miri/shims/windows/foreign_items.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
use std::ffi::OsStr;
use std::path::{self, Path, PathBuf};
use std::{io, iter, str};
use rustc_abi::{Align, Size};
use rustc_middle::ty::Ty;
use rustc_span::Symbol;
use rustc_target::callconv::{Conv, FnAbi};
use self::shims::windows::handle::{Handle, PseudoHandle};
use crate::shims::os_str::bytes_to_os_str;
use crate::shims::windows::handle::HandleError;
use crate::shims::windows::*;
use crate::*;
// The NTSTATUS STATUS_INVALID_HANDLE (0xC0000008) encoded as a HRESULT by setting the N bit.
// (https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/0642cb2f-2075-4469-918c-4441e69c548a)
const STATUS_INVALID_HANDLE: u32 = 0xD0000008;
pub fn is_dyn_sym(name: &str) -> bool {
// std does dynamic detection for these symbols
matches!(
name,
"SetThreadDescription" | "GetThreadDescription" | "WaitOnAddress" | "WakeByAddressSingle"
)
}
#[cfg(windows)]
fn win_absolute<'tcx>(path: &Path) -> InterpResult<'tcx, io::Result<PathBuf>> {
// We are on Windows so we can simply let the host do this.
interp_ok(path::absolute(path))
}
#[cfg(unix)]
#[expect(clippy::get_first, clippy::arithmetic_side_effects)]
fn win_absolute<'tcx>(path: &Path) -> InterpResult<'tcx, io::Result<PathBuf>> {
// We are on Unix, so we need to implement parts of the logic ourselves.
let bytes = path.as_os_str().as_encoded_bytes();
// If it starts with `//` (these were backslashes but are already converted)
// then this is a magic special path, we just leave it unchanged.
if bytes.get(0).copied() == Some(b'/') && bytes.get(1).copied() == Some(b'/') {
return interp_ok(Ok(path.into()));
};
// Special treatment for Windows' magic filenames: they are treated as being relative to `\\.\`.
let magic_filenames = &[
"CON", "PRN", "AUX", "NUL", "COM1", "COM2", "COM3", "COM4", "COM5", "COM6", "COM7", "COM8",
"COM9", "LPT1", "LPT2", "LPT3", "LPT4", "LPT5", "LPT6", "LPT7", "LPT8", "LPT9",
];
if magic_filenames.iter().any(|m| m.as_bytes() == bytes) {
let mut result: Vec<u8> = br"//./".into();
result.extend(bytes);
return interp_ok(Ok(bytes_to_os_str(&result)?.into()));
}
// Otherwise we try to do something kind of close to what Windows does, but this is probably not
// right in all cases. We iterate over the components between `/`, and remove trailing `.`,
// except that trailing `..` remain unchanged.
let mut result = vec![];
let mut bytes = bytes; // the remaining bytes to process
loop {
let len = bytes.iter().position(|&b| b == b'/').unwrap_or(bytes.len());
let mut component = &bytes[..len];
if len >= 2 && component[len - 1] == b'.' && component[len - 2] != b'.' {
// Strip trailing `.`
component = &component[..len - 1];
}
// Add this component to output.
result.extend(component);
// Prepare next iteration.
if len < bytes.len() {
// There's a component after this; add `/` and process remaining bytes.
result.push(b'/');
bytes = &bytes[len + 1..];
continue;
} else {
// This was the last component and it did not have a trailing `/`.
break;
}
}
// Let the host `absolute` function do working-dir handling
interp_ok(path::absolute(bytes_to_os_str(&result)?))
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn emulate_foreign_item_inner(
&mut self,
link_name: Symbol,
abi: &FnAbi<'tcx, Ty<'tcx>>,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, EmulateItemResult> {
let this = self.eval_context_mut();
// According to
// https://github.com/rust-lang/rust/blob/fb00adbdb69266f10df95a4527b767b0ad35ea48/compiler/rustc_target/src/spec/mod.rs#L2766-L2768,
// x86-32 Windows uses a different calling convention than other Windows targets
// for the "system" ABI.
let sys_conv = if this.tcx.sess.target.arch == "x86" { Conv::X86Stdcall } else { Conv::C };
// See `fn emulate_foreign_item_inner` in `shims/foreign_items.rs` for the general pattern.
