1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
use super::OverlapError;

use crate::traits;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::fast_reject::{self, SimplifiedType, TreatParams};
use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt};

pub use rustc_middle::traits::specialization_graph::*;

#[derive(Copy, Clone, Debug)]
pub enum FutureCompatOverlapErrorKind {
    Issue33140,
    LeakCheck,
}

#[derive(Debug)]
pub struct FutureCompatOverlapError<'tcx> {
    pub error: OverlapError<'tcx>,
    pub kind: FutureCompatOverlapErrorKind,
}

/// The result of attempting to insert an impl into a group of children.
#[derive(Debug)]
enum Inserted<'tcx> {
    /// The impl was inserted as a new child in this group of children.
    BecameNewSibling(Option<FutureCompatOverlapError<'tcx>>),

    /// The impl should replace existing impls [X1, ..], because the impl specializes X1, X2, etc.
    ReplaceChildren(Vec<DefId>),

    /// The impl is a specialization of an existing child.
    ShouldRecurseOn(DefId),
}

#[extension(trait ChildrenExt<'tcx>)]
impl<'tcx> Children {
    /// Insert an impl into this set of children without comparing to any existing impls.
    fn insert_blindly(&mut self, tcx: TyCtxt<'tcx>, impl_def_id: DefId) {
        let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().skip_binder();
        if let Some(st) =
            fast_reject::simplify_type(tcx, trait_ref.self_ty(), TreatParams::AsCandidateKey)
        {
            debug!("insert_blindly: impl_def_id={:?} st={:?}", impl_def_id, st);
            self.non_blanket_impls.entry(st).or_default().push(impl_def_id)
        } else {
            debug!("insert_blindly: impl_def_id={:?} st=None", impl_def_id);
            self.blanket_impls.push(impl_def_id)
        }
    }

    /// Removes an impl from this set of children. Used when replacing
    /// an impl with a parent. The impl must be present in the list of
    /// children already.
    fn remove_existing(&mut self, tcx: TyCtxt<'tcx>, impl_def_id: DefId) {
        let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().skip_binder();
        let vec: &mut Vec<DefId>;
        if let Some(st) =
            fast_reject::simplify_type(tcx, trait_ref.self_ty(), TreatParams::AsCandidateKey)
        {
            debug!("remove_existing: impl_def_id={:?} st={:?}", impl_def_id, st);
            vec = self.non_blanket_impls.get_mut(&st).unwrap();
        } else {
            debug!("remove_existing: impl_def_id={:?} st=None", impl_def_id);
            vec = &mut self.blanket_impls;
        }

        let index = vec.iter().position(|d| *d == impl_def_id).unwrap();
        vec.remove(index);
    }

    /// Attempt to insert an impl into this set of children, while comparing for
    /// specialization relationships.
    #[instrument(level = "debug", skip(self, tcx), ret)]
    fn insert(
        &mut self,
        tcx: TyCtxt<'tcx>,
        impl_def_id: DefId,
        simplified_self: Option<SimplifiedType>,
        overlap_mode: OverlapMode,
    ) -> Result<Inserted<'tcx>, OverlapError<'tcx>> {
        let mut last_lint = None;
        let mut replace_children = Vec::new();

        let possible_siblings = match simplified_self {
            Some(st) => PotentialSiblings::Filtered(filtered_children(self, st)),
            None => PotentialSiblings::Unfiltered(iter_children(self)),
        };

        for possible_sibling in possible_siblings {
            debug!(?possible_sibling);

            let create_overlap_error = |overlap: traits::coherence::OverlapResult<'tcx>| {
                let trait_ref = overlap.impl_header.trait_ref.unwrap();
                let self_ty = trait_ref.self_ty();

                OverlapError {
                    with_impl: possible_sibling,
                    trait_ref,
                    // Only report the `Self` type if it has at least
                    // some outer concrete shell; otherwise, it's
                    // not adding much information.
                    self_ty: self_ty.has_concrete_skeleton().then_some(self_ty),
                    intercrate_ambiguity_causes: overlap.intercrate_ambiguity_causes,
                    involves_placeholder: overlap.involves_placeholder,
                }
            };

            let report_overlap_error = |overlap: traits::coherence::OverlapResult<'tcx>,
                                        last_lint: &mut _| {
                // Found overlap, but no specialization; error out or report future-compat warning.

