rustc_resolve/
late.rs

1// ignore-tidy-filelength
2//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
3//! It runs when the crate is fully expanded and its module structure is fully built.
4//! So it just walks through the crate and resolves all the expressions, types, etc.
5//!
6//! If you wonder why there's no `early.rs`, that's because it's split into three files -
7//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
8
9use std::assert_matches::debug_assert_matches;
10use std::borrow::Cow;
11use std::collections::BTreeSet;
12use std::collections::hash_map::Entry;
13use std::mem::{replace, swap, take};
14
15use rustc_ast::ptr::P;
16use rustc_ast::visit::{
17    AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor, try_visit, visit_opt, walk_list,
18};
19use rustc_ast::*;
20use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
21use rustc_data_structures::unord::{UnordMap, UnordSet};
22use rustc_errors::codes::*;
23use rustc_errors::{
24    Applicability, DiagArgValue, ErrorGuaranteed, IntoDiagArg, StashKey, Suggestions,
25};
26use rustc_hir::def::Namespace::{self, *};
27use rustc_hir::def::{self, CtorKind, DefKind, LifetimeRes, NonMacroAttrKind, PartialRes, PerNS};
28use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LOCAL_CRATE, LocalDefId};
29use rustc_hir::{MissingLifetimeKind, PrimTy, TraitCandidate};
30use rustc_middle::middle::resolve_bound_vars::Set1;
31use rustc_middle::ty::DelegationFnSig;
32use rustc_middle::{bug, span_bug};
33use rustc_session::config::{CrateType, ResolveDocLinks};
34use rustc_session::lint::{self, BuiltinLintDiag};
35use rustc_session::parse::feature_err;
36use rustc_span::source_map::{Spanned, respan};
37use rustc_span::{BytePos, Ident, Span, Symbol, SyntaxContext, kw, sym};
38use smallvec::{SmallVec, smallvec};
39use thin_vec::ThinVec;
40use tracing::{debug, instrument, trace};
41
42use crate::{
43    BindingError, BindingKey, Finalize, LexicalScopeBinding, Module, ModuleOrUniformRoot,
44    NameBinding, ParentScope, PathResult, ResolutionError, Resolver, Segment, TyCtxt, UseError,
45    Used, errors, path_names_to_string, rustdoc,
46};
47
48mod diagnostics;
49
50type Res = def::Res<NodeId>;
51
52use diagnostics::{ElisionFnParameter, LifetimeElisionCandidate, MissingLifetime};
53
54#[derive(Copy, Clone, Debug)]
55struct BindingInfo {
56    span: Span,
57    annotation: BindingMode,
58}
59
60#[derive(Copy, Clone, PartialEq, Eq, Debug)]
61pub(crate) enum PatternSource {
62    Match,
63    Let,
64    For,
65    FnParam,
66}
67
68#[derive(Copy, Clone, Debug, PartialEq, Eq)]
69enum IsRepeatExpr {
70    No,
71    Yes,
72}
73
74struct IsNeverPattern;
75
76/// Describes whether an `AnonConst` is a type level const arg or
77/// some other form of anon const (i.e. inline consts or enum discriminants)
78#[derive(Copy, Clone, Debug, PartialEq, Eq)]
79enum AnonConstKind {
80    EnumDiscriminant,
81    FieldDefaultValue,
82    InlineConst,
83    ConstArg(IsRepeatExpr),
84}
85
86impl PatternSource {
87    fn descr(self) -> &'static str {
88        match self {
89            PatternSource::Match => "match binding",
90            PatternSource::Let => "let binding",
91            PatternSource::For => "for binding",
92            PatternSource::FnParam => "function parameter",
93        }
94    }
95}
96
97impl IntoDiagArg for PatternSource {
98    fn into_diag_arg(self, _: &mut Option<std::path::PathBuf>) -> DiagArgValue {
99        DiagArgValue::Str(Cow::Borrowed(self.descr()))
100    }
101}
102
103/// Denotes whether the context for the set of already bound bindings is a `Product`
104/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
105/// See those functions for more information.
106#[derive(PartialEq)]
107enum PatBoundCtx {
108    /// A product pattern context, e.g., `Variant(a, b)`.
109    Product,
110    /// An or-pattern context, e.g., `p_0 | ... | p_n`.
111    Or,
112}
113
114/// Does this the item (from the item rib scope) allow generic parameters?
115#[derive(Copy, Clone, Debug)]
116pub(crate) enum HasGenericParams {
117    Yes(Span),
118    No,
119}
120
121/// May this constant have generics?
122#[derive(Copy, Clone, Debug, Eq, PartialEq)]
123pub(crate) enum ConstantHasGenerics {
124    Yes,
125    No(NoConstantGenericsReason),
126}
127
128impl ConstantHasGenerics {
129    fn force_yes_if(self, b: bool) -> Self {
130        if b { Self::Yes } else { self }
131    }
132}
133
134/// Reason for why an anon const is not allowed to reference generic parameters
135#[derive(Copy, Clone, Debug, Eq, PartialEq)]
136pub(crate) enum NoConstantGenericsReason {
137    /// Const arguments are only allowed to use generic parameters when:
138    /// - `feature(generic_const_exprs)` is enabled
139    /// or
140    /// - the const argument is a sole const generic parameter, i.e. `foo::<{ N }>()`
141    ///
142    /// If neither of the above are true then this is used as the cause.
143    NonTrivialConstArg,
144    /// Enum discriminants are not allowed to reference generic parameters ever, this
145    /// is used when an anon const is in the following position:
146    ///
147    /// ```rust,compile_fail
148    /// enum Foo<const N: isize> {
149    ///     Variant = { N }, // this anon const is not allowed to use generics
150    /// }
151    /// ```
152    IsEnumDiscriminant,
153}
154
155#[derive(Copy, Clone, Debug, Eq, PartialEq)]
156pub(crate) enum ConstantItemKind {
157    Const,
158    Static,
159}
160
161impl ConstantItemKind {
162    pub(crate) fn as_str(&self) -> &'static str {
163        match self {
164            Self::Const => "const",
165            Self::Static => "static",
166        }
167    }
168}
169
170#[derive(Debug, Copy, Clone, PartialEq, Eq)]
171enum RecordPartialRes {
172    Yes,
173    No,
174}
175
176/// The rib kind restricts certain accesses,
177/// e.g. to a `Res::Local` of an outer item.
