind {
1047            ExpnKind::Desugaring(k) => Some(k),
1048            _ => None,
1049        }
1050    }
1051
1052    /// Checks if a span is "internal" to a macro in which `unsafe`
1053    /// can be used without triggering the `unsafe_code` lint.
1054    /// (that is, a macro marked with `#[allow_internal_unsafe]`).
1055    pub fn allows_unsafe(self) -> bool {
1056        self.ctxt().outer_expn_data().allow_internal_unsafe
1057    }
1058
1059    pub fn macro_backtrace(mut self) -> impl Iterator<Item = ExpnData> {
1060        let mut prev_span = DUMMY_SP;
1061        iter::from_fn(move || {
1062            loop {
1063                let ctxt = self.ctxt();
1064                if ctxt.is_root() {
1065                    return None;
1066                }
1067
1068                let expn_data = ctxt.outer_expn_data();
1069                let is_recursive = expn_data.call_site.source_equal(prev_span);
1070
1071                prev_span = self;
1072                self = expn_data.call_site;
1073
1074                // Don't print recursive invocations.
1075                if !is_recursive {
1076                    return Some(expn_data);
1077                }
1078            }
1079        })
1080    }
1081
1082    /// Splits a span into two composite spans around a certain position.
1083    pub fn split_at(self, pos: u32) -> (Span, Span) {
1084        let len = self.hi().0 - self.lo().0;
1085        debug_assert!(pos <= len);
1086
1087        let split_pos = BytePos(self.lo().0 + pos);
1088        (
1089            Span::new(self.lo(), split_pos, self.ctxt(), self.parent()),
1090            Span::new(split_pos, self.hi(), self.ctxt(), self.parent()),
1091        )
1092    }
1093
1094    /// Check if you can select metavar spans for the given spans to get matching contexts.
1095    fn try_metavars(a: SpanData, b: SpanData, a_orig: Span, b_orig: Span) -> (SpanData, SpanData) {
1096        match with_metavar_spans(|mspans| (mspans.get(a_orig), mspans.get(b_orig))) {
1097            (None, None) => {}
1098            (Some(meta_a), None) => {
1099                let meta_a = meta_a.data();
1100                if meta_a.ctxt == b.ctxt {
1101                    return (meta_a, b);
1102                }
1103            }
1104            (None, Some(meta_b)) => {
1105                let meta_b = meta_b.data();
1106                if a.ctxt == meta_b.ctxt {
1107                    return (a, meta_b);
1108                }
1109            }
1110            (Some(meta_a), Some(meta_b)) => {
1111                let meta_b = meta_b.data();
1112                if a.ctxt == meta_b.ctxt {
1113                    return (a, meta_b);
1114                }
1115                let meta_a = meta_a.data();
1116                if meta_a.ctxt == b.ctxt {
1117                    return (meta_a, b);
1118                } else if meta_a.ctxt == meta_b.ctxt {
1119                    return (meta_a, meta_b);
1120                }
1121            }
1122        }
1123
1124        (a, b)
1125    }
1126
1127    /// Prepare two spans to a combine operation like `to` or `between`.
1128    fn prepare_to_combine(
1129        a_orig: Span,
1130        b_orig: Span,
1131    ) -> Result<(SpanData, SpanData, Option<LocalDefId>), Span> {
1132        let (a, b) = (a_orig.data(), b_orig.data());
1133        if a.ctxt == b.ctxt {
1134            return Ok((a, b, if a.parent == b.parent { a.parent } else { None }));
1135        }
1136
1137        let (a, b) = Span::try_metavars(a, b, a_orig, b_orig);
1138        if a.ctxt == b.ctxt {
1139            return Ok((a, b, if a.parent == b.parent { a.parent } else { None }));
1140        }
1141
1142        // Context mismatches usually happen when procedural macros combine spans copied from
1143        // the macro input with spans produced by the macro (`Span::*_site`).
1144        // In that case we consider the combined span to be produced by the macro and return
1145        // the original macro-produced span as the result.
1146        // Otherwise we just fall back to returning the first span.
1147        // Combining locations typically doesn't make sense in case of context mismatches.
1148        // `is_root` here is a fast path optimization.
1149        let a_is_callsite = a.ctxt.is_root() || a.ctxt == b.span().source_callsite().ctxt();
1150        Err(if a_is_callsite { b_orig } else { a_orig })
1151    }
1152
1153    /// This span, but in a larger context, may switch to the metavariable span if suitable.
1154    pub fn with_neighbor(self, neighbor: Span) -> Span {
1155        match Span::prepare_to_combine(self, neighbor) {
1156            Ok((this, ..)) => this.span(),
1157            Err(_) => self,
1158        }
1159    }
1160
1161    /// Returns a `Span` that would enclose both `self` and `end`.
1162    ///
1163    /// Note that this can also be used to extend the span "backwards":
1164    /// `start.to(end)` and `end.to(start)` return the same `Span`.
1165    ///
1166    /// ```text
1167    ///     ____             ___
1168    ///     self lorem ipsum end
1169    ///     ^^^^^^^^^^^^^^^^^^^^
1170    /// ```
1171    pub fn to(self, end: Span) -> Span {
1172        match Span::prepare_to_combine(self, end) {
1173            Ok((from, to, parent)) => {
1174                Span::new(cmp::min(from.lo, to.lo), cmp::max(from.hi, to.hi), from.ctxt, parent)
1175            }
1176            Err(fallback) => fallback,
1177        }
1178    }
1179
1180    /// Returns a `Span` between the end of `self` to the beginning of `end`.
1181    ///
1182    /// ```text
1183    ///     ____             ___
1184    ///     self lorem ipsum end
1185    ///         ^^^^^^^^^^^^^
1186    /// ```
1187    pub fn between(self, end: Span) -> Span {
1188        match Span::prepare_to_combine(self, end) {
1189            Ok((from, to, parent)) => {
1190                Span::new(cmp::min(from.hi, to.hi), cmp::max(from.lo, to.lo), from.ctxt, parent)
1191            }
1192            Err(fallback) => fallback,
1193        }
1194    }
1195
1196    /// Returns a `Span` from the beginning of `self` until the beginning of `end`.
1197    ///
1198    /// ```text
1199    ///     ____             ___
1200    ///     self lorem ipsum end
1201    ///     ^^^^^^^^^^^^^^^^^
1202    /// ```
1203    pub fn until(self, end: Span) -> Span {
1204        match Span::prepare_to_combine(self, end) {
1205            Ok((from, to, parent)) => {
1206                Span::new(cmp::min(from.lo, to.lo), cmp::max(from.lo, to.lo), from.ctxt, parent)
1207            }
1208            Err(fallback) => fallback,
1209        }
1210    }
1211
1212    /// Returns the `Span` within the syntax context of "within". This is useful when
1213    /// "self" is an expansion from a macro variable, since this can be used for
1214    /// providing extra macro expansion context for certain errors.
1215    ///
1216    /// ```text
1217    /// macro_rules! m {
1218    ///     ($ident:ident) => { ($ident,) }
1219    /// }
1220    ///
1221    /// m!(outer_ident);
1222    /// ```
1223    ///
1224    /// If "self" is the span of the outer_ident, and "within" is the span of the `($ident,)`
1225    /// expr, then this will return the span of the `$ident` macro variable.
1226    pub fn within_macro(self, within: Span, sm: &SourceMap) -> Option<Span> {
1227        match Span::prepare_to_combine(self, within) {
1228            // Only return something if it doesn't overlap with the original span,
1229            // and the span isn't "imported" (i.e. from unavailable sources).
1230            // FIXME: This does limit the usefulness of the error when the macro is
1231            // from a foreign crate; we could also take into account `-Zmacro-backtrace`,
1232            // which doesn't redact this span (but that would mean passing in even more
1233            // args to this function, lol).
1234            Ok((self_, _, parent))
1235                if self_.hi < self.lo() || self.hi() < self_.lo && !sm.is_imported(within) =>
1236            {
1237                Some(Span::new(self_.lo, self_.hi, self_.ctxt, parent))
1238            }
1239            _ => None,
1240        }
1241    }
1242
1243    pub fn from_inner(self, inner: InnerSpan) -> Span {
1244        let span = self.data();
1245        Span::new(
1246            span.lo + BytePos::from_usize(inner.start),
1247            span.lo + BytePos::from_usize(inner.end),
1248            span.ctxt,
1249            span.parent,
1250        )
1251    }
1252
1253    /// Equivalent of `Span::def_site` from the proc macro API,
1254    /// except that the location is taken from the `self` span.
1255    pub fn with_def_site_ctxt(self, expn_id: ExpnId) -> Span {
1256        self.with_ctxt_from_mark(expn_id, Transparency::Opaque)
1257    }
1258
1259    /// Equivalent of `Span::call_site` from the proc macro API,
1260    /// except that the location is taken from the `self` span.
1261    pub fn with_call_site_ctxt(self, expn_id: ExpnId) -> Span {
1262        self.with_ctxt_from_mark(expn_id, Transparency::Transparent)
1263    }
1264
1265    /// Equivalent of `Span::mixed_site` from the proc macro API,
1266    /// except that the location is taken from the `self` span.