                // Do we *still* get overlap if we disable the future-incompatible modes?
                let should_err = traits::overlapping_impls(
                    tcx,
                    possible_sibling,
                    impl_def_id,
                    traits::SkipLeakCheck::default(),
                    overlap_mode,
                )
                .is_some();

                let error = create_overlap_error(overlap);

                if should_err {
                    Err(error)
                } else {
                    *last_lint = Some(FutureCompatOverlapError {
                        error,
                        kind: FutureCompatOverlapErrorKind::LeakCheck,
                    });

                    Ok((false, false))
                }
            };

            let last_lint_mut = &mut last_lint;
            let (le, ge) = traits::overlapping_impls(
                tcx,
                possible_sibling,
                impl_def_id,
                traits::SkipLeakCheck::Yes,
                overlap_mode,
            )
            .map_or(Ok((false, false)), |overlap| {
                if let Some(overlap_kind) =
                    tcx.impls_are_allowed_to_overlap(impl_def_id, possible_sibling)
                {
                    match overlap_kind {
                        ty::ImplOverlapKind::Permitted { marker: _ } => {}
                        ty::ImplOverlapKind::Issue33140 => {
                            *last_lint_mut = Some(FutureCompatOverlapError {
                                error: create_overlap_error(overlap),
                                kind: FutureCompatOverlapErrorKind::Issue33140,
                            });
                        }
                    }

                    return Ok((false, false));
                }

                let le = tcx.specializes((impl_def_id, possible_sibling));
                let ge = tcx.specializes((possible_sibling, impl_def_id));

                if le == ge { report_overlap_error(overlap, last_lint_mut) } else { Ok((le, ge)) }
            })?;

            if le && !ge {
                debug!(
                    "descending as child of TraitRef {:?}",
                    tcx.impl_trait_ref(possible_sibling).unwrap().instantiate_identity()
                );

                // The impl specializes `possible_sibling`.
                return Ok(Inserted::ShouldRecurseOn(possible_sibling));
            } else if ge && !le {
                debug!(
                    "placing as parent of TraitRef {:?}",
                    tcx.impl_trait_ref(possible_sibling).unwrap().instantiate_identity()
                );

                replace_children.push(possible_sibling);
            } else {
                // Either there's no overlap, or the overlap was already reported by
                // `overlap_error`.
            }
        }

        if !replace_children.is_empty() {
            return Ok(Inserted::ReplaceChildren(replace_children));
        }

        // No overlap with any potential siblings, so add as a new sibling.
        debug!("placing as new sibling");
        self.insert_blindly(tcx, impl_def_id);
        Ok(Inserted::BecameNewSibling(last_lint))
    }
}

fn iter_children(children: &mut Children) -> impl Iterator<Item = DefId> + '_ {
    let nonblanket = children.non_blanket_impls.iter().flat_map(|(_, v)| v.iter());
    children.blanket_impls.iter().chain(nonblanket).cloned()
}

fn filtered_children(
    children: &mut Children,
    st: SimplifiedType,
) -> impl Iterator<Item = DefId> + '_ {
    let nonblanket = children.non_blanket_impls.entry(st).or_default().iter();
    children.blanket_impls.iter().chain(nonblanket).cloned()
}

// A custom iterator used by Children::insert
enum PotentialSiblings<I, J>
where
    I: Iterator<Item = DefId>,
    J: Iterator<Item = DefId>,
{
    Unfiltered(I),
    Filtered(J),
}

impl<I, J> Iterator for PotentialSiblings<I, J>
where
    I: Iterator<Item = DefId>,
    J: Iterator<Item = DefId>,
{
    type Item = DefId;

    fn next(&mut self) -> Option<Self::Item> {
        match *self {
            PotentialSiblings::Unfiltered(ref mut iter) => iter.next(),
            PotentialSiblings::Filtered(ref mut iter) => iter.next(),
        }
    }
}

#[extension(pub trait GraphExt<'tcx>)]
impl<'tcx> Graph {
    /// Insert a local impl into the specialization graph. If an existing impl
    /// conflicts with it (has overlap, but neither specializes the other),
    /// information about the area of overlap is returned in the `Err`.
    fn insert(
        &mut self,
        tcx: TyCtxt<'tcx>,
        impl_def_id: DefId,
        overlap_mode: OverlapMode,
    ) -> Result<Option<FutureCompatOverlapError<'tcx>>, OverlapError<'tcx>> {
        assert!(impl_def_id.is_local());

        // FIXME: use `EarlyBinder` in `self.children`
        let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().skip_binder();
        let trait_def_id = trait_ref.def_id;

        debug!(
            "insert({:?}): inserting TraitRef {:?} into specialization graph",
            impl_def_id, trait_ref
        );