178#[derive(Copy, Clone, Debug)]
179pub(crate) enum RibKind<'ra> {
180    /// No restriction needs to be applied.
181    Normal,
182
183    /// We passed through an impl or trait and are now in one of its
184    /// methods or associated types. Allow references to ty params that impl or trait
185    /// binds. Disallow any other upvars (including other ty params that are
186    /// upvars).
187    AssocItem,
188
189    /// We passed through a function, closure or coroutine signature. Disallow labels.
190    FnOrCoroutine,
191
192    /// We passed through an item scope. Disallow upvars.
193    Item(HasGenericParams, DefKind),
194
195    /// We're in a constant item. Can't refer to dynamic stuff.
196    ///
197    /// The item may reference generic parameters in trivial constant expressions.
198    /// All other constants aren't allowed to use generic params at all.
199    ConstantItem(ConstantHasGenerics, Option<(Ident, ConstantItemKind)>),
200
201    /// We passed through a module.
202    Module(Module<'ra>),
203
204    /// We passed through a `macro_rules!` statement
205    MacroDefinition(DefId),
206
207    /// All bindings in this rib are generic parameters that can't be used
208    /// from the default of a generic parameter because they're not declared
209    /// before said generic parameter. Also see the `visit_generics` override.
210    ForwardGenericParamBan(ForwardGenericParamBanReason),
211
212    /// We are inside of the type of a const parameter. Can't refer to any
213    /// parameters.
214    ConstParamTy,
215
216    /// We are inside a `sym` inline assembly operand. Can only refer to
217    /// globals.
218    InlineAsmSym,
219}
220
221#[derive(Copy, Clone, PartialEq, Eq, Debug)]
222pub(crate) enum ForwardGenericParamBanReason {
223    Default,
224    ConstParamTy,
225}
226
227impl RibKind<'_> {
228    /// Whether this rib kind contains generic parameters, as opposed to local
229    /// variables.
230    pub(crate) fn contains_params(&self) -> bool {
231        match self {
232            RibKind::Normal
233            | RibKind::FnOrCoroutine
234            | RibKind::ConstantItem(..)
235            | RibKind::Module(_)
236            | RibKind::MacroDefinition(_)
237            | RibKind::InlineAsmSym => false,
238            RibKind::ConstParamTy
239            | RibKind::AssocItem
240            | RibKind::Item(..)
241            | RibKind::ForwardGenericParamBan(_) => true,
242        }
243    }
244
245    /// This rib forbids referring to labels defined in upwards ribs.
246    fn is_label_barrier(self) -> bool {
247        match self {
248            RibKind::Normal | RibKind::MacroDefinition(..) => false,
249
250            RibKind::AssocItem
251            | RibKind::FnOrCoroutine
252            | RibKind::Item(..)
253            | RibKind::ConstantItem(..)
254            | RibKind::Module(..)
255            | RibKind::ForwardGenericParamBan(_)
256            | RibKind::ConstParamTy
257            | RibKind::InlineAsmSym => true,
258        }
259    }
260}
261
262/// A single local scope.
263///
264/// A rib represents a scope names can live in. Note that these appear in many places, not just
265/// around braces. At any place where the list of accessible names (of the given namespace)
266/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
267/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
268/// etc.
269///
270/// Different [rib kinds](enum@RibKind) are transparent for different names.
271///
272/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
273/// resolving, the name is looked up from inside out.
274#[derive(Debug)]
275pub(crate) struct Rib<'ra, R = Res> {
276    pub bindings: FxIndexMap<Ident, R>,
277    pub patterns_with_skipped_bindings: UnordMap<DefId, Vec<(Span, Result<(), ErrorGuaranteed>)>>,
278    pub kind: RibKind<'ra>,
279}
280
281impl<'ra, R> Rib<'ra, R> {
282    fn new(kind: RibKind<'ra>) -> Rib<'ra, R> {
283        Rib {
284            bindings: Default::default(),
285            patterns_with_skipped_bindings: Default::default(),
286            kind,
287        }
288    }
289}
290
291#[derive(Clone, Copy, Debug)]
292enum LifetimeUseSet {
293    One { use_span: Span, use_ctxt: visit::LifetimeCtxt },
294    Many,
295}
296
297#[derive(Copy, Clone, Debug)]
298enum LifetimeRibKind {
299    // -- Ribs introducing named lifetimes
300    //
301    /// This rib declares generic parameters.
302    /// Only for this kind the `LifetimeRib::bindings` field can be non-empty.
303    Generics { binder: NodeId, span: Span, kind: LifetimeBinderKind },
304
305    // -- Ribs introducing unnamed lifetimes
306    //
307    /// Create a new anonymous lifetime parameter and reference it.
308    ///
309    /// If `report_in_path`, report an error when encountering lifetime elision in a path:
310    /// ```compile_fail
311    /// struct Foo<'a> { x: &'a () }
312    /// async fn foo(x: Foo) {}
313    /// ```
314    ///
315    /// Note: the error should not trigger when the elided lifetime is in a pattern or
316    /// expression-position path:
317    /// ```
318    /// struct Foo<'a> { x: &'a () }
319    /// async fn foo(Foo { x: _ }: Foo<'_>) {}
320    /// ```
321    AnonymousCreateParameter { binder: NodeId, report_in_path: bool },
322
323    /// Replace all anonymous lifetimes by provided lifetime.
324    Elided(LifetimeRes),
325
326    // -- Barrier ribs that stop lifetime lookup, or continue it but produce an error later.
327    //
328    /// Give a hard error when either `&` or `'_` is written. Used to
329    /// rule out things like `where T: Foo<'_>`. Does not imply an
330    /// error on default object bounds (e.g., `Box<dyn Foo>`).
331    AnonymousReportError,
332
333    /// Resolves elided lifetimes to `'static` if there are no other lifetimes in scope,
334    /// otherwise give a warning that the previous behavior of introducing a new early-bound
335    /// lifetime is a bug and will be removed (if `emit_lint` is enabled).
336    StaticIfNoLifetimeInScope { lint_id: NodeId, emit_lint: bool },
337
338    /// Signal we cannot find which should be the anonymous lifetime.
339    ElisionFailure,
340
341    /// This rib forbids usage of generic parameters inside of const parameter types.