1267    pub fn with_mixed_site_ctxt(self, expn_id: ExpnId) -> Span {
1268        self.with_ctxt_from_mark(expn_id, Transparency::SemiOpaque)
1269    }
1270
1271    /// Produces a span with the same location as `self` and context produced by a macro with the
1272    /// given ID and transparency, assuming that macro was defined directly and not produced by
1273    /// some other macro (which is the case for built-in and procedural macros).
1274    fn with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
1275        self.with_ctxt(SyntaxContext::root().apply_mark(expn_id, transparency))
1276    }
1277
1278    #[inline]
1279    pub fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
1280        self.map_ctxt(|ctxt| ctxt.apply_mark(expn_id, transparency))
1281    }
1282
1283    #[inline]
1284    pub fn remove_mark(&mut self) -> ExpnId {
1285        let mut mark = ExpnId::root();
1286        *self = self.map_ctxt(|mut ctxt| {
1287            mark = ctxt.remove_mark();
1288            ctxt
1289        });
1290        mark
1291    }
1292
1293    #[inline]
1294    pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
1295        let mut mark = None;
1296        *self = self.map_ctxt(|mut ctxt| {
1297            mark = ctxt.adjust(expn_id);
1298            ctxt
1299        });
1300        mark
1301    }
1302
1303    #[inline]
1304    pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
1305        let mut mark = None;
1306        *self = self.map_ctxt(|mut ctxt| {
1307            mark = ctxt.normalize_to_macros_2_0_and_adjust(expn_id);
1308            ctxt
1309        });
1310        mark
1311    }
1312
1313    #[inline]
1314    pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>> {
1315        let mut mark = None;
1316        *self = self.map_ctxt(|mut ctxt| {
1317            mark = ctxt.glob_adjust(expn_id, glob_span);
1318            ctxt
1319        });
1320        mark
1321    }
1322
1323    #[inline]
1324    pub fn reverse_glob_adjust(
1325        &mut self,
1326        expn_id: ExpnId,
1327        glob_span: Span,
1328    ) -> Option<Option<ExpnId>> {
1329        let mut mark = None;
1330        *self = self.map_ctxt(|mut ctxt| {
1331            mark = ctxt.reverse_glob_adjust(expn_id, glob_span);
1332            ctxt
1333        });
1334        mark
1335    }
1336
1337    #[inline]
1338    pub fn normalize_to_macros_2_0(self) -> Span {
1339        self.map_ctxt(|ctxt| ctxt.normalize_to_macros_2_0())
1340    }
1341
1342    #[inline]
1343    pub fn normalize_to_macro_rules(self) -> Span {
1344        self.map_ctxt(|ctxt| ctxt.normalize_to_macro_rules())
1345    }
1346}
1347
1348impl Default for Span {
1349    fn default() -> Self {
1350        DUMMY_SP
1351    }
1352}
1353
1354rustc_index::newtype_index! {
1355    #[orderable]
1356    #[debug_format = "AttrId({})"]
1357    pub struct AttrId {}
1358}
1359
1360/// This trait is used to allow encoder specific encodings of certain types.
1361/// It is similar to rustc_type_ir's TyEncoder.
1362pub trait SpanEncoder: Encoder {
1363    fn encode_span(&mut self, span: Span);
1364    fn encode_symbol(&mut self, sym: Symbol);
1365    fn encode_byte_symbol(&mut self, byte_sym: ByteSymbol);
1366    fn encode_expn_id(&mut self, expn_id: ExpnId);
1367    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext);
1368    /// As a local identifier, a `CrateNum` is only meaningful within its context, e.g. within a
1369    /// tcx. Therefore, make sure to include the context when encode a `CrateNum`.
1370    fn encode_crate_num(&mut self, crate_num: CrateNum);
1371    fn encode_def_index(&mut self, def_index: DefIndex);
1372    fn encode_def_id(&mut self, def_id: DefId);
1373}
1374
1375impl SpanEncoder for FileEncoder {
1376    fn encode_span(&mut self, span: Span) {
1377        let span = span.data();
1378        span.lo.encode(self);
1379        span.hi.encode(self);
1380    }
1381
1382    fn encode_symbol(&mut self, sym: Symbol) {
1383        self.emit_str(sym.as_str());
1384    }
1385
1386    fn encode_byte_symbol(&mut self, byte_sym: ByteSymbol) {
1387        self.emit_byte_str(byte_sym.as_byte_str());
1388    }
1389
1390    fn encode_expn_id(&mut self, _expn_id: ExpnId) {
1391        panic!("cannot encode `ExpnId` with `FileEncoder`");
1392    }
1393
1394    fn encode_syntax_context(&mut self, _syntax_context: SyntaxContext) {
1395        panic!("cannot encode `SyntaxContext` with `FileEncoder`");
1396    }
1397
1398    fn encode_crate_num(&mut self, crate_num: CrateNum) {
1399        self.emit_u32(crate_num.as_u32());
1400    }
1401
1402    fn encode_def_index(&mut self, _def_index: DefIndex) {
1403        panic!("cannot encode `DefIndex` with `FileEncoder`");
1404    }
1405
1406    fn encode_def_id(&mut self, def_id: DefId) {
1407        def_id.krate.encode(self);
1408        def_id.index.encode(self);
1409    }
1410}
1411
1412impl<E: SpanEncoder> Encodable<E> for Span {
1413    fn encode(&self, s: &mut E) {
1414        s.encode_span(*self);
1415    }
1416}
1417
1418impl<E: SpanEncoder> Encodable<E> for Symbol {
1419    fn encode(&self, s: &mut E) {
1420        s.encode_symbol(*self);
1421    }
1422}
1423
1424impl<E: SpanEncoder> Encodable<E> for ByteSymbol {
1425    fn encode(&self, s: &mut E) {
1426        s.encode_byte_symbol(*self);
1427    }
1428}
1429
1430impl<E: SpanEncoder> Encodable<E> for ExpnId {
1431    fn encode(&self, s: &mut E) {
1432        s.encode_expn_id(*self)
1433    }
1434}
1435
1436impl<E: SpanEncoder> Encodable<E> for SyntaxContext {
1437    fn encode(&self, s: &mut E) {
1438        s.encode_syntax_context(*self)
1439    }
1440}
1441
1442impl<E: SpanEncoder> Encodable<E> for CrateNum {
1443    fn encode(&self, s: &mut E) {
1444        s.encode_crate_num(*self)
1445    }
1446}
1447
1448impl<E: SpanEncoder> Encodable<E> for DefIndex {
1449    fn encode(&self, s: &mut E) {
1450        s.encode_def_index(*self)
1451    }
1452}
1453
1454impl<E: SpanEncoder> Encodable<E> for DefId {
1455    fn encode(&self, s: &mut E) {
1456        s.encode_def_id(*self)
1457    }
1458}
1459
1460impl<E: SpanEncoder> Encodable<E> for AttrId {
1461    fn encode(&self, _s: &mut E) {
1462        // A fresh id will be generated when decoding
1463    }
1464}
1465
1466pub trait BlobDecoder: Decoder {
1467    fn decode_symbol(&mut self) -> Symbol;
1468    fn decode_byte_symbol(&mut self) -> ByteSymbol;
1469    fn decode_def_index(&mut self) -> DefIndex;
1470}
1471
1472/// This trait is used to allow decoder specific encodings of certain types.
1473/// It is similar to rustc_type_ir's TyDecoder.
1474///
1475/// Specifically for metadata, an important note is that spans can only be decoded once
1476/// some other metadata is already read.
1477/// Spans have to be properly mapped into the decoding crate's sourcemap,
1478/// and crate numbers have to be converted sometimes.
1479/// This can only be done once the `CrateRoot` is available.
1480///
1481/// As such, some methods that used to be in the `SpanDecoder` trait
1482/// are now in the `BlobDecoder` trait. This hierarchy is not mirrored for `Encoder`s.
1483/// `BlobDecoder` has methods for deserializing types that are more complex than just those
1484/// that can be decoded with `Decoder`, but which can be decoded on their own, *before* any other metadata is.
1485/// Importantly, that means that types that can be decoded with `BlobDecoder` can show up in the crate root.
1486/// The place where this distinction is relevant is in `rustc_metadata` where metadata is decoded using either the
1487/// `MetadataDecodeContext` or the `BlobDecodeContext`.