        // If the reference itself contains an earlier error (e.g., due to a
        // resolution failure), then we just insert the impl at the top level of
        // the graph and claim that there's no overlap (in order to suppress
        // bogus errors).
        if trait_ref.references_error() {
            debug!(
                "insert: inserting dummy node for erroneous TraitRef {:?}, \
                 impl_def_id={:?}, trait_def_id={:?}",
                trait_ref, impl_def_id, trait_def_id
            );

            self.parent.insert(impl_def_id, trait_def_id);
            self.children.entry(trait_def_id).or_default().insert_blindly(tcx, impl_def_id);
            return Ok(None);
        }

        let mut parent = trait_def_id;
        let mut last_lint = None;
        let simplified =
            fast_reject::simplify_type(tcx, trait_ref.self_ty(), TreatParams::AsCandidateKey);

        // Descend the specialization tree, where `parent` is the current parent node.
        loop {
            use self::Inserted::*;

            let insert_result = self.children.entry(parent).or_default().insert(
                tcx,
                impl_def_id,
                simplified,
                overlap_mode,
            )?;

            match insert_result {
                BecameNewSibling(opt_lint) => {
                    last_lint = opt_lint;
                    break;
                }
                ReplaceChildren(grand_children_to_be) => {
                    // We currently have
                    //
                    //     P
                    //     |
                    //     G
                    //
                    // and we are inserting the impl N. We want to make it:
                    //
                    //     P
                    //     |
                    //     N
                    //     |
                    //     G

                    // Adjust P's list of children: remove G and then add N.
                    {
                        let siblings = self.children.get_mut(&parent).unwrap();
                        for &grand_child_to_be in &grand_children_to_be {
                            siblings.remove_existing(tcx, grand_child_to_be);
                        }
                        siblings.insert_blindly(tcx, impl_def_id);
                    }

                    // Set G's parent to N and N's parent to P.
                    for &grand_child_to_be in &grand_children_to_be {
                        self.parent.insert(grand_child_to_be, impl_def_id);
                    }
                    self.parent.insert(impl_def_id, parent);

                    // Add G as N's child.
                    for &grand_child_to_be in &grand_children_to_be {
                        self.children
                            .entry(impl_def_id)
                            .or_default()
                            .insert_blindly(tcx, grand_child_to_be);
                    }
                    break;
                }
                ShouldRecurseOn(new_parent) => {
                    parent = new_parent;
                }
            }
        }

        self.parent.insert(impl_def_id, parent);
        Ok(last_lint)
    }

    /// Insert cached metadata mapping from a child impl back to its parent.
    fn record_impl_from_cstore(&mut self, tcx: TyCtxt<'tcx>, parent: DefId, child: DefId) {
        if self.parent.insert(child, parent).is_some() {
            bug!(
                "When recording an impl from the crate store, information about its parent \
                 was already present."
            );
        }

        self.children.entry(parent).or_default().insert_blindly(tcx, child);
    }
}

/// Locate the definition of an associated type in the specialization hierarchy,
/// starting from the given impl.
pub(crate) fn assoc_def(
    tcx: TyCtxt<'_>,
    impl_def_id: DefId,
    assoc_def_id: DefId,
) -> Result<LeafDef, ErrorGuaranteed> {
    let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
    let trait_def = tcx.trait_def(trait_def_id);

    // This function may be called while we are still building the
    // specialization graph that is queried below (via TraitDef::ancestors()),
    // so, in order to avoid unnecessary infinite recursion, we manually look
    // for the associated item at the given impl.
    // If there is no such item in that impl, this function will fail with a
    // cycle error if the specialization graph is currently being built.
    if let Some(&impl_item_id) = tcx.impl_item_implementor_ids(impl_def_id).get(&assoc_def_id) {
        let item = tcx.associated_item(impl_item_id);
        let impl_node = Node::Impl(impl_def_id);
        return Ok(LeafDef {
            item,
            defining_node: impl_node,
            finalizing_node: if item.defaultness(tcx).is_default() {
                None
            } else {
                Some(impl_node)
            },
        });
    }

    let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
    if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_def_id) {
        Ok(assoc_item)
    } else {
        // This is saying that neither the trait nor
        // the impl contain a definition for this
        // associated type. Normally this situation
        // could only arise through a compiler bug --
        // if the user wrote a bad item name, it
        // should have failed in astconv.
        bug!(
            "No associated type `{}` for {}",
            tcx.item_name(assoc_def_id),
            tcx.def_path_str(impl_def_id)
        )
    }
}