342    ///
343    /// While this is desirable to support eventually, it is difficult to do and so is
344    /// currently forbidden. See rust-lang/project-const-generics#28 for more info.
345    ConstParamTy,
346
347    /// Usage of generic parameters is forbidden in various positions for anon consts:
348    /// - const arguments when `generic_const_exprs` is not enabled
349    /// - enum discriminant values
350    ///
351    /// This rib emits an error when a lifetime would resolve to a lifetime parameter.
352    ConcreteAnonConst(NoConstantGenericsReason),
353
354    /// This rib acts as a barrier to forbid reference to lifetimes of a parent item.
355    Item,
356}
357
358#[derive(Copy, Clone, Debug)]
359enum LifetimeBinderKind {
360    BareFnType,
361    PolyTrait,
362    WhereBound,
363    Item,
364    ConstItem,
365    Function,
366    Closure,
367    ImplBlock,
368}
369
370impl LifetimeBinderKind {
371    fn descr(self) -> &'static str {
372        use LifetimeBinderKind::*;
373        match self {
374            BareFnType => "type",
375            PolyTrait => "bound",
376            WhereBound => "bound",
377            Item | ConstItem => "item",
378            ImplBlock => "impl block",
379            Function => "function",
380            Closure => "closure",
381        }
382    }
383}
384
385#[derive(Debug)]
386struct LifetimeRib {
387    kind: LifetimeRibKind,
388    // We need to preserve insertion order for async fns.
389    bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>,
390}
391
392impl LifetimeRib {
393    fn new(kind: LifetimeRibKind) -> LifetimeRib {
394        LifetimeRib { bindings: Default::default(), kind }
395    }
396}
397
398#[derive(Copy, Clone, PartialEq, Eq, Debug)]
399pub(crate) enum AliasPossibility {
400    No,
401    Maybe,
402}
403
404#[derive(Copy, Clone, Debug)]
405pub(crate) enum PathSource<'a> {
406    /// Type paths `Path`.
407    Type,
408    /// Trait paths in bounds or impls.
409    Trait(AliasPossibility),
410    /// Expression paths `path`, with optional parent context.
411    Expr(Option<&'a Expr>),
412    /// Paths in path patterns `Path`.
413    Pat,
414    /// Paths in struct expressions and patterns `Path { .. }`.
415    Struct,
416    /// Paths in tuple struct patterns `Path(..)`.
417    TupleStruct(Span, &'a [Span]),
418    /// `m::A::B` in `<T as m::A>::B::C`.
419    TraitItem(Namespace),
420    /// Paths in delegation item
421    Delegation,
422    /// An arg in a `use<'a, N>` precise-capturing bound.
423    PreciseCapturingArg(Namespace),
424    /// Paths that end with `(..)`, for return type notation.
425    ReturnTypeNotation,
426    /// Paths from `#[define_opaque]` attributes
427    DefineOpaques,
428}
429
430impl<'a> PathSource<'a> {
431    fn namespace(self) -> Namespace {
432        match self {
433            PathSource::Type
434            | PathSource::Trait(_)
435            | PathSource::Struct
436            | PathSource::DefineOpaques => TypeNS,
437            PathSource::Expr(..)
438            | PathSource::Pat
439            | PathSource::TupleStruct(..)
440            | PathSource::Delegation
441            | PathSource::ReturnTypeNotation => ValueNS,
442            PathSource::TraitItem(ns) => ns,
443            PathSource::PreciseCapturingArg(ns) => ns,
444        }
445    }
446
447    fn defer_to_typeck(self) -> bool {
448        match self {
449            PathSource::Type
450            | PathSource::Expr(..)
451            | PathSource::Pat
452            | PathSource::Struct
453            | PathSource::TupleStruct(..)
454            | PathSource::ReturnTypeNotation => true,
455            PathSource::Trait(_)
456            | PathSource::TraitItem(..)
457            | PathSource::DefineOpaques
458            | PathSource::Delegation
459            | PathSource::PreciseCapturingArg(..) => false,
460        }
461    }
462
463    fn descr_expected(self) -> &'static str {
464        match &self {
465            PathSource::DefineOpaques => "type alias or associated type with opaqaue types",
466            PathSource::Type => "type",
467            PathSource::Trait(_) => "trait",
468            PathSource::Pat => "unit struct, unit variant or constant",
469            PathSource::Struct => "struct, variant or union type",
470            PathSource::TupleStruct(..) => "tuple struct or tuple variant",
471            PathSource::TraitItem(ns) => match ns {
472                TypeNS => "associated type",
473                ValueNS => "method or associated constant",
474                MacroNS => bug!("associated macro"),
475            },
476            PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
477                // "function" here means "anything callable" rather than `DefKind::Fn`,
478                // this is not precise but usually more helpful than just "value".
479                Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
480                    // the case of `::some_crate()`
481                    ExprKind::Path(_, path)
482                        if let [segment, _] = path.segments.as_slice()
483                            && segment.ident.name == kw::PathRoot =>
484                    {
485                        "external crate"
486                    }
487                    ExprKind::Path(_, path)
488                        if let Some(segment) = path.segments.last()
489                            && let Some(c) = segment.ident.to_string().chars().next()
490                            && c.is_uppercase() =>
491                    {
492                        "function, tuple struct or tuple variant"
493                    }
494                    _ => "function",
495                },
496                _ => "value",
497            },
498            PathSource::ReturnTypeNotation | PathSource::Delegation => "function",
499            PathSource::PreciseCapturingArg(..) => "type or const parameter",
500        }
501    }
502
503    fn is_call(self) -> bool {
504        matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
505    }
506
507    pub(crate) fn is_expected(self, res: Res) -> bool {
508        match self {
509            PathSource::DefineOpaques => {
510                matches!(
511                    res,
512                    Res::Def(
513                        DefKind::Struct
514                            | DefKind::Union
515                            | DefKind::Enum
516                            | DefKind::TyAlias
517                            | DefKind::AssocTy,
518                        _
519                    ) | Res::SelfTyAlias { .. }
520                )
521            }
522            PathSource::Type => matches!(
523                res,
524                Res::Def(
525                    DefKind::Struct
526                        | DefKind::Union
527                        | DefKind::Enum
528                        | DefKind::Trait
529                        | DefKind::TraitAlias
530                        | DefKind::TyAlias
531                        | DefKind::AssocTy
532                        | DefKind::TyParam
533                        | DefKind::OpaqueTy
534                        | DefKind::ForeignTy,
535                    _,
536                ) | Res::PrimTy(..)