1488pub trait SpanDecoder: BlobDecoder {
1489    fn decode_span(&mut self) -> Span;
1490    fn decode_expn_id(&mut self) -> ExpnId;
1491    fn decode_syntax_context(&mut self) -> SyntaxContext;
1492    fn decode_crate_num(&mut self) -> CrateNum;
1493    fn decode_def_id(&mut self) -> DefId;
1494    fn decode_attr_id(&mut self) -> AttrId;
1495}
1496
1497impl BlobDecoder for MemDecoder<'_> {
1498    fn decode_symbol(&mut self) -> Symbol {
1499        Symbol::intern(self.read_str())
1500    }
1501
1502    fn decode_byte_symbol(&mut self) -> ByteSymbol {
1503        ByteSymbol::intern(self.read_byte_str())
1504    }
1505
1506    fn decode_def_index(&mut self) -> DefIndex {
1507        panic!("cannot decode `DefIndex` with `MemDecoder`");
1508    }
1509}
1510
1511impl SpanDecoder for MemDecoder<'_> {
1512    fn decode_span(&mut self) -> Span {
1513        let lo = Decodable::decode(self);
1514        let hi = Decodable::decode(self);
1515
1516        Span::new(lo, hi, SyntaxContext::root(), None)
1517    }
1518
1519    fn decode_expn_id(&mut self) -> ExpnId {
1520        panic!("cannot decode `ExpnId` with `MemDecoder`");
1521    }
1522
1523    fn decode_syntax_context(&mut self) -> SyntaxContext {
1524        panic!("cannot decode `SyntaxContext` with `MemDecoder`");
1525    }
1526
1527    fn decode_crate_num(&mut self) -> CrateNum {
1528        CrateNum::from_u32(self.read_u32())
1529    }
1530
1531    fn decode_def_id(&mut self) -> DefId {
1532        DefId { krate: Decodable::decode(self), index: Decodable::decode(self) }
1533    }
1534
1535    fn decode_attr_id(&mut self) -> AttrId {
1536        panic!("cannot decode `AttrId` with `MemDecoder`");
1537    }
1538}
1539
1540impl<D: SpanDecoder> Decodable<D> for Span {
1541    fn decode(s: &mut D) -> Span {
1542        s.decode_span()
1543    }
1544}
1545
1546impl<D: BlobDecoder> Decodable<D> for Symbol {
1547    fn decode(s: &mut D) -> Symbol {
1548        s.decode_symbol()
1549    }
1550}
1551
1552impl<D: BlobDecoder> Decodable<D> for ByteSymbol {
1553    fn decode(s: &mut D) -> ByteSymbol {
1554        s.decode_byte_symbol()
1555    }
1556}
1557
1558impl<D: SpanDecoder> Decodable<D> for ExpnId {
1559    fn decode(s: &mut D) -> ExpnId {
1560        s.decode_expn_id()
1561    }
1562}
1563
1564impl<D: SpanDecoder> Decodable<D> for SyntaxContext {
1565    fn decode(s: &mut D) -> SyntaxContext {
1566        s.decode_syntax_context()
1567    }
1568}
1569
1570impl<D: SpanDecoder> Decodable<D> for CrateNum {
1571    fn decode(s: &mut D) -> CrateNum {
1572        s.decode_crate_num()
1573    }
1574}
1575
1576impl<D: BlobDecoder> Decodable<D> for DefIndex {
1577    fn decode(s: &mut D) -> DefIndex {
1578        s.decode_def_index()
1579    }
1580}
1581
1582impl<D: SpanDecoder> Decodable<D> for DefId {
1583    fn decode(s: &mut D) -> DefId {
1584        s.decode_def_id()
1585    }
1586}
1587
1588impl<D: SpanDecoder> Decodable<D> for AttrId {
1589    fn decode(s: &mut D) -> AttrId {
1590        s.decode_attr_id()
1591    }
1592}
1593
1594impl fmt::Debug for Span {
1595    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1596        // Use the global `SourceMap` to print the span. If that's not
1597        // available, fall back to printing the raw values.
1598
1599        fn fallback(span: Span, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1600            f.debug_struct("Span")
1601                .field("lo", &span.lo())
1602                .field("hi", &span.hi())
1603                .field("ctxt", &span.ctxt())
1604                .finish()
1605        }
1606
1607        if SESSION_GLOBALS.is_set() {
1608            with_session_globals(|session_globals| {
1609                if let Some(source_map) = &session_globals.source_map {
1610                    write!(f, "{} ({:?})", source_map.span_to_diagnostic_string(*self), self.ctxt())
1611                } else {
1612                    fallback(*self, f)
1613                }
1614            })
1615        } else {
1616            fallback(*self, f)
1617        }
1618    }
1619}
1620
1621impl fmt::Debug for SpanData {
1622    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1623        fmt::Debug::fmt(&self.span(), f)
1624    }
1625}
1626
1627/// Identifies an offset of a multi-byte character in a `SourceFile`.
1628#[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)]
1629pub struct MultiByteChar {
1630    /// The relative offset of the character in the `SourceFile`.
1631    pub pos: RelativeBytePos,
1632    /// The number of bytes, `>= 2`.
1633    pub bytes: u8,
1634}
1635
1636/// Identifies an offset of a character that was normalized away from `SourceFile`.
1637#[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)]
1638pub struct NormalizedPos {
1639    /// The relative offset of the character in the `SourceFile`.
1640    pub pos: RelativeBytePos,
1641    /// The difference between original and normalized string at position.
1642    pub diff: u32,
1643}
1644
1645#[derive(PartialEq, Eq, Clone, Debug)]
1646pub enum ExternalSource {
1647    /// No external source has to be loaded, since the `SourceFile` represents a local crate.
1648    Unneeded,
1649    Foreign {
1650        kind: ExternalSourceKind,
1651        /// Index of the file inside metadata.
1652        metadata_index: u32,
1653    },
1654}
1655
1656/// The state of the lazy external source loading mechanism of a `SourceFile`.
1657#[derive(PartialEq, Eq, Clone, Debug)]
1658pub enum ExternalSourceKind {
1659    /// The external source has been loaded already.
1660    Present(Arc<String>),
1661    /// No attempt has been made to load the external source.
1662    AbsentOk,
1663    /// A failed attempt has been made to load the external source.
1664    AbsentErr,
1665}
1666
1667impl ExternalSource {
1668    pub fn get_source(&self) -> Option<&str> {
1669        match self {
1670            ExternalSource::Foreign { kind: ExternalSourceKind::Present(src), .. } => Some(src),
1671            _ => None,
1672        }
1673    }
1674}
1675
1676#[derive(Debug)]
1677pub struct OffsetOverflowError;
1678
1679#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
1680#[derive(HashStable_Generic)]
1681pub enum SourceFileHashAlgorithm {
1682    Md5,
1683    Sha1,
1684    Sha256,
1685    Blake3,
1686}
1687
1688impl Display for SourceFileHashAlgorithm {
1689    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1690        f.write_str(match self {
1691            Self::Md5 => "md5",
1692            Self::Sha1 => "sha1",
1693            Self::Sha256 => "sha256",
1694            Self::Blake3 => "blake3",
1695        })
1696    }
1697}
1698
1699impl FromStr for SourceFileHashAlgorithm {
1700    type Err = ();
1701
1702    fn from_str(s: &str) -> Result<SourceFileHashAlgorithm, ()> {
1703        match s {
1704            "md5" => Ok(SourceFileHashAlgorithm::Md5),
1705            "sha1" => Ok(SourceFileHashAlgorithm::Sha1),
1706            "sha256" => Ok(SourceFileHashAlgorithm::Sha256),
1707            "blake3" => Ok(SourceFileHashAlgorithm::Blake3),
1708            _ => Err(()),
1709        }
1710    }
1711}
1712
1713/// The hash of the on-disk source file used for debug info and cargo freshness checks.
1714#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
1715#[derive(HashStable_Generic, Encodable, Decodable)]
1716pub struct SourceFileHash {
1717    pub kind: SourceFileHashAlgorithm,
1718    value: [u8; 32],
1719}
1720
1721impl Display for SourceFileHash {
1722    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1723        write!(f, "{}=", self.kind)?;
1724        for byte in self.value[0..self.hash_len()].into_iter() {
1725            write!(f, "{byte:02x}")?;
1726        }
1727        Ok(())
1728    }
1729}
1730
1731impl SourceFileHash {
1732    pub fn new_in_memory(kind: SourceFileHashAlgorithm, src: impl AsRef<[u8]>) -> SourceFileHash {
1733        let mut hash = SourceFileHash { kind, value: Default::default() };
1734        let len = hash.hash_len();
1735        let value = &mut hash.value[..len];
1736        let data = src.as_ref();
1737        match kind {
1738            SourceFileHashAlgorithm::Md5 => {
1739                value.copy_from_slice(&Md5::digest(data));
1740            }
1741            SourceFileHashAlgorithm::Sha1 => {
1742                value.copy_from_slice(&Sha1::digest(data));
1743            }
1744            SourceFileHashAlgorithm::Sha256 => {
1745                value.copy_from_slice(&Sha256::digest(data));
1746            }
1747            SourceFileHashAlgorithm::Blake3 => value.copy_from_slice(blake3::hash(data).as_bytes()),
1748        };
1749        hash
1750    }
1751
1752    pub fn new(kind: SourceFileHashAlgorithm, src: impl Read) -> Result<SourceFileHash, io::Error> {
1753        let mut hash = SourceFileHash { kind, value: Default::default() };
1754        let len = hash.hash_len();
1755        let value = &mut hash.value[..len];
1756        // Buffer size is the recommended amount to fully leverage SIMD instructions on AVX-512 as per
1757        // blake3 documentation.