// Windows API stubs.
// HANDLE = isize
// NTSTATUS = LONH = i32
// DWORD = ULONG = u32
// BOOL = i32
// BOOLEAN = u8
match link_name.as_str() {
// Environment related shims
"GetEnvironmentVariableW" => {
let [name, buf, size] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.GetEnvironmentVariableW(name, buf, size)?;
this.write_scalar(result, dest)?;
}
"SetEnvironmentVariableW" => {
let [name, value] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.SetEnvironmentVariableW(name, value)?;
this.write_scalar(result, dest)?;
}
"GetEnvironmentStringsW" => {
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.GetEnvironmentStringsW()?;
this.write_pointer(result, dest)?;
}
"FreeEnvironmentStringsW" => {
let [env_block] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.FreeEnvironmentStringsW(env_block)?;
this.write_scalar(result, dest)?;
}
"GetCurrentDirectoryW" => {
let [size, buf] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.GetCurrentDirectoryW(size, buf)?;
this.write_scalar(result, dest)?;
}
"SetCurrentDirectoryW" => {
let [path] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.SetCurrentDirectoryW(path)?;
this.write_scalar(result, dest)?;
}
"GetUserProfileDirectoryW" => {
let [token, buf, size] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.GetUserProfileDirectoryW(token, buf, size)?;
this.write_scalar(result, dest)?;
}
"GetCurrentProcessId" => {
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.GetCurrentProcessId()?;
this.write_scalar(result, dest)?;
}
// File related shims
"NtWriteFile" => {
if !this.frame_in_std() {
throw_unsup_format!(
"`NtWriteFile` support is crude and just enough for stdout to work"
);
}
let [
handle,
_event,
_apc_routine,
_apc_context,
io_status_block,
buf,
n,
byte_offset,
_key,
] = this.check_shim(abi, sys_conv, link_name, args)?;
let handle = this.read_target_isize(handle)?;
let buf = this.read_pointer(buf)?;
let n = this.read_scalar(n)?.to_u32()?;
let byte_offset = this.read_target_usize(byte_offset)?; // is actually a pointer
let io_status_block = this
.deref_pointer_as(io_status_block, this.windows_ty_layout("IO_STATUS_BLOCK"))?;
if byte_offset != 0 {
throw_unsup_format!(
"`NtWriteFile` `ByteOffset` parameter is non-null, which is unsupported"
);
}
let written = if handle == -11 || handle == -12 {
// stdout/stderr
use io::Write;
let buf_cont =
this.read_bytes_ptr_strip_provenance(buf, Size::from_bytes(u64::from(n)))?;
let res = if this.machine.mute_stdout_stderr {
Ok(buf_cont.len())
} else if handle == -11 {
io::stdout().write(buf_cont)
} else {
io::stderr().write(buf_cont)
};
// We write at most `n` bytes, which is a `u32`, so we cannot have written more than that.
res.ok().map(|n| u32::try_from(n).unwrap())
} else {
throw_unsup_format!(
"on Windows, writing to anything except stdout/stderr is not supported"
)
};
// We have to put the result into io_status_block.
if let Some(n) = written {
let io_status_information =
this.project_field_named(&io_status_block, "Information")?;
this.write_scalar(
Scalar::from_target_usize(n.into(), this),
&io_status_information,
)?;
}
// Return whether this was a success. >= 0 is success.
// For the error code we arbitrarily pick 0xC0000185, STATUS_IO_DEVICE_ERROR.
this.write_scalar(
Scalar::from_u32(if written.is_some() { 0 } else { 0xC0000185u32 }),
dest,
)?;
}
"GetFullPathNameW" => {
let [filename, size, buffer, filepart] =
this.check_shim(abi, sys_conv, link_name, args)?;
this.check_no_isolation("`GetFullPathNameW`")?;
let filename = this.read_pointer(filename)?;
let size = this.read_scalar(size)?.to_u32()?;
let buffer = this.read_pointer(buffer)?;
let filepart = this.read_pointer(filepart)?;
if !this.ptr_is_null(filepart)? {
throw_unsup_format!("GetFullPathNameW: non-null `lpFilePart` is not supported");
}
let filename = this.read_path_from_wide_str(filename)?;
let result = match win_absolute(&filename)? {
Err(err) => {
this.set_last_error(err)?;
Scalar::from_u32(0) // return zero upon failure
}
Ok(abs_filename) => {
Scalar::from_u32(helpers::windows_check_buffer_size(
this.write_path_to_wide_str(&abs_filename, buffer, size.into())?,
))
// This can in fact return 0. It is up to the caller to set last_error to 0
// beforehand and check it afterwards to exclude that case.