537                    | Res::SelfTyParam { .. }
538                    | Res::SelfTyAlias { .. }
539            ),
540            PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
541            PathSource::Trait(AliasPossibility::Maybe) => {
542                matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
543            }
544            PathSource::Expr(..) => matches!(
545                res,
546                Res::Def(
547                    DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
548                        | DefKind::Const
549                        | DefKind::Static { .. }
550                        | DefKind::Fn
551                        | DefKind::AssocFn
552                        | DefKind::AssocConst
553                        | DefKind::ConstParam,
554                    _,
555                ) | Res::Local(..)
556                    | Res::SelfCtor(..)
557            ),
558            PathSource::Pat => {
559                res.expected_in_unit_struct_pat()
560                    || matches!(res, Res::Def(DefKind::Const | DefKind::AssocConst, _))
561            }
562            PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
563            PathSource::Struct => matches!(
564                res,
565                Res::Def(
566                    DefKind::Struct
567                        | DefKind::Union
568                        | DefKind::Variant
569                        | DefKind::TyAlias
570                        | DefKind::AssocTy,
571                    _,
572                ) | Res::SelfTyParam { .. }
573                    | Res::SelfTyAlias { .. }
574            ),
575            PathSource::TraitItem(ns) => match res {
576                Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
577                Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
578                _ => false,
579            },
580            PathSource::ReturnTypeNotation => match res {
581                Res::Def(DefKind::AssocFn, _) => true,
582                _ => false,
583            },
584            PathSource::Delegation => matches!(res, Res::Def(DefKind::Fn | DefKind::AssocFn, _)),
585            PathSource::PreciseCapturingArg(ValueNS) => {
586                matches!(res, Res::Def(DefKind::ConstParam, _))
587            }
588            // We allow `SelfTyAlias` here so we can give a more descriptive error later.
589            PathSource::PreciseCapturingArg(TypeNS) => matches!(
590                res,
591                Res::Def(DefKind::TyParam, _) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. }
592            ),
593            PathSource::PreciseCapturingArg(MacroNS) => false,
594        }
595    }
596
597    fn error_code(self, has_unexpected_resolution: bool) -> ErrCode {
598        match (self, has_unexpected_resolution) {
599            (PathSource::Trait(_), true) => E0404,
600            (PathSource::Trait(_), false) => E0405,
601            (PathSource::Type | PathSource::DefineOpaques, true) => E0573,
602            (PathSource::Type | PathSource::DefineOpaques, false) => E0412,
603            (PathSource::Struct, true) => E0574,
604            (PathSource::Struct, false) => E0422,
605            (PathSource::Expr(..), true) | (PathSource::Delegation, true) => E0423,
606            (PathSource::Expr(..), false) | (PathSource::Delegation, false) => E0425,
607            (PathSource::Pat | PathSource::TupleStruct(..), true) => E0532,
608            (PathSource::Pat | PathSource::TupleStruct(..), false) => E0531,
609            (PathSource::TraitItem(..) | PathSource::ReturnTypeNotation, true) => E0575,
610            (PathSource::TraitItem(..) | PathSource::ReturnTypeNotation, false) => E0576,
611            (PathSource::PreciseCapturingArg(..), true) => E0799,
612            (PathSource::PreciseCapturingArg(..), false) => E0800,
613        }
614    }
615}
616
617/// At this point for most items we can answer whether that item is exported or not,
618/// but some items like impls require type information to determine exported-ness, so we make a
619/// conservative estimate for them (e.g. based on nominal visibility).
620#[derive(Clone, Copy)]
621enum MaybeExported<'a> {
622    Ok(NodeId),
623    Impl(Option<DefId>),
624    ImplItem(Result<DefId, &'a Visibility>),
625    NestedUse(&'a Visibility),
626}
627
628impl MaybeExported<'_> {
629    fn eval(self, r: &Resolver<'_, '_>) -> bool {
630        let def_id = match self {
631            MaybeExported::Ok(node_id) => Some(r.local_def_id(node_id)),
632            MaybeExported::Impl(Some(trait_def_id)) | MaybeExported::ImplItem(Ok(trait_def_id)) => {
633                trait_def_id.as_local()
634            }
635            MaybeExported::Impl(None) => return true,
636            MaybeExported::ImplItem(Err(vis)) | MaybeExported::NestedUse(vis) => {
637                return vis.kind.is_pub();
638            }
639        };
640        def_id.is_none_or(|def_id| r.effective_visibilities.is_exported(def_id))
641    }
642}
643
644/// Used for recording UnnecessaryQualification.
645#[derive(Debug)]
646pub(crate) struct UnnecessaryQualification<'ra> {
647    pub binding: LexicalScopeBinding<'ra>,
648    pub node_id: NodeId,
649    pub path_span: Span,
650    pub removal_span: Span,
651}
652
653#[derive(Default, Debug)]
654struct DiagMetadata<'ast> {
655    /// The current trait's associated items' ident, used for diagnostic suggestions.
656    current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
657
658    /// The current self type if inside an impl (used for better errors).
659    current_self_type: Option<Ty>,
660
661    /// The current self item if inside an ADT (used for better errors).
662    current_self_item: Option<NodeId>,
663
664    /// The current trait (used to suggest).
665    current_item: Option<&'ast Item>,
666
667    /// When processing generic arguments and encountering an unresolved ident not found,
668    /// suggest introducing a type or const param depending on the context.
669    currently_processing_generic_args: bool,
670
671    /// The current enclosing (non-closure) function (used for better errors).
672    current_function: Option<(FnKind<'ast>, Span)>,
673
674    /// A list of labels as of yet unused. Labels will be removed from this map when
675    /// they are used (in a `break` or `continue` statement)
676    unused_labels: FxIndexMap<NodeId, Span>,
677
678    /// Only used for better errors on `let <pat>: <expr, not type>;`.
679    current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
680
681    current_pat: Option<&'ast Pat>,
682
683    /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
684    in_if_condition: Option<&'ast Expr>,
685
686    /// Used to detect possible new binding written without `let` and to provide structured suggestion.