1758        let mut buf = vec![0; 16 * 1024];
1759
1760        fn digest<T>(
1761            mut hasher: T,
1762            mut update: impl FnMut(&mut T, &[u8]),
1763            finish: impl FnOnce(T, &mut [u8]),
1764            mut src: impl Read,
1765            buf: &mut [u8],
1766            value: &mut [u8],
1767        ) -> Result<(), io::Error> {
1768            loop {
1769                let bytes_read = src.read(buf)?;
1770                if bytes_read == 0 {
1771                    break;
1772                }
1773                update(&mut hasher, &buf[0..bytes_read]);
1774            }
1775            finish(hasher, value);
1776            Ok(())
1777        }
1778
1779        match kind {
1780            SourceFileHashAlgorithm::Sha256 => {
1781                digest(
1782                    Sha256::new(),
1783                    |h, b| {
1784                        h.update(b);
1785                    },
1786                    |h, out| out.copy_from_slice(&h.finalize()),
1787                    src,
1788                    &mut buf,
1789                    value,
1790                )?;
1791            }
1792            SourceFileHashAlgorithm::Sha1 => {
1793                digest(
1794                    Sha1::new(),
1795                    |h, b| {
1796                        h.update(b);
1797                    },
1798                    |h, out| out.copy_from_slice(&h.finalize()),
1799                    src,
1800                    &mut buf,
1801                    value,
1802                )?;
1803            }
1804            SourceFileHashAlgorithm::Md5 => {
1805                digest(
1806                    Md5::new(),
1807                    |h, b| {
1808                        h.update(b);
1809                    },
1810                    |h, out| out.copy_from_slice(&h.finalize()),
1811                    src,
1812                    &mut buf,
1813                    value,
1814                )?;
1815            }
1816            SourceFileHashAlgorithm::Blake3 => {
1817                digest(
1818                    blake3::Hasher::new(),
1819                    |h, b| {
1820                        h.update(b);
1821                    },
1822                    |h, out| out.copy_from_slice(h.finalize().as_bytes()),
1823                    src,
1824                    &mut buf,
1825                    value,
1826                )?;
1827            }
1828        }
1829        Ok(hash)
1830    }
1831
1832    /// Check if the stored hash matches the hash of the string.
1833    pub fn matches(&self, src: &str) -> bool {
1834        Self::new_in_memory(self.kind, src.as_bytes()) == *self
1835    }
1836
1837    /// The bytes of the hash.
1838    pub fn hash_bytes(&self) -> &[u8] {
1839        let len = self.hash_len();
1840        &self.value[..len]
1841    }
1842
1843    fn hash_len(&self) -> usize {
1844        match self.kind {
1845            SourceFileHashAlgorithm::Md5 => 16,
1846            SourceFileHashAlgorithm::Sha1 => 20,
1847            SourceFileHashAlgorithm::Sha256 | SourceFileHashAlgorithm::Blake3 => 32,
1848        }
1849    }
1850}
1851
1852#[derive(Clone)]
1853pub enum SourceFileLines {
1854    /// The source file lines, in decoded (random-access) form.
1855    Lines(Vec<RelativeBytePos>),
1856
1857    /// The source file lines, in undecoded difference list form.
1858    Diffs(SourceFileDiffs),
1859}
1860
1861impl SourceFileLines {
1862    pub fn is_lines(&self) -> bool {
1863        matches!(self, SourceFileLines::Lines(_))
1864    }
1865}
1866
1867/// The source file lines in difference list form. This matches the form
1868/// used within metadata, which saves space by exploiting the fact that the
1869/// lines list is sorted and individual lines are usually not that long.
1870///
1871/// We read it directly from metadata and only decode it into `Lines` form
1872/// when necessary. This is a significant performance win, especially for
1873/// small crates where very little of `std`'s metadata is used.
1874#[derive(Clone)]
1875pub struct SourceFileDiffs {
1876    /// Always 1, 2, or 4. Always as small as possible, while being big
1877    /// enough to hold the length of the longest line in the source file.
1878    /// The 1 case is by far the most common.
1879    bytes_per_diff: usize,
1880
1881    /// The number of diffs encoded in `raw_diffs`. Always one less than
1882    /// the number of lines in the source file.
1883    num_diffs: usize,
1884
1885    /// The diffs in "raw" form. Each segment of `bytes_per_diff` length
1886    /// encodes one little-endian diff. Note that they aren't LEB128
1887    /// encoded. This makes for much faster decoding. Besides, the
1888    /// bytes_per_diff==1 case is by far the most common, and LEB128
1889    /// encoding has no effect on that case.
1890    raw_diffs: Vec<u8>,
1891}
1892
1893/// A single source in the [`SourceMap`].
1894pub struct SourceFile {
1895    /// The name of the file that the source came from. Source that doesn't
1896    /// originate from files has names between angle brackets by convention
1897    /// (e.g., `<anon>`).
1898    pub name: FileName,
1899    /// The complete source code.
1900    pub src: Option<Arc<String>>,
1901    /// The source code's hash.
1902    pub src_hash: SourceFileHash,
1903    /// Used to enable cargo to use checksums to check if a crate is fresh rather
1904    /// than mtimes. This might be the same as `src_hash`, and if the requested algorithm
1905    /// is identical we won't compute it twice.
1906    pub checksum_hash: Option<SourceFileHash>,
1907    /// The external source code (used for external crates, which will have a `None`
1908    /// value as `self.src`.
1909    pub external_src: FreezeLock<ExternalSource>,
1910    /// The start position of this source in the `SourceMap`.
1911    pub start_pos: BytePos,
1912    /// The byte length of this source after normalization.
1913    pub normalized_source_len: RelativeBytePos,
1914    /// The byte length of this source before normalization.
1915    pub unnormalized_source_len: u32,
1916    /// Locations of lines beginnings in the source code.
1917    pub lines: FreezeLock<SourceFileLines>,
1918    /// Locations of multi-byte characters in the source code.
1919    pub multibyte_chars: Vec<MultiByteChar>,
1920    /// Locations of characters removed during normalization.
1921    pub normalized_pos: Vec<NormalizedPos>,
1922    /// A hash of the filename & crate-id, used for uniquely identifying source
1923    /// files within the crate graph and for speeding up hashing in incremental
1924    /// compilation.
1925    pub stable_id: StableSourceFileId,
1926    /// Indicates which crate this `SourceFile` was imported from.
1927    pub cnum: CrateNum,
1928}
1929
1930impl Clone for SourceFile {
1931    fn clone(&self) -> Self {
1932        Self {
1933            name: self.name.clone(),
1934            src: self.src.clone(),
1935            src_hash: self.src_hash,
1936            checksum_hash: self.checksum_hash,
1937            external_src: self.external_src.clone(),
1938            start_pos: self.start_pos,
1939            normalized_source_len: self.normalized_source_len,
1940            unnormalized_source_len: self.unnormalized_source_len,
1941            lines: self.lines.clone(),
1942            multibyte_chars: self.multibyte_chars.clone(),
1943            normalized_pos: self.normalized_pos.clone(),
1944            stable_id: self.stable_id,
1945            cnum: self.cnum,
1946        }
1947    }
1948}
1949
1950impl<S: SpanEncoder> Encodable<S> for SourceFile {
1951    fn encode(&self, s: &mut S) {
1952        self.name.encode(s);
1953        self.src_hash.encode(s);
1954        self.checksum_hash.encode(s);
1955        // Do not encode `start_pos` as it's global state for this session.
1956        self.normalized_source_len.encode(s);
1957        self.unnormalized_source_len.encode(s);
1958
1959        // We are always in `Lines` form by the time we reach here.
1960        assert!(self.lines.read().is_lines());
1961        let lines = self.lines();
1962        // Store the length.
1963        s.emit_u32(lines.len() as u32);
1964
1965        // Compute and store the difference list.
1966        if lines.len() != 0 {
1967            let max_line_length = if lines.len() == 1 {
1968                0
1969            } else {
1970                lines
1971                    .array_windows()
1972                    .map(|&[fst, snd]| snd - fst)
1973                    .map(|bp| bp.to_usize())
1974                    .max()
1975                    .unwrap()
1976            };
1977
1978            let bytes_per_diff: usize = match max_line_length {
1979                0..=0xFF => 1,
1980                0x100..=0xFFFF => 2,
1981                _ => 4,
1982            };
1983
1984            // Encode the number of bytes used per diff.
1985            s.emit_u8(bytes_per_diff as u8);
1986
1987            // Encode the first element.
1988            assert_eq!(lines[0], RelativeBytePos(0));
1989
1990            // Encode the difference list.
1991            let diff_iter = lines.array_windows().map(|&[fst, snd]| snd - fst);
1992            let num_diffs = lines.len() - 1;
1993            let mut raw_diffs;
1994            match bytes_per_diff {
1995                1 => {
1996                    raw_diffs = Vec::with_capacity(num_diffs);
1997                    for diff in diff_iter {
1998                        raw_diffs.push(diff.0 as u8);
1999                    }
2000                }
2001                2 => {
2002                    raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
2003                    for diff in diff_iter {
2004                        raw_diffs.extend_from_slice(&(diff.0 as u16).to_le_bytes());
2005                    }
2006                }
2007                4 => {
2008                    raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
2009                    for diff in diff_iter {
2010                        raw_diffs.extend_from_slice(&(diff.0).to_le_bytes());
2011                    }
2012                }
2013                _ => unreachable!(),
2014            }
2015            s.emit_raw_bytes(&raw_diffs);
2016        }
2017
2018        self.multibyte_chars.encode(s);
2019        self.stable_id.encode(s);
2020        self.normalized_pos.encode(s);
2021        self.cnum.encode(s);
2022    }
2023}
2024
2025impl<D: SpanDecoder> Decodable<D> for SourceFile {
2026    fn decode(d: &mut D) -> SourceFile {
2027        let name: FileName = Decodable::decode(d);
2028        let src_hash: SourceFileHash = Decodable::decode(d);
2029        let checksum_hash: Option<SourceFileHash> = Decodable::decode(d);
2030        let normalized_source_len: RelativeBytePos = Decodable::decode(d);
2031        let unnormalized_source_len = Decodable::decode(d);
2032        let lines = {
2033            let num_lines: u32 = Decodable::decode(d);
2034            if num_lines > 0 {
2035                // Read the number of bytes used per diff.