}
};
this.write_scalar(result, dest)?;
}
// Allocation
"HeapAlloc" => {
let [handle, flags, size] = this.check_shim(abi, sys_conv, link_name, args)?;
this.read_target_isize(handle)?;
let flags = this.read_scalar(flags)?.to_u32()?;
let size = this.read_target_usize(size)?;
let heap_zero_memory = 0x00000008; // HEAP_ZERO_MEMORY
let zero_init = (flags & heap_zero_memory) == heap_zero_memory;
// Alignment is twice the pointer size.
// Source: <https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapalloc>
let align = this.tcx.pointer_size().bytes().strict_mul(2);
let ptr = this.allocate_ptr(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::WinHeap.into(),
)?;
if zero_init {
this.write_bytes_ptr(
ptr.into(),
iter::repeat(0u8).take(usize::try_from(size).unwrap()),
)?;
}
this.write_pointer(ptr, dest)?;
}
"HeapFree" => {
let [handle, flags, ptr] = this.check_shim(abi, sys_conv, link_name, args)?;
this.read_target_isize(handle)?;
this.read_scalar(flags)?.to_u32()?;
let ptr = this.read_pointer(ptr)?;
// "This pointer can be NULL." It doesn't say what happens then, but presumably nothing.
// (https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapfree)
if !this.ptr_is_null(ptr)? {
this.deallocate_ptr(ptr, None, MiriMemoryKind::WinHeap.into())?;
}
this.write_scalar(Scalar::from_i32(1), dest)?;
}
"HeapReAlloc" => {
let [handle, flags, old_ptr, size] =
this.check_shim(abi, sys_conv, link_name, args)?;
this.read_target_isize(handle)?;
this.read_scalar(flags)?.to_u32()?;
let old_ptr = this.read_pointer(old_ptr)?;
let size = this.read_target_usize(size)?;
let align = this.tcx.pointer_size().bytes().strict_mul(2); // same as above
// The docs say that `old_ptr` must come from an earlier HeapAlloc or HeapReAlloc,
// so unlike C `realloc` we do *not* allow a NULL here.
// (https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heaprealloc)
let new_ptr = this.reallocate_ptr(
old_ptr,
None,
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::WinHeap.into(),
)?;
this.write_pointer(new_ptr, dest)?;
}
"LocalFree" => {
let [ptr] = this.check_shim(abi, sys_conv, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
// "If the hMem parameter is NULL, LocalFree ignores the parameter and returns NULL."
// (https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-localfree)
if !this.ptr_is_null(ptr)? {
this.deallocate_ptr(ptr, None, MiriMemoryKind::WinLocal.into())?;
}
this.write_null(dest)?;
}
// errno
"SetLastError" => {
let [error] = this.check_shim(abi, sys_conv, link_name, args)?;
let error = this.read_scalar(error)?;
this.set_last_error(error)?;
}
"GetLastError" => {
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
let last_error = this.get_last_error()?;
this.write_scalar(last_error, dest)?;
}
// Querying system information
"GetSystemInfo" => {
// Also called from `page_size` crate.
let [system_info] = this.check_shim(abi, sys_conv, link_name, args)?;
let system_info =
this.deref_pointer_as(system_info, this.windows_ty_layout("SYSTEM_INFO"))?;
// Initialize with `0`.
this.write_bytes_ptr(
system_info.ptr(),
iter::repeat(0u8).take(system_info.layout.size.bytes_usize()),
)?;
// Set selected fields.
this.write_int_fields_named(
&[
("dwPageSize", this.machine.page_size.into()),
("dwNumberOfProcessors", this.machine.num_cpus.into()),
],
&system_info,
)?;
}
// Thread-local storage
"TlsAlloc" => {
// This just creates a key; Windows does not natively support TLS destructors.