687    in_assignment: Option<&'ast Expr>,
688    is_assign_rhs: bool,
689
690    /// If we are setting an associated type in trait impl, is it a non-GAT type?
691    in_non_gat_assoc_type: Option<bool>,
692
693    /// Used to detect possible `.` -> `..` typo when calling methods.
694    in_range: Option<(&'ast Expr, &'ast Expr)>,
695
696    /// If we are currently in a trait object definition. Used to point at the bounds when
697    /// encountering a struct or enum.
698    current_trait_object: Option<&'ast [ast::GenericBound]>,
699
700    /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
701    current_where_predicate: Option<&'ast WherePredicate>,
702
703    current_type_path: Option<&'ast Ty>,
704
705    /// The current impl items (used to suggest).
706    current_impl_items: Option<&'ast [P<AssocItem>]>,
707
708    /// When processing impl trait
709    currently_processing_impl_trait: Option<(TraitRef, Ty)>,
710
711    /// Accumulate the errors due to missed lifetime elision,
712    /// and report them all at once for each function.
713    current_elision_failures: Vec<MissingLifetime>,
714}
715
716struct LateResolutionVisitor<'a, 'ast, 'ra, 'tcx> {
717    r: &'a mut Resolver<'ra, 'tcx>,
718
719    /// The module that represents the current item scope.
720    parent_scope: ParentScope<'ra>,
721
722    /// The current set of local scopes for types and values.
723    ribs: PerNS<Vec<Rib<'ra>>>,
724
725    /// Previous popped `rib`, only used for diagnostic.
726    last_block_rib: Option<Rib<'ra>>,
727
728    /// The current set of local scopes, for labels.
729    label_ribs: Vec<Rib<'ra, NodeId>>,
730
731    /// The current set of local scopes for lifetimes.
732    lifetime_ribs: Vec<LifetimeRib>,
733
734    /// We are looking for lifetimes in an elision context.
735    /// The set contains all the resolutions that we encountered so far.
736    /// They will be used to determine the correct lifetime for the fn return type.
737    /// The `LifetimeElisionCandidate` is used for diagnostics, to suggest introducing named
738    /// lifetimes.
739    lifetime_elision_candidates: Option<Vec<(LifetimeRes, LifetimeElisionCandidate)>>,
740
741    /// The trait that the current context can refer to.
742    current_trait_ref: Option<(Module<'ra>, TraitRef)>,
743
744    /// Fields used to add information to diagnostic errors.
745    diag_metadata: Box<DiagMetadata<'ast>>,
746
747    /// State used to know whether to ignore resolution errors for function bodies.
748    ///
749    /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
750    /// In most cases this will be `None`, in which case errors will always be reported.
751    /// If it is `true`, then it will be updated when entering a nested function or trait body.
752    in_func_body: bool,
753
754    /// Count the number of places a lifetime is used.
755    lifetime_uses: FxHashMap<LocalDefId, LifetimeUseSet>,
756}
757
758/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
759impl<'ra: 'ast, 'ast, 'tcx> Visitor<'ast> for LateResolutionVisitor<'_, 'ast, 'ra, 'tcx> {
760    fn visit_attribute(&mut self, _: &'ast Attribute) {
761        // We do not want to resolve expressions that appear in attributes,
762        // as they do not correspond to actual code.
763    }
764    fn visit_item(&mut self, item: &'ast Item) {
765        let prev = replace(&mut self.diag_metadata.current_item, Some(item));
766        // Always report errors in items we just entered.
767        let old_ignore = replace(&mut self.in_func_body, false);
768        self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item));
769        self.in_func_body = old_ignore;
770        self.diag_metadata.current_item = prev;
771    }
772    fn visit_arm(&mut self, arm: &'ast Arm) {
773        self.resolve_arm(arm);
774    }
775    fn visit_block(&mut self, block: &'ast Block) {
776        let old_macro_rules = self.parent_scope.macro_rules;
777        self.resolve_block(block);
778        self.parent_scope.macro_rules = old_macro_rules;
779    }
780    fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
781        bug!("encountered anon const without a manual call to `resolve_anon_const`: {constant:#?}");
782    }
783    fn visit_expr(&mut self, expr: &'ast Expr) {
784        self.resolve_expr(expr, None);
785    }
786    fn visit_pat(&mut self, p: &'ast Pat) {
787        let prev = self.diag_metadata.current_pat;
788        self.diag_metadata.current_pat = Some(p);
789        visit::walk_pat(self, p);
790        self.diag_metadata.current_pat = prev;
791    }
792    fn visit_local(&mut self, local: &'ast Local) {
793        let local_spans = match local.pat.kind {
794            // We check for this to avoid tuple struct fields.
795            PatKind::Wild => None,
796            _ => Some((
797                local.pat.span,
798                local.ty.as_ref().map(|ty| ty.span),
799                local.kind.init().map(|init| init.span),
800            )),
801        };
802        let original = replace(&mut self.diag_metadata.current_let_binding, local_spans);
803        self.resolve_local(local);
804        self.diag_metadata.current_let_binding = original;
805    }
806    fn visit_ty(&mut self, ty: &'ast Ty) {
807        let prev = self.diag_metadata.current_trait_object;
808        let prev_ty = self.diag_metadata.current_type_path;
809        match &ty.kind {
810            TyKind::Ref(None, _) | TyKind::PinnedRef(None, _) => {
811                // Elided lifetime in reference: we resolve as if there was some lifetime `'_` with
812                // NodeId `ty.id`.
813                // This span will be used in case of elision failure.
814                let span = self.r.tcx.sess.source_map().start_point(ty.span);
815                self.resolve_elided_lifetime(ty.id, span);
816                visit::walk_ty(self, ty);
817            }
818            TyKind::Path(qself, path) => {
819                self.diag_metadata.current_type_path = Some(ty);
820
821                // If we have a path that ends with `(..)`, then it must be
822                // return type notation. Resolve that path in the *value*
823                // namespace.
824                let source = if let Some(seg) = path.segments.last()
825                    && let Some(args) = &seg.args
826                    && matches!(**args, GenericArgs::ParenthesizedElided(..))
827                {
828                    PathSource::ReturnTypeNotation
829                } else {
830                    PathSource::Type
831                };
832
833                self.smart_resolve_path(ty.id, qself, path, source);
834
835                // Check whether we should interpret this as a bare trait object.