2036                let bytes_per_diff = d.read_u8() as usize;
2037
2038                // Read the difference list.
2039                let num_diffs = num_lines as usize - 1;
2040                let raw_diffs = d.read_raw_bytes(bytes_per_diff * num_diffs).to_vec();
2041                SourceFileLines::Diffs(SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs })
2042            } else {
2043                SourceFileLines::Lines(vec![])
2044            }
2045        };
2046        let multibyte_chars: Vec<MultiByteChar> = Decodable::decode(d);
2047        let stable_id = Decodable::decode(d);
2048        let normalized_pos: Vec<NormalizedPos> = Decodable::decode(d);
2049        let cnum: CrateNum = Decodable::decode(d);
2050        SourceFile {
2051            name,
2052            start_pos: BytePos::from_u32(0),
2053            normalized_source_len,
2054            unnormalized_source_len,
2055            src: None,
2056            src_hash,
2057            checksum_hash,
2058            // Unused - the metadata decoder will construct
2059            // a new SourceFile, filling in `external_src` properly
2060            external_src: FreezeLock::frozen(ExternalSource::Unneeded),
2061            lines: FreezeLock::new(lines),
2062            multibyte_chars,
2063            normalized_pos,
2064            stable_id,
2065            cnum,
2066        }
2067    }
2068}
2069
2070impl fmt::Debug for SourceFile {
2071    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2072        write!(fmt, "SourceFile({:?})", self.name)
2073    }
2074}
2075
2076/// This is a [SourceFile] identifier that is used to correlate source files between
2077/// subsequent compilation sessions (which is something we need to do during
2078/// incremental compilation).
2079///
2080/// It is a hash value (so we can efficiently consume it when stable-hashing
2081/// spans) that consists of the `FileName` and the `StableCrateId` of the crate
2082/// the source file is from. The crate id is needed because sometimes the
2083/// `FileName` is not unique within the crate graph (think `src/lib.rs`, for
2084/// example).
2085///
2086/// The way the crate-id part is handled is a bit special: source files of the
2087/// local crate are hashed as `(filename, None)`, while source files from
2088/// upstream crates have a hash of `(filename, Some(stable_crate_id))`. This
2089/// is because SourceFiles for the local crate are allocated very early in the
2090/// compilation process when the `StableCrateId` is not yet known. If, due to
2091/// some refactoring of the compiler, the `StableCrateId` of the local crate
2092/// were to become available, it would be better to uniformly make this a
2093/// hash of `(filename, stable_crate_id)`.
2094///
2095/// When `SourceFile`s are exported in crate metadata, the `StableSourceFileId`
2096/// is updated to incorporate the `StableCrateId` of the exporting crate.
2097#[derive(
2098    Debug,
2099    Clone,
2100    Copy,
2101    Hash,
2102    PartialEq,
2103    Eq,
2104    HashStable_Generic,
2105    Encodable,
2106    Decodable,
2107    Default,
2108    PartialOrd,
2109    Ord
2110)]
2111pub struct StableSourceFileId(Hash128);
2112
2113impl StableSourceFileId {
2114    fn from_filename_in_current_crate(filename: &FileName) -> Self {
2115        Self::from_filename_and_stable_crate_id(filename, None)
2116    }
2117
2118    pub fn from_filename_for_export(
2119        filename: &FileName,
2120        local_crate_stable_crate_id: StableCrateId,
2121    ) -> Self {
2122        Self::from_filename_and_stable_crate_id(filename, Some(local_crate_stable_crate_id))
2123    }
2124
2125    fn from_filename_and_stable_crate_id(
2126        filename: &FileName,
2127        stable_crate_id: Option<StableCrateId>,
2128    ) -> Self {
2129        let mut hasher = StableHasher::new();
2130        filename.hash(&mut hasher);
2131        stable_crate_id.hash(&mut hasher);
2132        StableSourceFileId(hasher.finish())
2133    }
2134}
2135
2136impl SourceFile {
2137    const MAX_FILE_SIZE: u32 = u32::MAX - 1;
2138
2139    pub fn new(
2140        name: FileName,
2141        mut src: String,
2142        hash_kind: SourceFileHashAlgorithm,
2143        checksum_hash_kind: Option<SourceFileHashAlgorithm>,
2144    ) -> Result<Self, OffsetOverflowError> {
2145        // Compute the file hash before any normalization.
2146        let src_hash = SourceFileHash::new_in_memory(hash_kind, src.as_bytes());
2147        let checksum_hash = checksum_hash_kind.map(|checksum_hash_kind| {
2148            if checksum_hash_kind == hash_kind {
2149                src_hash
2150            } else {
2151                SourceFileHash::new_in_memory(checksum_hash_kind, src.as_bytes())
2152            }
2153        });
2154        // Capture the original source length before normalization.
2155        let unnormalized_source_len = u32::try_from(src.len()).map_err(|_| OffsetOverflowError)?;
2156        if unnormalized_source_len > Self::MAX_FILE_SIZE {
2157            return Err(OffsetOverflowError);
2158        }
2159
2160        let normalized_pos = normalize_src(&mut src);
2161
2162        let stable_id = StableSourceFileId::from_filename_in_current_crate(&name);
2163        let normalized_source_len = u32::try_from(src.len()).map_err(|_| OffsetOverflowError)?;
2164        if normalized_source_len > Self::MAX_FILE_SIZE {
2165            return Err(OffsetOverflowError);
2166        }
2167
2168        let (lines, multibyte_chars) = analyze_source_file::analyze_source_file(&src);
2169
2170        Ok(SourceFile {
2171            name,
2172            src: Some(Arc::new(src)),
2173            src_hash,
2174            checksum_hash,
2175            external_src: FreezeLock::frozen(ExternalSource::Unneeded),
2176            start_pos: BytePos::from_u32(0),
2177            normalized_source_len: RelativeBytePos::from_u32(normalized_source_len),
2178            unnormalized_source_len,
2179            lines: FreezeLock::frozen(SourceFileLines::Lines(lines)),
2180            multibyte_chars,
2181            normalized_pos,
2182            stable_id,
2183            cnum: LOCAL_CRATE,
2184        })
2185    }
2186
2187    /// This converts the `lines` field to contain `SourceFileLines::Lines` if needed and freezes
2188    /// it.
2189    fn convert_diffs_to_lines_frozen(&self) {
2190        let mut guard = if let Some(guard) = self.lines.try_write() { guard } else { return };
2191
2192        let SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs } = match &*guard {
2193            SourceFileLines::Diffs(diffs) => diffs,
2194            SourceFileLines::Lines(..) => {
2195                FreezeWriteGuard::freeze(guard);
2196                return;
2197            }
2198        };
2199
2200        // Convert from "diffs" form to "lines" form.
2201        let num_lines = num_diffs + 1;
2202        let mut lines = Vec::with_capacity(num_lines);
2203        let mut line_start = RelativeBytePos(0);
2204        lines.push(line_start);
2205
2206        assert_eq!(*num_diffs, raw_diffs.len() / bytes_per_diff);
2207        match bytes_per_diff {
2208            1 => {
2209                lines.extend(raw_diffs.into_iter().map(|&diff| {
2210                    line_start = line_start + RelativeBytePos(diff as u32);
2211                    line_start
2212                }));
2213            }
2214            2 => {
2215                lines.extend((0..*num_diffs).map(|i| {
2216                    let pos = bytes_per_diff * i;
2217                    let bytes = [raw_diffs[pos], raw_diffs[pos + 1]];
2218                    let diff = u16::from_le_bytes(bytes);
2219                    line_start = line_start + RelativeBytePos(diff as u32);
2220                    line_start
2221                }));
2222            }
2223            4 => {
2224                lines.extend((0..*num_diffs).map(|i| {
2225                    let pos = bytes_per_diff * i;
2226                    let bytes = [
2227                        raw_diffs[pos],
2228                        raw_diffs[pos + 1],
2229                        raw_diffs[pos + 2],
2230                        raw_diffs[pos + 3],
2231                    ];
2232                    let diff = u32::from_le_bytes(bytes);
2233                    line_start = line_start + RelativeBytePos(diff);
2234                    line_start
2235                }));
2236            }
2237            _ => unreachable!(),
2238        }
2239
2240        *guard = SourceFileLines::Lines(lines);
2241
2242        FreezeWriteGuard::freeze(guard);
2243    }
2244
2245    pub fn lines(&self) -> &[RelativeBytePos] {
2246        if let Some(SourceFileLines::Lines(lines)) = self.lines.get() {
2247            return &lines[..];
2248        }
2249
2250        outline(|| {
2251            self.convert_diffs_to_lines_frozen();
2252            if let Some(SourceFileLines::Lines(lines)) = self.lines.get() {
2253                return &lines[..];
2254            }
2255            unreachable!()
2256        })
2257    }
2258
2259    /// Returns the `BytePos` of the beginning of the current line.