// Create key and return it.
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
let key = this.machine.tls.create_tls_key(None, dest.layout.size)?;
this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
}
"TlsGetValue" => {
let [key] = this.check_shim(abi, sys_conv, link_name, args)?;
let key = u128::from(this.read_scalar(key)?.to_u32()?);
let active_thread = this.active_thread();
let ptr = this.machine.tls.load_tls(key, active_thread, this)?;
this.write_scalar(ptr, dest)?;
}
"TlsSetValue" => {
let [key, new_ptr] = this.check_shim(abi, sys_conv, link_name, args)?;
let key = u128::from(this.read_scalar(key)?.to_u32()?);
let active_thread = this.active_thread();
let new_data = this.read_scalar(new_ptr)?;
this.machine.tls.store_tls(key, active_thread, new_data, &*this.tcx)?;
// Return success (`1`).
this.write_int(1, dest)?;
}
"TlsFree" => {
let [key] = this.check_shim(abi, sys_conv, link_name, args)?;
let key = u128::from(this.read_scalar(key)?.to_u32()?);
this.machine.tls.delete_tls_key(key)?;
// Return success (`1`).
this.write_int(1, dest)?;
}
// Access to command-line arguments
"GetCommandLineW" => {
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
this.write_pointer(
this.machine.cmd_line.expect("machine must be initialized"),
dest,
)?;
}
// Time related shims
"GetSystemTimeAsFileTime" | "GetSystemTimePreciseAsFileTime" => {
#[allow(non_snake_case)]
let [LPFILETIME] = this.check_shim(abi, sys_conv, link_name, args)?;
this.GetSystemTimeAsFileTime(link_name.as_str(), LPFILETIME)?;
}
"QueryPerformanceCounter" => {
#[allow(non_snake_case)]
let [lpPerformanceCount] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.QueryPerformanceCounter(lpPerformanceCount)?;
this.write_scalar(result, dest)?;
}
"QueryPerformanceFrequency" => {
#[allow(non_snake_case)]
let [lpFrequency] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.QueryPerformanceFrequency(lpFrequency)?;
this.write_scalar(result, dest)?;
}
"Sleep" => {
let [timeout] = this.check_shim(abi, sys_conv, link_name, args)?;
this.Sleep(timeout)?;
}
"CreateWaitableTimerExW" => {
let [attributes, name, flags, access] =
this.check_shim(abi, sys_conv, link_name, args)?;
this.read_pointer(attributes)?;
this.read_pointer(name)?;
this.read_scalar(flags)?.to_u32()?;
this.read_scalar(access)?.to_u32()?;
// Unimplemented. Always return failure.
let not_supported = this.eval_windows("c", "ERROR_NOT_SUPPORTED");
this.set_last_error(not_supported)?;
this.write_null(dest)?;
}
// Synchronization primitives
"InitOnceBeginInitialize" => {
let [ptr, flags, pending, context] =
this.check_shim(abi, sys_conv, link_name, args)?;
this.InitOnceBeginInitialize(ptr, flags, pending, context, dest)?;
}
"InitOnceComplete" => {
let [ptr, flags, context] = this.check_shim(abi, sys_conv, link_name, args)?;
let result = this.InitOnceComplete(ptr, flags, context)?;
this.write_scalar(result, dest)?;
}
"WaitOnAddress" => {
let [ptr_op, compare_op, size_op, timeout_op] =
this.check_shim(abi, sys_conv, link_name, args)?;
this.WaitOnAddress(ptr_op, compare_op, size_op, timeout_op, dest)?;
}
"WakeByAddressSingle" => {
let [ptr_op] = this.check_shim(abi, sys_conv, link_name, args)?;
this.WakeByAddressSingle(ptr_op)?;
}
"WakeByAddressAll" => {
let [ptr_op] = this.check_shim(abi, sys_conv, link_name, args)?;