836                if qself.is_none()
837                    && let Some(partial_res) = self.r.partial_res_map.get(&ty.id)
838                    && let Some(Res::Def(DefKind::Trait | DefKind::TraitAlias, _)) =
839                        partial_res.full_res()
840                {
841                    // This path is actually a bare trait object. In case of a bare `Fn`-trait
842                    // object with anonymous lifetimes, we need this rib to correctly place the
843                    // synthetic lifetimes.
844                    let span = ty.span.shrink_to_lo().to(path.span.shrink_to_lo());
845                    self.with_generic_param_rib(
846                        &[],
847                        RibKind::Normal,
848                        LifetimeRibKind::Generics {
849                            binder: ty.id,
850                            kind: LifetimeBinderKind::PolyTrait,
851                            span,
852                        },
853                        |this| this.visit_path(path, ty.id),
854                    );
855                } else {
856                    visit::walk_ty(self, ty)
857                }
858            }
859            TyKind::ImplicitSelf => {
860                let self_ty = Ident::with_dummy_span(kw::SelfUpper);
861                let res = self
862                    .resolve_ident_in_lexical_scope(
863                        self_ty,
864                        TypeNS,
865                        Some(Finalize::new(ty.id, ty.span)),
866                        None,
867                    )
868                    .map_or(Res::Err, |d| d.res());
869                self.r.record_partial_res(ty.id, PartialRes::new(res));
870                visit::walk_ty(self, ty)
871            }
872            TyKind::ImplTrait(..) => {
873                let candidates = self.lifetime_elision_candidates.take();
874                visit::walk_ty(self, ty);
875                self.lifetime_elision_candidates = candidates;
876            }
877            TyKind::TraitObject(bounds, ..) => {
878                self.diag_metadata.current_trait_object = Some(&bounds[..]);
879                visit::walk_ty(self, ty)
880            }
881            TyKind::BareFn(bare_fn) => {
882                let span = ty.span.shrink_to_lo().to(bare_fn.decl_span.shrink_to_lo());
883                self.with_generic_param_rib(
884                    &bare_fn.generic_params,
885                    RibKind::Normal,
886                    LifetimeRibKind::Generics {
887                        binder: ty.id,
888                        kind: LifetimeBinderKind::BareFnType,
889                        span,
890                    },
891                    |this| {
892                        this.visit_generic_params(&bare_fn.generic_params, false);
893                        this.with_lifetime_rib(
894                            LifetimeRibKind::AnonymousCreateParameter {
895                                binder: ty.id,
896                                report_in_path: false,
897                            },
898                            |this| {
899                                this.resolve_fn_signature(
900                                    ty.id,
901                                    false,
902                                    // We don't need to deal with patterns in parameters, because
903                                    // they are not possible for foreign or bodiless functions.
904                                    bare_fn
905                                        .decl
906                                        .inputs
907                                        .iter()
908                                        .map(|Param { ty, .. }| (None, &**ty)),
909                                    &bare_fn.decl.output,
910                                )
911                            },
912                        );
913                    },
914                )
915            }
916            TyKind::UnsafeBinder(unsafe_binder) => {
917                // FIXME(unsafe_binder): Better span
918                let span = ty.span;
919                self.with_generic_param_rib(
920                    &unsafe_binder.generic_params,
921                    RibKind::Normal,
922                    LifetimeRibKind::Generics {
923                        binder: ty.id,
924                        kind: LifetimeBinderKind::BareFnType,
925                        span,
926                    },
927                    |this| {
928                        this.visit_generic_params(&unsafe_binder.generic_params, false);
929                        this.with_lifetime_rib(
930                            // We don't allow anonymous `unsafe &'_ ()` binders,
931                            // although I guess we could.
932                            LifetimeRibKind::AnonymousReportError,
933                            |this| this.visit_ty(&unsafe_binder.inner_ty),
934                        );
935                    },
936                )
937            }
938            TyKind::Array(element_ty, length) => {
939                self.visit_ty(element_ty);
940                self.resolve_anon_const(length, AnonConstKind::ConstArg(IsRepeatExpr::No));
941            }
942            TyKind::Typeof(ct) => {
943                self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
944            }
945            _ => visit::walk_ty(self, ty),
946        }
947        self.diag_metadata.current_trait_object = prev;
948        self.diag_metadata.current_type_path = prev_ty;
949    }
950
951    fn visit_ty_pat(&mut self, t: &'ast TyPat) -> Self::Result {
952        match &t.kind {
953            TyPatKind::Range(start, end, _) => {
954                if let Some(start) = start {
955                    self.resolve_anon_const(start, AnonConstKind::ConstArg(IsRepeatExpr::No));
956                }
957                if let Some(end) = end {
958                    self.resolve_anon_const(end, AnonConstKind::ConstArg(IsRepeatExpr::No));
959                }
960            }
961            TyPatKind::Err(_) => {}
962        }
963    }
964
965    fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef) {
966        let span = tref.span.shrink_to_lo().to(tref.trait_ref.path.span.shrink_to_lo());
967        self.with_generic_param_rib(
968            &tref.bound_generic_params,
969            RibKind::Normal,
970            LifetimeRibKind::Generics {
971                binder: tref.trait_ref.ref_id,
972                kind: LifetimeBinderKind::PolyTrait,
973                span,
974            },
975            |this| {
976                this.visit_generic_params(&tref.bound_generic_params, false);
977                this.smart_resolve_path(
978                    tref.trait_ref.ref_id,
979                    &None,
980                    &tref.trait_ref.path,
981                    PathSource::Trait(AliasPossibility::Maybe),
982                );
983                this.visit_trait_ref(&tref.trait_ref);
984            },
985        );
986    }
987    fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
988        self.resolve_doc_links(&foreign_item.attrs, MaybeExported::Ok(foreign_item.id));
989        let def_kind = self.r.local_def_kind(foreign_item.id);
990        match foreign_item.kind {
991            ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
992                self.with_generic_param_rib(
993                    &generics.params,
994                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
995                    LifetimeRibKind::Generics {
996                        binder: foreign_item.id,
997                        kind: LifetimeBinderKind::Item,
998                        span: generics.span,
999                    },
1000                    |this| visit::walk_item(this, foreign_item),
1001                );
1002            }
1003            ForeignItemKind::Fn(box Fn { ref generics, .. }) => {
1004                self.with_generic_param_rib(
1005                    &generics.params,
1006                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
1007                    LifetimeRibKind::Generics {
1008                        binder: foreign_item.id,
1009                        kind: LifetimeBinderKind::Function,
1010                        span: generics.span,
1011                    },
1012                    |this| visit::walk_item(this, foreign_item),
1013                );
1014            }
1015            ForeignItemKind::Static(..) => {
1016                self.with_static_rib(def_kind, |this| visit::walk_item(this, foreign_item))
1017            }
1018            ForeignItemKind::MacCall(..) => {
1019                panic!("unexpanded macro in resolve!")