2260    pub fn line_begin_pos(&self, pos: BytePos) -> BytePos {
2261        let pos = self.relative_position(pos);
2262        let line_index = self.lookup_line(pos).unwrap();
2263        let line_start_pos = self.lines()[line_index];
2264        self.absolute_position(line_start_pos)
2265    }
2266
2267    /// Add externally loaded source.
2268    /// If the hash of the input doesn't match or no input is supplied via None,
2269    /// it is interpreted as an error and the corresponding enum variant is set.
2270    /// The return value signifies whether some kind of source is present.
2271    pub fn add_external_src<F>(&self, get_src: F) -> bool
2272    where
2273        F: FnOnce() -> Option<String>,
2274    {
2275        if !self.external_src.is_frozen() {
2276            let src = get_src();
2277            let src = src.and_then(|mut src| {
2278                // The src_hash needs to be computed on the pre-normalized src.
2279                self.src_hash.matches(&src).then(|| {
2280                    normalize_src(&mut src);
2281                    src
2282                })
2283            });
2284
2285            self.external_src.try_write().map(|mut external_src| {
2286                if let ExternalSource::Foreign {
2287                    kind: src_kind @ ExternalSourceKind::AbsentOk,
2288                    ..
2289                } = &mut *external_src
2290                {
2291                    *src_kind = if let Some(src) = src {
2292                        ExternalSourceKind::Present(Arc::new(src))
2293                    } else {
2294                        ExternalSourceKind::AbsentErr
2295                    };
2296                } else {
2297                    panic!("unexpected state {:?}", *external_src)
2298                }
2299
2300                // Freeze this so we don't try to load the source again.
2301                FreezeWriteGuard::freeze(external_src)
2302            });
2303        }
2304
2305        self.src.is_some() || self.external_src.read().get_source().is_some()
2306    }
2307
2308    /// Gets a line from the list of pre-computed line-beginnings.
2309    /// The line number here is 0-based.
2310    pub fn get_line(&self, line_number: usize) -> Option<Cow<'_, str>> {
2311        fn get_until_newline(src: &str, begin: usize) -> &str {
2312            // We can't use `lines.get(line_number+1)` because we might
2313            // be parsing when we call this function and thus the current
2314            // line is the last one we have line info for.
2315            let slice = &src[begin..];
2316            match slice.find('\n') {
2317                Some(e) => &slice[..e],
2318                None => slice,
2319            }
2320        }
2321
2322        let begin = {
2323            let line = self.lines().get(line_number).copied()?;
2324            line.to_usize()
2325        };
2326
2327        if let Some(ref src) = self.src {
2328            Some(Cow::from(get_until_newline(src, begin)))
2329        } else {
2330            self.external_src
2331                .borrow()
2332                .get_source()
2333                .map(|src| Cow::Owned(String::from(get_until_newline(src, begin))))
2334        }
2335    }
2336
2337    pub fn is_real_file(&self) -> bool {
2338        self.name.is_real()
2339    }
2340
2341    #[inline]
2342    pub fn is_imported(&self) -> bool {
2343        self.src.is_none()
2344    }
2345
2346    pub fn count_lines(&self) -> usize {
2347        self.lines().len()
2348    }
2349
2350    #[inline]
2351    pub fn absolute_position(&self, pos: RelativeBytePos) -> BytePos {
2352        BytePos::from_u32(pos.to_u32() + self.start_pos.to_u32())
2353    }
2354
2355    #[inline]
2356    pub fn relative_position(&self, pos: BytePos) -> RelativeBytePos {
2357        RelativeBytePos::from_u32(pos.to_u32() - self.start_pos.to_u32())
2358    }
2359
2360    #[inline]
2361    pub fn end_position(&self) -> BytePos {
2362        self.absolute_position(self.normalized_source_len)
2363    }
2364
2365    /// Finds the line containing the given position. The return value is the
2366    /// index into the `lines` array of this `SourceFile`, not the 1-based line
2367    /// number. If the source_file is empty or the position is located before the
2368    /// first line, `None` is returned.
2369    pub fn lookup_line(&self, pos: RelativeBytePos) -> Option<usize> {
2370        self.lines().partition_point(|x| x <= &pos).checked_sub(1)
2371    }
2372
2373    pub fn line_bounds(&self, line_index: usize) -> Range<BytePos> {
2374        if self.is_empty() {
2375            return self.start_pos..self.start_pos;
2376        }
2377
2378        let lines = self.lines();
2379        assert!(line_index < lines.len());
2380        if line_index == (lines.len() - 1) {
2381            self.absolute_position(lines[line_index])..self.end_position()
2382        } else {
2383            self.absolute_position(lines[line_index])..self.absolute_position(lines[line_index + 1])
2384        }
2385    }
2386
2387    /// Returns whether or not the file contains the given `SourceMap` byte
2388    /// position. The position one past the end of the file is considered to be
2389    /// contained by the file. This implies that files for which `is_empty`
2390    /// returns true still contain one byte position according to this function.
2391    #[inline]
2392    pub fn contains(&self, byte_pos: BytePos) -> bool {
2393        byte_pos >= self.start_pos && byte_pos <= self.end_position()
2394    }
2395
2396    #[inline]
2397    pub fn is_empty(&self) -> bool {
2398        self.normalized_source_len.to_u32() == 0
2399    }
2400
2401    /// Calculates the original byte position relative to the start of the file
2402    /// based on the given byte position.
2403    pub fn original_relative_byte_pos(&self, pos: BytePos) -> RelativeBytePos {
2404        let pos = self.relative_position(pos);
2405
2406        // Diff before any records is 0. Otherwise use the previously recorded
2407        // diff as that applies to the following characters until a new diff
2408        // is recorded.
2409        let diff = match self.normalized_pos.binary_search_by(|np| np.pos.cmp(&pos)) {
2410            Ok(i) => self.normalized_pos[i].diff,
2411            Err(0) => 0,
2412            Err(i) => self.normalized_pos[i - 1].diff,
2413        };
2414
2415        RelativeBytePos::from_u32(pos.0 + diff)
2416    }
2417
2418    /// Calculates a normalized byte position from a byte offset relative to the
2419    /// start of the file.
2420    ///
2421    /// When we get an inline assembler error from LLVM during codegen, we
2422    /// import the expanded assembly code as a new `SourceFile`, which can then
2423    /// be used for error reporting with spans. However the byte offsets given
2424    /// to us by LLVM are relative to the start of the original buffer, not the
2425    /// normalized one. Hence we need to convert those offsets to the normalized
2426    /// form when constructing spans.
2427    pub fn normalized_byte_pos(&self, offset: u32) -> BytePos {
2428        let diff = match self
2429            .normalized_pos
2430            .binary_search_by(|np| (np.pos.0 + np.diff).cmp(&(self.start_pos.0 + offset)))
2431        {
2432            Ok(i) => self.normalized_pos[i].diff,
2433            Err(0) => 0,
2434            Err(i) => self.normalized_pos[i - 1].diff,
2435        };
2436
2437        BytePos::from_u32(self.start_pos.0 + offset - diff)
2438    }
2439
2440    /// Converts an relative `RelativeBytePos` to a `CharPos` relative to the `SourceFile`.
2441    fn bytepos_to_file_charpos(&self, bpos: RelativeBytePos) -> CharPos {
2442        // The number of extra bytes due to multibyte chars in the `SourceFile`.
2443        let mut total_extra_bytes = 0;
2444
2445        for mbc in self.multibyte_chars.iter() {
2446            debug!("{}-byte char at {:?}", mbc.bytes, mbc.pos);
2447            if mbc.pos < bpos {
2448                // Every character is at least one byte, so we only
2449                // count the actual extra bytes.
2450                total_extra_bytes += mbc.bytes as u32 - 1;
2451                // We should never see a byte position in the middle of a
2452                // character.
2453                assert!(bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32);
2454            } else {
2455                break;
2456            }
2457        }
2458
2459        assert!(total_extra_bytes <= bpos.to_u32());
2460        CharPos(bpos.to_usize() - total_extra_bytes as usize)
2461    }
2462
2463    /// Looks up the file's (1-based) line number and (0-based `CharPos`) column offset, for a
2464    /// given `RelativeBytePos`.
2465    fn lookup_file_pos(&self, pos: RelativeBytePos) -> (usize, CharPos) {
2466        let chpos = self.bytepos_to_file_charpos(pos);
2467        match self.lookup_line(pos) {
2468            Some(a) => {
2469                let line = a + 1; // Line numbers start at 1
2470                let linebpos = self.lines()[a];
2471                let linechpos = self.bytepos_to_file_charpos(linebpos);
2472                let col = chpos - linechpos;
2473                debug!("byte pos {:?} is on the line at byte pos {:?}", pos, linebpos);
2474                debug!("char pos {:?} is on the line at char pos {:?}", chpos, linechpos);
2475                debug!("byte is on line: {}", line);
2476                assert!(chpos >= linechpos);
2477                (line, col)
2478            }
2479            None => (0, chpos),
2480        }
2481    }
2482
2483    /// Looks up the file's (1-based) line number, (0-based `CharPos`) column offset, and (0-based)
2484    /// column offset when displayed, for a given `BytePos`.