this.WakeByAddressAll(ptr_op)?;
}
// Dynamic symbol loading
"GetProcAddress" => {
#[allow(non_snake_case)]
let [hModule, lpProcName] = this.check_shim(abi, sys_conv, link_name, args)?;
this.read_target_isize(hModule)?;
let name = this.read_c_str(this.read_pointer(lpProcName)?)?;
if let Ok(name) = str::from_utf8(name)
&& is_dyn_sym(name)
{
let ptr = this.fn_ptr(FnVal::Other(DynSym::from_str(name)));
this.write_pointer(ptr, dest)?;
} else {
this.write_null(dest)?;
}
}
// Threading
"CreateThread" => {
let [security, stacksize, start, arg, flags, thread] =
this.check_shim(abi, sys_conv, link_name, args)?;
let thread_id =
this.CreateThread(security, stacksize, start, arg, flags, thread)?;
this.write_scalar(Handle::Thread(thread_id).to_scalar(this), dest)?;
}
"WaitForSingleObject" => {
let [handle, timeout] = this.check_shim(abi, sys_conv, link_name, args)?;
let ret = this.WaitForSingleObject(handle, timeout)?;
this.write_scalar(ret, dest)?;
}
"GetCurrentThread" => {
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
this.write_scalar(
Handle::Pseudo(PseudoHandle::CurrentThread).to_scalar(this),
dest,
)?;
}
"SetThreadDescription" => {
let [handle, name] = this.check_shim(abi, sys_conv, link_name, args)?;
let handle = this.read_scalar(handle)?;
let name = this.read_wide_str(this.read_pointer(name)?)?;
let thread = match Handle::try_from_scalar(handle, this)? {
Ok(Handle::Thread(thread)) => Ok(thread),
Ok(Handle::Pseudo(PseudoHandle::CurrentThread)) => Ok(this.active_thread()),
Ok(_) | Err(HandleError::InvalidHandle) =>
this.invalid_handle("SetThreadDescription")?,
Err(HandleError::ThreadNotFound(e)) => Err(e),
};
let res = match thread {
Ok(thread) => {
// FIXME: use non-lossy conversion
this.set_thread_name(thread, String::from_utf16_lossy(&name).into_bytes());
Scalar::from_u32(0)
}
Err(_) => Scalar::from_u32(STATUS_INVALID_HANDLE),
};
this.write_scalar(res, dest)?;
}
"GetThreadDescription" => {
let [handle, name_ptr] = this.check_shim(abi, sys_conv, link_name, args)?;
let handle = this.read_scalar(handle)?;
let name_ptr = this.deref_pointer(name_ptr)?; // the pointer where we should store the ptr to the name
let thread = match Handle::try_from_scalar(handle, this)? {
Ok(Handle::Thread(thread)) => Ok(thread),
Ok(Handle::Pseudo(PseudoHandle::CurrentThread)) => Ok(this.active_thread()),
Ok(_) | Err(HandleError::InvalidHandle) =>
this.invalid_handle("GetThreadDescription")?,
Err(HandleError::ThreadNotFound(e)) => Err(e),
};
let (name, res) = match thread {
Ok(thread) => {
// Looks like the default thread name is empty.
let name = this.get_thread_name(thread).unwrap_or(b"").to_owned();
let name = this.alloc_os_str_as_wide_str(
bytes_to_os_str(&name)?,
MiriMemoryKind::WinLocal.into(),
)?;
(Scalar::from_maybe_pointer(name, this), Scalar::from_u32(0))
}
Err(_) => (Scalar::null_ptr(this), Scalar::from_u32(STATUS_INVALID_HANDLE)),
};
this.write_scalar(name, &name_ptr)?;
this.write_scalar(res, dest)?;
}
// Miscellaneous
"ExitProcess" => {
let [code] = this.check_shim(abi, sys_conv, link_name, args)?;
let code = this.read_scalar(code)?.to_u32()?;
throw_machine_stop!(TerminationInfo::Exit { code: code.into(), leak_check: false });
}
"SystemFunction036" => {
// used by getrandom 0.1
// This is really 'RtlGenRandom'.