1020            }
1021        }
1022    }
1023    fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) {
1024        let previous_value = self.diag_metadata.current_function;
1025        match fn_kind {
1026            // Bail if the function is foreign, and thus cannot validly have
1027            // a body, or if there's no body for some other reason.
1028            FnKind::Fn(FnCtxt::Foreign, _, _, Fn { sig, generics, .. })
1029            | FnKind::Fn(_, _, _, Fn { sig, generics, body: None, .. }) => {
1030                self.visit_fn_header(&sig.header);
1031                self.visit_generics(generics);
1032                self.with_lifetime_rib(
1033                    LifetimeRibKind::AnonymousCreateParameter {
1034                        binder: fn_id,
1035                        report_in_path: false,
1036                    },
1037                    |this| {
1038                        this.resolve_fn_signature(
1039                            fn_id,
1040                            sig.decl.has_self(),
1041                            sig.decl.inputs.iter().map(|Param { ty, .. }| (None, &**ty)),
1042                            &sig.decl.output,
1043                        );
1044                    },
1045                );
1046                return;
1047            }
1048            FnKind::Fn(..) => {
1049                self.diag_metadata.current_function = Some((fn_kind, sp));
1050            }
1051            // Do not update `current_function` for closures: it suggests `self` parameters.
1052            FnKind::Closure(..) => {}
1053        };
1054        debug!("(resolving function) entering function");
1055
1056        // Create a value rib for the function.
1057        self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
1058            // Create a label rib for the function.
1059            this.with_label_rib(RibKind::FnOrCoroutine, |this| {
1060                match fn_kind {
1061                    FnKind::Fn(_, _, _, Fn { sig, generics, contract, body, .. }) => {
1062                        this.visit_generics(generics);
1063
1064                        let declaration = &sig.decl;
1065                        let coro_node_id = sig
1066                            .header
1067                            .coroutine_kind
1068                            .map(|coroutine_kind| coroutine_kind.return_id());
1069
1070                        this.with_lifetime_rib(
1071                            LifetimeRibKind::AnonymousCreateParameter {
1072                                binder: fn_id,
1073                                report_in_path: coro_node_id.is_some(),
1074                            },
1075                            |this| {
1076                                this.resolve_fn_signature(
1077                                    fn_id,
1078                                    declaration.has_self(),
1079                                    declaration
1080                                        .inputs
1081                                        .iter()
1082                                        .map(|Param { pat, ty, .. }| (Some(&**pat), &**ty)),
1083                                    &declaration.output,
1084                                );
1085                            },
1086                        );
1087
1088                        if let Some(contract) = contract {
1089                            this.visit_contract(contract);
1090                        }
1091
1092                        if let Some(body) = body {
1093                            // Ignore errors in function bodies if this is rustdoc
1094                            // Be sure not to set this until the function signature has been resolved.
1095                            let previous_state = replace(&mut this.in_func_body, true);
1096                            // We only care block in the same function
1097                            this.last_block_rib = None;
1098                            // Resolve the function body, potentially inside the body of an async closure
1099                            this.with_lifetime_rib(
1100                                LifetimeRibKind::Elided(LifetimeRes::Infer),
1101                                |this| this.visit_block(body),
1102                            );
1103
1104                            debug!("(resolving function) leaving function");
1105                            this.in_func_body = previous_state;
1106                        }
1107                    }
1108                    FnKind::Closure(binder, _, declaration, body) => {
1109                        this.visit_closure_binder(binder);
1110
1111                        this.with_lifetime_rib(
1112                            match binder {
1113                                // We do not have any explicit generic lifetime parameter.
1114                                ClosureBinder::NotPresent => {
1115                                    LifetimeRibKind::AnonymousCreateParameter {
1116                                        binder: fn_id,
1117                                        report_in_path: false,
1118                                    }
1119                                }
1120                                ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
1121                            },
1122                            // Add each argument to the rib.
1123                            |this| this.resolve_params(&declaration.inputs),
1124                        );
1125                        this.with_lifetime_rib(
1126                            match binder {
1127                                ClosureBinder::NotPresent => {
1128                                    LifetimeRibKind::Elided(LifetimeRes::Infer)
1129                                }
1130                                ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
1131                            },
1132                            |this| visit::walk_fn_ret_ty(this, &declaration.output),
1133                        );
1134
1135                        // Ignore errors in function bodies if this is rustdoc
1136                        // Be sure not to set this until the function signature has been resolved.
1137                        let previous_state = replace(&mut this.in_func_body, true);
1138                        // Resolve the function body, potentially inside the body of an async closure
1139                        this.with_lifetime_rib(
1140                            LifetimeRibKind::Elided(LifetimeRes::Infer),
1141                            |this| this.visit_expr(body),
1142                        );
1143
1144                        debug!("(resolving function) leaving function");
1145                        this.in_func_body = previous_state;
1146                    }
1147                }
1148            })
1149        });
1150        self.diag_metadata.current_function = previous_value;
1151    }
1152
1153    fn visit_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
1154        self.resolve_lifetime(lifetime, use_ctxt)
1155    }
1156
1157    fn visit_precise_capturing_arg(&mut self, arg: &'ast PreciseCapturingArg) {
1158        match arg {
1159            // Lower the lifetime regularly; we'll resolve the lifetime and check
1160            // it's a parameter later on in HIR lowering.
1161            PreciseCapturingArg::Lifetime(_) => {}
1162
1163            PreciseCapturingArg::Arg(path, id) => {
1164                // we want `impl use<C>` to try to resolve `C` as both a type parameter or
1165                // a const parameter. Since the resolver specifically doesn't allow having
1166                // two generic params with the same name, even if they're a different namespace,
1167                // it doesn't really matter which we try resolving first, but just like
1168                // `Ty::Param` we just fall back to the value namespace only if it's missing
1169                // from the type namespace.