2485    pub fn lookup_file_pos_with_col_display(&self, pos: BytePos) -> (usize, CharPos, usize) {
2486        let pos = self.relative_position(pos);
2487        let (line, col_or_chpos) = self.lookup_file_pos(pos);
2488        if line > 0 {
2489            let Some(code) = self.get_line(line - 1) else {
2490                // If we don't have the code available, it is ok as a fallback to return the bytepos
2491                // instead of the "display" column, which is only used to properly show underlines
2492                // in the terminal.
2493                // FIXME: we'll want better handling of this in the future for the sake of tools
2494                // that want to use the display col instead of byte offsets to modify Rust code, but
2495                // that is a problem for another day, the previous code was already incorrect for
2496                // both displaying *and* third party tools using the json output naïvely.
2497                tracing::info!("couldn't find line {line} {:?}", self.name);
2498                return (line, col_or_chpos, col_or_chpos.0);
2499            };
2500            let display_col = code.chars().take(col_or_chpos.0).map(|ch| char_width(ch)).sum();
2501            (line, col_or_chpos, display_col)
2502        } else {
2503            // This is never meant to happen?
2504            (0, col_or_chpos, col_or_chpos.0)
2505        }
2506    }
2507}
2508
2509pub fn char_width(ch: char) -> usize {
2510    // FIXME: `unicode_width` sometimes disagrees with terminals on how wide a `char` is. For now,
2511    // just accept that sometimes the code line will be longer than desired.
2512    match ch {
2513        '\t' => 4,
2514        // Keep the following list in sync with `rustc_errors::emitter::OUTPUT_REPLACEMENTS`. These
2515        // are control points that we replace before printing with a visible codepoint for the sake
2516        // of being able to point at them with underlines.
2517        '\u{0000}' | '\u{0001}' | '\u{0002}' | '\u{0003}' | '\u{0004}' | '\u{0005}'
2518        | '\u{0006}' | '\u{0007}' | '\u{0008}' | '\u{000B}' | '\u{000C}' | '\u{000D}'
2519        | '\u{000E}' | '\u{000F}' | '\u{0010}' | '\u{0011}' | '\u{0012}' | '\u{0013}'
2520        | '\u{0014}' | '\u{0015}' | '\u{0016}' | '\u{0017}' | '\u{0018}' | '\u{0019}'
2521        | '\u{001A}' | '\u{001B}' | '\u{001C}' | '\u{001D}' | '\u{001E}' | '\u{001F}'
2522        | '\u{007F}' | '\u{202A}' | '\u{202B}' | '\u{202D}' | '\u{202E}' | '\u{2066}'
2523        | '\u{2067}' | '\u{2068}' | '\u{202C}' | '\u{2069}' => 1,
2524        _ => unicode_width::UnicodeWidthChar::width(ch).unwrap_or(1),
2525    }
2526}
2527
2528pub fn str_width(s: &str) -> usize {
2529    s.chars().map(char_width).sum()
2530}
2531
2532/// Normalizes the source code and records the normalizations.
2533fn normalize_src(src: &mut String) -> Vec<NormalizedPos> {
2534    let mut normalized_pos = vec![];
2535    remove_bom(src, &mut normalized_pos);
2536    normalize_newlines(src, &mut normalized_pos);
2537    normalized_pos
2538}
2539
2540/// Removes UTF-8 BOM, if any.
2541fn remove_bom(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
2542    if src.starts_with('\u{feff}') {
2543        src.drain(..3);
2544        normalized_pos.push(NormalizedPos { pos: RelativeBytePos(0), diff: 3 });
2545    }
2546}
2547
2548/// Replaces `\r\n` with `\n` in-place in `src`.
2549///
2550/// Leaves any occurrences of lone `\r` unchanged.
2551fn normalize_newlines(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
2552    if !src.as_bytes().contains(&b'\r') {
2553        return;
2554    }
2555
2556    // We replace `\r\n` with `\n` in-place, which doesn't break utf-8 encoding.
2557    // While we *can* call `as_mut_vec` and do surgery on the live string
2558    // directly, let's rather steal the contents of `src`. This makes the code
2559    // safe even if a panic occurs.
2560
2561    let mut buf = std::mem::replace(src, String::new()).into_bytes();
2562    let mut gap_len = 0;
2563    let mut tail = buf.as_mut_slice();
2564    let mut cursor = 0;
2565    let original_gap = normalized_pos.last().map_or(0, |l| l.diff);
2566    loop {
2567        let idx = match find_crlf(&tail[gap_len..]) {
2568            None => tail.len(),
2569            Some(idx) => idx + gap_len,
2570        };
2571        tail.copy_within(gap_len..idx, 0);
2572        tail = &mut tail[idx - gap_len..];
2573        if tail.len() == gap_len {
2574            break;
2575        }
2576        cursor += idx - gap_len;
2577        gap_len += 1;
2578        normalized_pos.push(NormalizedPos {
2579            pos: RelativeBytePos::from_usize(cursor + 1),
2580            diff: original_gap + gap_len as u32,
2581        });
2582    }
2583
2584    // Account for removed `\r`.
2585    // After `set_len`, `buf` is guaranteed to contain utf-8 again.
2586    let new_len = buf.len() - gap_len;
2587    unsafe {
2588        buf.set_len(new_len);
2589        *src = String::from_utf8_unchecked(buf);
2590    }
2591
2592    fn find_crlf(src: &[u8]) -> Option<usize> {
2593        let mut search_idx = 0;
2594        while let Some(idx) = find_cr(&src[search_idx..]) {
2595            if src[search_idx..].get(idx + 1) != Some(&b'\n') {
2596                search_idx += idx + 1;
2597                continue;
2598            }
2599            return Some(search_idx + idx);
2600        }
2601        None
2602    }
2603
2604    fn find_cr(src: &[u8]) -> Option<usize> {
2605        src.iter().position(|&b| b == b'\r')
2606    }
2607}
2608
2609// _____________________________________________________________________________
2610// Pos, BytePos, CharPos
2611//
2612
2613pub trait Pos {
2614    fn from_usize(n: usize) -> Self;
2615    fn to_usize(&self) -> usize;
2616    fn from_u32(n: u32) -> Self;
2617    fn to_u32(&self) -> u32;
2618}
2619
2620macro_rules! impl_pos {
2621    (
2622        $(
2623            $(#[$attr:meta])*
2624            $vis:vis struct $ident:ident($inner_vis:vis $inner_ty:ty);
2625        )*
2626    ) => {
2627        $(
2628            $(#[$attr])*
2629            $vis struct $ident($inner_vis $inner_ty);
2630
2631            impl Pos for $ident {
2632                #[inline(always)]
2633                fn from_usize(n: usize) -> $ident {
2634                    $ident(n as $inner_ty)
2635                }
2636
2637                #[inline(always)]
2638                fn to_usize(&self) -> usize {
2639                    self.0 as usize
2640                }
2641
2642                #[inline(always)]
2643                fn from_u32(n: u32) -> $ident {
2644                    $ident(n as $inner_ty)
2645                }
2646
2647                #[inline(always)]
2648                fn to_u32(&self) -> u32 {
2649                    self.0 as u32
2650                }
2651            }
2652
2653            impl Add for $ident {
2654                type Output = $ident;
2655
2656                #[inline(always)]
2657                fn add(self, rhs: $ident) -> $ident {
2658                    $ident(self.0 + rhs.0)
2659                }
2660            }
2661
2662            impl Sub for $ident {
2663                type Output = $ident;
2664
2665                #[inline(always)]
2666                fn sub(self, rhs: $ident) -> $ident {
2667                    $ident(self.0 - rhs.0)
2668                }
2669            }
2670        )*
2671    };
2672}
2673
2674impl_pos! {
2675    /// A byte offset.
2676    ///
2677    /// Keep this small (currently 32-bits), as AST contains a lot of them.
2678    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
2679    pub struct BytePos(pub u32);
2680
2681    /// A byte offset relative to file beginning.
2682    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
2683    pub struct RelativeBytePos(pub u32);
2684
2685    /// A character offset.
2686    ///
2687    /// Because of multibyte UTF-8 characters, a byte offset
2688    /// is not equivalent to a character offset. The [`SourceMap`] will convert [`BytePos`]
2689    /// values to `CharPos` values as necessary.
2690    #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
2691    pub struct CharPos(pub usize);
2692}
2693
2694impl<S: Encoder> Encodable<S> for BytePos {
2695    fn encode(&self, s: &mut S) {
2696        s.emit_u32(self.0);
2697    }
2698}
2699
2700impl<D: Decoder> Decodable<D> for BytePos {
2701    fn decode(d: &mut D) -> BytePos {
2702        BytePos(d.read_u32())
2703    }
2704}
2705
2706impl<H: HashStableContext> HashStable<H> for RelativeBytePos {
2707    fn hash_stable(&self, hcx: &mut H, hasher: &mut StableHasher) {
2708        self.0.hash_stable(hcx, hasher);
2709    }
2710}
2711
2712impl<S: Encoder> Encodable<S> for RelativeBytePos {
2713    fn encode(&self, s: &mut S) {
2714        s.emit_u32(self.0);
2715    }
2716}
2717
2718impl<D: Decoder> Decodable<D> for RelativeBytePos {
2719    fn decode(d: &mut D) -> RelativeBytePos {
2720        RelativeBytePos(d.read_u32())
2721    }
2722}
2723
2724// _____________________________________________________________________________
2725// Loc, SourceFileAndLine, SourceFileAndBytePos
2726//
2727
2728/// A source code location used for error reporting.