let [ptr, len] = this.check_shim(abi, sys_conv, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let len = this.read_scalar(len)?.to_u32()?;
this.gen_random(ptr, len.into())?;
this.write_scalar(Scalar::from_bool(true), dest)?;
}
"ProcessPrng" => {
// used by `std`
let [ptr, len] = this.check_shim(abi, sys_conv, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let len = this.read_target_usize(len)?;
this.gen_random(ptr, len)?;
this.write_int(1, dest)?;
}
"BCryptGenRandom" => {
// used by getrandom 0.2
let [algorithm, ptr, len, flags] =
this.check_shim(abi, sys_conv, link_name, args)?;
let algorithm = this.read_scalar(algorithm)?;
let algorithm = algorithm.to_target_usize(this)?;
let ptr = this.read_pointer(ptr)?;
let len = this.read_scalar(len)?.to_u32()?;
let flags = this.read_scalar(flags)?.to_u32()?;
match flags {
0 => {
if algorithm != 0x81 {
// BCRYPT_RNG_ALG_HANDLE
throw_unsup_format!(
"BCryptGenRandom algorithm must be BCRYPT_RNG_ALG_HANDLE when the flag is 0"
);
}
}
2 => {
// BCRYPT_USE_SYSTEM_PREFERRED_RNG
if algorithm != 0 {
throw_unsup_format!(
"BCryptGenRandom algorithm must be NULL when the flag is BCRYPT_USE_SYSTEM_PREFERRED_RNG"
);
}
}
_ => {
throw_unsup_format!(
"BCryptGenRandom is only supported with BCRYPT_USE_SYSTEM_PREFERRED_RNG or BCRYPT_RNG_ALG_HANDLE"
);
}
}
this.gen_random(ptr, len.into())?;
this.write_null(dest)?; // STATUS_SUCCESS
}
"GetConsoleScreenBufferInfo" => {
// `term` needs this, so we fake it.
let [console, buffer_info] = this.check_shim(abi, sys_conv, link_name, args)?;
this.read_target_isize(console)?;
// FIXME: this should use deref_pointer_as, but CONSOLE_SCREEN_BUFFER_INFO is not in std
this.deref_pointer(buffer_info)?;
// Indicate an error.
// FIXME: we should set last_error, but to what?
this.write_null(dest)?;
}
"GetStdHandle" => {
let [which] = this.check_shim(abi, sys_conv, link_name, args)?;
let which = this.read_scalar(which)?.to_i32()?;
// We just make this the identity function, so we know later in `NtWriteFile` which
// one it is. This is very fake, but libtest needs it so we cannot make it a
// std-only shim.
// FIXME: this should return real HANDLEs when io support is added
this.write_scalar(Scalar::from_target_isize(which.into(), this), dest)?;
}
"CloseHandle" => {
let [handle] = this.check_shim(abi, sys_conv, link_name, args)?;
let ret = this.CloseHandle(handle)?;
this.write_scalar(ret, dest)?;
}
"GetModuleFileNameW" => {
let [handle, filename, size] = this.check_shim(abi, sys_conv, link_name, args)?;
this.check_no_isolation("`GetModuleFileNameW`")?;
let handle = this.read_target_usize(handle)?;
let filename = this.read_pointer(filename)?;
let size = this.read_scalar(size)?.to_u32()?;
if handle != 0 {
throw_unsup_format!("`GetModuleFileNameW` only supports the NULL handle");
}
// Using the host current_exe is a bit off, but consistent with Linux
// (where stdlib reads /proc/self/exe).
let path = std::env::current_exe().unwrap();
let (all_written, size_needed) =
this.write_path_to_wide_str_truncated(&path, filename, size.into())?;
if all_written {
// If the function succeeds, the return value is the length of the string that
// is copied to the buffer, in characters, not including the terminating null
// character.
this.write_int(size_needed.strict_sub(1), dest)?;
} else {
// If the buffer is too small to hold the module name, the string is truncated
// to nSize characters including the terminating null character, the function
// returns nSize, and the function sets the last error to
// ERROR_INSUFFICIENT_BUFFER.
this.write_int(size, dest)?;
let insufficient_buffer = this.eval_windows("c", "ERROR_INSUFFICIENT_BUFFER");
this.set_last_error(insufficient_buffer)?;
}
}
"FormatMessageW" => {
let [flags, module, message_id, language_id, buffer, size, arguments] =
this.check_shim(abi, sys_conv, link_name, args)?;
let flags = this.read_scalar(flags)?.to_u32()?;
let _module = this.read_pointer(module)?; // seems to contain a module name
let message_id = this.read_scalar(message_id)?;
let _language_id = this.read_scalar(language_id)?.to_u32()?;
let buffer = this.read_pointer(buffer)?;
let size = this.read_scalar(size)?.to_u32()?;
let _arguments = this.read_pointer(arguments)?;
// We only support `FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS`
// This also means `arguments` can be ignored.
