miri/shims/x86/
sha.rs

1//! Implements sha256 SIMD instructions of x86 targets
2//!
3//! The functions that actually compute SHA256 were copied from [RustCrypto's sha256 module].
4//!
5//! [RustCrypto's sha256 module]: https://github.com/RustCrypto/hashes/blob/6be8466247e936c415d8aafb848697f39894a386/sha2/src/sha256/soft.rs
6
7use rustc_middle::ty::Ty;
8use rustc_span::Symbol;
9use rustc_target::callconv::{Conv, FnAbi};
10
11use crate::*;
12
13impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
14pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
15    fn emulate_x86_sha_intrinsic(
16        &mut self,
17        link_name: Symbol,
18        abi: &FnAbi<'tcx, Ty<'tcx>>,
19        args: &[OpTy<'tcx>],
20        dest: &MPlaceTy<'tcx>,
21    ) -> InterpResult<'tcx, EmulateItemResult> {
22        let this = self.eval_context_mut();
23        this.expect_target_feature_for_intrinsic(link_name, "sha")?;
24        // Prefix should have already been checked.
25        let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.sha").unwrap();
26
27        fn read<'c>(ecx: &mut MiriInterpCx<'c>, reg: &OpTy<'c>) -> InterpResult<'c, [u32; 4]> {
28            let mut res = [0; 4];
29            // We reverse the order because x86 is little endian but the copied implementation uses
30            // big endian.
31            for (i, dst) in res.iter_mut().rev().enumerate() {
32                let projected = &ecx.project_index(reg, i.try_into().unwrap())?;
33                *dst = ecx.read_scalar(projected)?.to_u32()?
34            }
35            interp_ok(res)
36        }
37
38        fn write<'c>(
39            ecx: &mut MiriInterpCx<'c>,
40            dest: &MPlaceTy<'c>,
41            val: [u32; 4],
42        ) -> InterpResult<'c, ()> {
43            // We reverse the order because x86 is little endian but the copied implementation uses
44            // big endian.
45            for (i, part) in val.into_iter().rev().enumerate() {
46                let projected = &ecx.project_index(dest, i.try_into().unwrap())?;
47                ecx.write_scalar(Scalar::from_u32(part), projected)?;
48            }
49            interp_ok(())
50        }
51
52        match unprefixed_name {
53            // Used to implement the _mm_sha256rnds2_epu32 function.
54            "256rnds2" => {
55                let [a, b, k] = this.check_shim(abi, Conv::C, link_name, args)?;
56
57                let (a_reg, a_len) = this.project_to_simd(a)?;
58                let (b_reg, b_len) = this.project_to_simd(b)?;
59                let (k_reg, k_len) = this.project_to_simd(k)?;
60                let (dest, dest_len) = this.project_to_simd(dest)?;
61
62                assert_eq!(a_len, 4);
63                assert_eq!(b_len, 4);
64                assert_eq!(k_len, 4);
65                assert_eq!(dest_len, 4);
66
67                let a = read(this, &a_reg)?;
68                let b = read(this, &b_reg)?;
69                let k = read(this, &k_reg)?;
70
71                let result = sha256_digest_round_x2(a, b, k);
72                write(this, &dest, result)?;
73            }
74            // Used to implement the _mm_sha256msg1_epu32 function.
75            "256msg1" => {
76                let [a, b] = this.check_shim(abi, Conv::C, link_name, args)?;
77
78                let (a_reg, a_len) = this.project_to_simd(a)?;
79                let (b_reg, b_len) = this.project_to_simd(b)?;
80                let (dest, dest_len) = this.project_to_simd(dest)?;
81
82                assert_eq!(a_len, 4);
83                assert_eq!(b_len, 4);
84                assert_eq!(dest_len, 4);
85
86                let a = read(this, &a_reg)?;
87                let b = read(this, &b_reg)?;
88
89                let result = sha256msg1(a, b);
90                write(this, &dest, result)?;
91            }
92            // Used to implement the _mm_sha256msg2_epu32 function.