2729#[derive(Debug, Clone)]
2730pub struct Loc {
2731    /// Information about the original source.
2732    pub file: Arc<SourceFile>,
2733    /// The (1-based) line number.
2734    pub line: usize,
2735    /// The (0-based) column offset.
2736    pub col: CharPos,
2737    /// The (0-based) column offset when displayed.
2738    pub col_display: usize,
2739}
2740
2741// Used to be structural records.
2742#[derive(Debug)]
2743pub struct SourceFileAndLine {
2744    pub sf: Arc<SourceFile>,
2745    /// Index of line, starting from 0.
2746    pub line: usize,
2747}
2748#[derive(Debug)]
2749pub struct SourceFileAndBytePos {
2750    pub sf: Arc<SourceFile>,
2751    pub pos: BytePos,
2752}
2753
2754#[derive(Copy, Clone, Debug, PartialEq, Eq)]
2755pub struct LineInfo {
2756    /// Index of line, starting from 0.
2757    pub line_index: usize,
2758
2759    /// Column in line where span begins, starting from 0.
2760    pub start_col: CharPos,
2761
2762    /// Column in line where span ends, starting from 0, exclusive.
2763    pub end_col: CharPos,
2764}
2765
2766pub struct FileLines {
2767    pub file: Arc<SourceFile>,
2768    pub lines: Vec<LineInfo>,
2769}
2770
2771pub static SPAN_TRACK: AtomicRef<fn(LocalDefId)> = AtomicRef::new(&((|_| {}) as fn(_)));
2772
2773// _____________________________________________________________________________
2774// SpanLinesError, SpanSnippetError, DistinctSources, MalformedSourceMapPositions
2775//
2776
2777pub type FileLinesResult = Result<FileLines, SpanLinesError>;
2778
2779#[derive(Clone, PartialEq, Eq, Debug)]
2780pub enum SpanLinesError {
2781    DistinctSources(Box<DistinctSources>),
2782}
2783
2784#[derive(Clone, PartialEq, Eq, Debug)]
2785pub enum SpanSnippetError {
2786    IllFormedSpan(Span),
2787    DistinctSources(Box<DistinctSources>),
2788    MalformedForSourcemap(MalformedSourceMapPositions),
2789    SourceNotAvailable { filename: FileName },
2790}
2791
2792#[derive(Clone, PartialEq, Eq, Debug)]
2793pub struct DistinctSources {
2794    pub begin: (FileName, BytePos),
2795    pub end: (FileName, BytePos),
2796}
2797
2798#[derive(Clone, PartialEq, Eq, Debug)]
2799pub struct MalformedSourceMapPositions {
2800    pub name: FileName,
2801    pub source_len: usize,
2802    pub begin_pos: BytePos,
2803    pub end_pos: BytePos,
2804}
2805
2806/// Range inside of a `Span` used for diagnostics when we only have access to relative positions.
2807#[derive(Copy, Clone, PartialEq, Eq, Debug)]
2808pub struct InnerSpan {
2809    pub start: usize,
2810    pub end: usize,
2811}
2812
2813impl InnerSpan {
2814    pub fn new(start: usize, end: usize) -> InnerSpan {
2815        InnerSpan { start, end }
2816    }
2817}
2818
2819/// Requirements for a `StableHashingContext` to be used in this crate.
2820///
2821/// This is a hack to allow using the [`HashStable_Generic`] derive macro
2822/// instead of implementing everything in rustc_middle.
2823pub trait HashStableContext {
2824    fn def_path_hash(&self, def_id: DefId) -> DefPathHash;
2825    fn hash_spans(&self) -> bool;
2826    /// Accesses `sess.opts.unstable_opts.incremental_ignore_spans` since
2827    /// we don't have easy access to a `Session`
2828    fn unstable_opts_incremental_ignore_spans(&self) -> bool;
2829    fn def_span(&self, def_id: LocalDefId) -> Span;
2830    fn span_data_to_lines_and_cols(
2831        &mut self,
2832        span: &SpanData,
2833    ) -> Option<(StableSourceFileId, usize, BytePos, usize, BytePos)>;
2834    fn hashing_controls(&self) -> HashingControls;
2835}
2836
2837impl<CTX> HashStable<CTX> for Span
2838where
2839    CTX: HashStableContext,
2840{
2841    /// Hashes a span in a stable way. We can't directly hash the span's `BytePos`
2842    /// fields (that would be similar to hashing pointers, since those are just
2843    /// offsets into the `SourceMap`). Instead, we hash the (file name, line, column)
2844    /// triple, which stays the same even if the containing `SourceFile` has moved
2845    /// within the `SourceMap`.
2846    ///
2847    /// Also note that we are hashing byte offsets for the column, not unicode
2848    /// codepoint offsets. For the purpose of the hash that's sufficient.
2849    /// Also, hashing filenames is expensive so we avoid doing it twice when the
2850    /// span starts and ends in the same file, which is almost always the case.
2851    fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
2852        const TAG_VALID_SPAN: u8 = 0;
2853        const TAG_INVALID_SPAN: u8 = 1;
2854        const TAG_RELATIVE_SPAN: u8 = 2;
2855
2856        if !ctx.hash_spans() {
2857            return;
2858        }
2859
2860        let span = self.data_untracked();
2861        span.ctxt.hash_stable(ctx, hasher);
2862        span.parent.hash_stable(ctx, hasher);
2863
2864        if span.is_dummy() {
2865            Hash::hash(&TAG_INVALID_SPAN, hasher);
2866            return;
2867        }
2868
2869        if let Some(parent) = span.parent {
2870            let def_span = ctx.def_span(parent).data_untracked();
2871            if def_span.contains(span) {
2872                // This span is enclosed in a definition: only hash the relative position.
2873                Hash::hash(&TAG_RELATIVE_SPAN, hasher);
2874                (span.lo - def_span.lo).to_u32().hash_stable(ctx, hasher);
2875                (span.hi - def_span.lo).to_u32().hash_stable(ctx, hasher);
2876                return;
2877            }
2878        }
2879
2880        // If this is not an empty or invalid span, we want to hash the last
2881        // position that belongs to it, as opposed to hashing the first
2882        // position past it.
2883        let Some((file, line_lo, col_lo, line_hi, col_hi)) = ctx.span_data_to_lines_and_cols(&span)
2884        else {
2885            Hash::hash(&TAG_INVALID_SPAN, hasher);
2886            return;
2887        };
2888
2889        Hash::hash(&TAG_VALID_SPAN, hasher);
2890        Hash::hash(&file, hasher);
2891
2892        // Hash both the length and the end location (line/column) of a span. If we
2893        // hash only the length, for example, then two otherwise equal spans with
2894        // different end locations will have the same hash. This can cause a problem
2895        // during incremental compilation wherein a previous result for a query that
2896        // depends on the end location of a span will be incorrectly reused when the
2897        // end location of the span it depends on has changed (see issue #74890). A
2898        // similar analysis applies if some query depends specifically on the length
2899        // of the span, but we only hash the end location. So hash both.
2900
2901        let col_lo_trunc = (col_lo.0 as u64) & 0xFF;
2902        let line_lo_trunc = ((line_lo as u64) & 0xFF_FF_FF) << 8;
2903        let col_hi_trunc = (col_hi.0 as u64) & 0xFF << 32;
2904        let line_hi_trunc = ((line_hi as u64) & 0xFF_FF_FF) << 40;
2905        let col_line = col_lo_trunc | line_lo_trunc | col_hi_trunc | line_hi_trunc;
2906        let len = (span.hi - span.lo).0;
2907        Hash::hash(&col_line, hasher);
2908        Hash::hash(&len, hasher);
2909    }
2910}
2911
2912/// Useful type to use with `Result<>` indicate that an error has already
2913/// been reported to the user, so no need to continue checking.
2914///
2915/// The `()` field is necessary: it is non-`pub`, which means values of this
2916/// type cannot be constructed outside of this crate.
2917#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
2918#[derive(HashStable_Generic)]
2919pub struct ErrorGuaranteed(());
2920
2921impl ErrorGuaranteed {
2922    /// Don't use this outside of `DiagCtxtInner::emit_diagnostic`!
2923    #[deprecated = "should only be used in `DiagCtxtInner::emit_diagnostic`"]
2924    pub fn unchecked_error_guaranteed() -> Self {
2925        ErrorGuaranteed(())
2926    }
2927
2928    pub fn raise_fatal(self) -> ! {
2929        FatalError.raise()
2930    }
2931}
2932
2933impl<E: rustc_serialize::Encoder> Encodable<E> for ErrorGuaranteed {
2934    #[inline]
2935    fn encode(&self, _e: &mut E) {
2936        panic!(
2937            "should never serialize an `ErrorGuaranteed`, as we do not write metadata or \
2938            incremental caches in case errors occurred"
2939        )
2940    }
2941}
2942impl<D: rustc_serialize::Decoder> Decodable<D> for ErrorGuaranteed {
2943    #[inline]
2944    fn decode(_d: &mut D) -> ErrorGuaranteed {
2945        panic!(
2946            "`ErrorGuaranteed` should never have been serialized to metadata or incremental caches"
2947        )
2948    }
2949}