if flags != 4096u32 | 512u32 {
throw_unsup_format!("FormatMessageW: unsupported flags {flags:#x}");
}
let error = this.try_errnum_to_io_error(message_id)?;
let formatted = match error {
Some(err) => format!("{err}"),
None => format!("<unknown error in FormatMessageW: {message_id}>"),
};
let (complete, length) =
this.write_os_str_to_wide_str(OsStr::new(&formatted), buffer, size.into())?;
if !complete {
// The API docs don't say what happens when the buffer is not big enough...
// Let's just bail.
throw_unsup_format!("FormatMessageW: buffer not big enough");
}
// The return value is the number of characters stored *excluding* the null terminator.
this.write_int(length.strict_sub(1), dest)?;
}
// Incomplete shims that we "stub out" just to get pre-main initialization code to work.
// These shims are enabled only when the caller is in the standard library.
"GetProcessHeap" if this.frame_in_std() => {
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
// Just fake a HANDLE
// It's fine to not use the Handle type here because its a stub
this.write_int(1, dest)?;
}
"GetModuleHandleA" if this.frame_in_std() => {
#[allow(non_snake_case)]
let [_lpModuleName] = this.check_shim(abi, sys_conv, link_name, args)?;
// We need to return something non-null here to make `compat_fn!` work.
this.write_int(1, dest)?;
}
"SetConsoleTextAttribute" if this.frame_in_std() => {
#[allow(non_snake_case)]
let [_hConsoleOutput, _wAttribute] =
this.check_shim(abi, sys_conv, link_name, args)?;
// Pretend these does not exist / nothing happened, by returning zero.
this.write_null(dest)?;
}
"GetConsoleMode" if this.frame_in_std() => {
let [console, mode] = this.check_shim(abi, sys_conv, link_name, args)?;
this.read_target_isize(console)?;
this.deref_pointer(mode)?;
// Indicate an error.
this.write_null(dest)?;
}
"GetFileType" if this.frame_in_std() => {
#[allow(non_snake_case)]
let [_hFile] = this.check_shim(abi, sys_conv, link_name, args)?;
// Return unknown file type.
this.write_null(dest)?;
}
"AddVectoredExceptionHandler" if this.frame_in_std() => {
#[allow(non_snake_case)]
let [_First, _Handler] = this.check_shim(abi, sys_conv, link_name, args)?;
// Any non zero value works for the stdlib. This is just used for stack overflows anyway.
this.write_int(1, dest)?;
}
"SetThreadStackGuarantee" if this.frame_in_std() => {
#[allow(non_snake_case)]
let [_StackSizeInBytes] = this.check_shim(abi, sys_conv, link_name, args)?;
// Any non zero value works for the stdlib. This is just used for stack overflows anyway.
this.write_int(1, dest)?;
}
// this is only callable from std because we know that std ignores the return value
"SwitchToThread" if this.frame_in_std() => {
let [] = this.check_shim(abi, sys_conv, link_name, args)?;
this.yield_active_thread();
// FIXME: this should return a nonzero value if this call does result in switching to another thread.
this.write_null(dest)?;
}
"_Unwind_RaiseException" => {
// This is not formally part of POSIX, but it is very wide-spread on POSIX systems.
// It was originally specified as part of the Itanium C++ ABI:
// https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html#base-throw.
// MinGW implements _Unwind_RaiseException on top of SEH exceptions.
if this.tcx.sess.target.env != "gnu" {
throw_unsup_format!(
"`_Unwind_RaiseException` is not supported on non-MinGW Windows",
);
}
// This function looks and behaves excatly like miri_start_unwind.
let [payload] = this.check_shim(abi, Conv::C, link_name, args)?;
this.handle_miri_start_unwind(payload)?;
return interp_ok(EmulateItemResult::NeedsUnwind);
}
_ => return interp_ok(EmulateItemResult::NotSupported),
}
interp_ok(EmulateItemResult::NeedsReturn)
}
}