93            "256msg2" => {
94                let [a, b] = this.check_shim(abi, Conv::C, link_name, args)?;
95
96                let (a_reg, a_len) = this.project_to_simd(a)?;
97                let (b_reg, b_len) = this.project_to_simd(b)?;
98                let (dest, dest_len) = this.project_to_simd(dest)?;
99
100                assert_eq!(a_len, 4);
101                assert_eq!(b_len, 4);
102                assert_eq!(dest_len, 4);
103
104                let a = read(this, &a_reg)?;
105                let b = read(this, &b_reg)?;
106
107                let result = sha256msg2(a, b);
108                write(this, &dest, result)?;
109            }
110            _ => return interp_ok(EmulateItemResult::NotSupported),
111        }
112        interp_ok(EmulateItemResult::NeedsReturn)
113    }
114}
115
116#[inline(always)]
117fn shr(v: [u32; 4], o: u32) -> [u32; 4] {
118    [v[0] >> o, v[1] >> o, v[2] >> o, v[3] >> o]
119}
120
121#[inline(always)]
122fn shl(v: [u32; 4], o: u32) -> [u32; 4] {
123    [v[0] << o, v[1] << o, v[2] << o, v[3] << o]
124}
125
126#[inline(always)]
127fn or(a: [u32; 4], b: [u32; 4]) -> [u32; 4] {
128    [a[0] | b[0], a[1] | b[1], a[2] | b[2], a[3] | b[3]]
129}
130
131#[inline(always)]
132fn xor(a: [u32; 4], b: [u32; 4]) -> [u32; 4] {
133    [a[0] ^ b[0], a[1] ^ b[1], a[2] ^ b[2], a[3] ^ b[3]]
134}
135
136#[inline(always)]
137fn add(a: [u32; 4], b: [u32; 4]) -> [u32; 4] {
138    [
139        a[0].wrapping_add(b[0]),
140        a[1].wrapping_add(b[1]),
141        a[2].wrapping_add(b[2]),
142        a[3].wrapping_add(b[3]),
143    ]
144}
145
146fn sha256load(v2: [u32; 4], v3: [u32; 4]) -> [u32; 4] {
147    [v3[3], v2[0], v2[1], v2[2]]
148}
149
150fn sha256_digest_round_x2(cdgh: [u32; 4], abef: [u32; 4], wk: [u32; 4]) -> [u32; 4] {
151    macro_rules! big_sigma0 {
152        ($a:expr) => {
153            ($a.rotate_right(2) ^ $a.rotate_right(13) ^ $a.rotate_right(22))
154        };
155    }
156    macro_rules! big_sigma1 {
157        ($a:expr) => {
158            ($a.rotate_right(6) ^ $a.rotate_right(11) ^ $a.rotate_right(25))
159        };
160    }
161    macro_rules! bool3ary_202 {
162        ($a:expr, $b:expr, $c:expr) => {
163            $c ^ ($a & ($b ^ $c))
164        };
165    } // Choose, MD5F, SHA1C
166    macro_rules! bool3ary_232 {
167        ($a:expr, $b:expr, $c:expr) => {
168            ($a & $b) ^ ($a & $c) ^ ($b & $c)
169        };
170    } // Majority, SHA1M
171
172    let [_, _, wk1, wk0] = wk;
173    let [a0, b0, e0, f0] = abef;
174    let [c0, d0, g0, h0] = cdgh;
175
176    // a round
177    let x0 =
178        big_sigma1!(e0).wrapping_add(bool3ary_202!(e0, f0, g0)).wrapping_add(wk0).wrapping_add(h0);
179    let y0 = big_sigma0!(a0).wrapping_add(bool3ary_232!(a0, b0, c0));
180    let (a1, b1, c1, d1, e1, f1, g1, h1) =
181        (x0.wrapping_add(y0), a0, b0, c0, x0.wrapping_add(d0), e0, f0, g0);
182
183    // a round
184    let x1 =
185        big_sigma1!(e1).wrapping_add(bool3ary_202!(e1, f1, g1)).wrapping_add(wk1).wrapping_add(h1);
186    let y1 = big_sigma0!(a1).wrapping_add(bool3ary_232!(a1, b1, c1));
187    let (a2, b2, _, _, e2, f2, _, _) =
188        (x1.wrapping_add(y1), a1, b1, c1, x1.wrapping_add(d1), e1, f1, g1);
189
190    [a2, b2, e2, f2]
191}
192
193fn sha256msg1(v0: [u32; 4], v1: [u32; 4]) -> [u32; 4] {
194    // sigma 0 on vectors
195    #[inline]
196    fn sigma0x4(x: [u32; 4]) -> [u32; 4] {
197        let t1 = or(shr(x, 7), shl(x, 25));
198        let t2 = or(shr(x, 18), shl(x, 14));
199        let t3 = shr(x, 3);
200        xor(xor(t1, t2), t3)
201    }
202
203    add(v0, sigma0x4(sha256load(v0, v1)))
204}
205
206fn sha256msg2(v4: [u32; 4], v3: [u32; 4]) -> [u32; 4] {
207    macro_rules! sigma1 {
208        ($a:expr) => {
209            $a.rotate_right(17) ^ $a.rotate_right(19) ^ ($a >> 10)
210        };
211    }
212
213    let [x3, x2, x1, x0] = v4;
214    let [w15, w14, _, _] = v3;
215
216    let w16 = x0.wrapping_add(sigma1!(w14));
217    let w17 = x1.wrapping_add(sigma1!(w15));
218    let w18 = x2.wrapping_add(sigma1!(w16));
219    let w19 = x3.wrapping_add(sigma1!(w17));
220
221    [w19, w18, w17, w16]
222}