1170                let mut check_ns = |ns| {
1171                    self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns).is_some()
1172                };
1173                // Like `Ty::Param`, we try resolving this as both a const and a type.
1174                if !check_ns(TypeNS) && check_ns(ValueNS) {
1175                    self.smart_resolve_path(
1176                        *id,
1177                        &None,
1178                        path,
1179                        PathSource::PreciseCapturingArg(ValueNS),
1180                    );
1181                } else {
1182                    self.smart_resolve_path(
1183                        *id,
1184                        &None,
1185                        path,
1186                        PathSource::PreciseCapturingArg(TypeNS),
1187                    );
1188                }
1189            }
1190        }
1191
1192        visit::walk_precise_capturing_arg(self, arg)
1193    }
1194
1195    fn visit_generics(&mut self, generics: &'ast Generics) {
1196        self.visit_generic_params(&generics.params, self.diag_metadata.current_self_item.is_some());
1197        for p in &generics.where_clause.predicates {
1198            self.visit_where_predicate(p);
1199        }
1200    }
1201
1202    fn visit_closure_binder(&mut self, b: &'ast ClosureBinder) {
1203        match b {
1204            ClosureBinder::NotPresent => {}
1205            ClosureBinder::For { generic_params, .. } => {
1206                self.visit_generic_params(
1207                    generic_params,
1208                    self.diag_metadata.current_self_item.is_some(),
1209                );
1210            }
1211        }
1212    }
1213
1214    fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
1215        debug!("visit_generic_arg({:?})", arg);
1216        let prev = replace(&mut self.diag_metadata.currently_processing_generic_args, true);
1217        match arg {
1218            GenericArg::Type(ty) => {
1219                // We parse const arguments as path types as we cannot distinguish them during
1220                // parsing. We try to resolve that ambiguity by attempting resolution the type
1221                // namespace first, and if that fails we try again in the value namespace. If
1222                // resolution in the value namespace succeeds, we have an generic const argument on
1223                // our hands.
1224                if let TyKind::Path(None, ref path) = ty.kind
1225                    // We cannot disambiguate multi-segment paths right now as that requires type
1226                    // checking.
1227                    && path.is_potential_trivial_const_arg(false)
1228                {
1229                    let mut check_ns = |ns| {
1230                        self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns)
1231                            .is_some()
1232                    };
1233                    if !check_ns(TypeNS) && check_ns(ValueNS) {
1234                        self.resolve_anon_const_manual(
1235                            true,
1236                            AnonConstKind::ConstArg(IsRepeatExpr::No),
1237                            |this| {
1238                                this.smart_resolve_path(ty.id, &None, path, PathSource::Expr(None));
1239                                this.visit_path(path, ty.id);
1240                            },
1241                        );
1242
1243                        self.diag_metadata.currently_processing_generic_args = prev;
1244                        return;
1245                    }
1246                }
1247
1248                self.visit_ty(ty);
1249            }
1250            GenericArg::Lifetime(lt) => self.visit_lifetime(lt, visit::LifetimeCtxt::GenericArg),
1251            GenericArg::Const(ct) => {
1252                self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
1253            }
1254        }
1255        self.diag_metadata.currently_processing_generic_args = prev;
1256    }
1257
1258    fn visit_assoc_item_constraint(&mut self, constraint: &'ast AssocItemConstraint) {
1259        self.visit_ident(&constraint.ident);
1260        if let Some(ref gen_args) = constraint.gen_args {
1261            // Forbid anonymous lifetimes in GAT parameters until proper semantics are decided.
1262            self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
1263                this.visit_generic_args(gen_args)
1264            });
1265        }
1266        match constraint.kind {
1267            AssocItemConstraintKind::Equality { ref term } => match term {
1268                Term::Ty(ty) => self.visit_ty(ty),
1269                Term::Const(c) => {
1270                    self.resolve_anon_const(c, AnonConstKind::ConstArg(IsRepeatExpr::No))
1271                }
1272            },
1273            AssocItemConstraintKind::Bound { ref bounds } => {
1274                walk_list!(self, visit_param_bound, bounds, BoundKind::Bound);
1275            }
1276        }
1277    }
1278
1279    fn visit_path_segment(&mut self, path_segment: &'ast PathSegment) {
1280        let Some(ref args) = path_segment.args else {
1281            return;
1282        };
1283
1284        match &**args {
1285            GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, args),
1286            GenericArgs::Parenthesized(p_args) => {
1287                // Probe the lifetime ribs to know how to behave.
1288                for rib in self.lifetime_ribs.iter().rev() {
1289                    match rib.kind {
1290                        // We are inside a `PolyTraitRef`. The lifetimes are
1291                        // to be introduced in that (maybe implicit) `for<>` binder.
1292                        LifetimeRibKind::Generics {
1293                            binder,
1294                            kind: LifetimeBinderKind::PolyTrait,
1295                            ..
1296                        } => {
1297                            self.with_lifetime_rib(
1298                                LifetimeRibKind::AnonymousCreateParameter {
1299                                    binder,
1300                                    report_in_path: false,
1301                                },
1302                                |this| {
1303                                    this.resolve_fn_signature(
1304                                        binder,
1305                                        false,
1306                                        p_args.inputs.iter().map(|ty| (None, &**ty)),
1307                                        &p_args.output,
1308                                    )
1309                                },
1310                            );
1311                            break;
1312                        }
1313                        // We have nowhere to introduce generics. Code is malformed,
1314                        // so use regular lifetime resolution to avoid spurious errors.
1315                        LifetimeRibKind::Item | LifetimeRibKind::Generics { .. } => {
1316                            visit::walk_generic_args(self, args);
1317                            break;
1318                        }
1319                        LifetimeRibKind::AnonymousCreateParameter { .. }
1320                        | LifetimeRibKind::AnonymousReportError
1321                        | LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
1322                        | LifetimeRibKind::Elided(_)
1323                        | LifetimeRibKind::ElisionFailure
1324                        | LifetimeRibKind::ConcreteAnonConst(_)
1325                        | LifetimeRibKind::ConstParamTy => {}
1326                    }
1327                }
1328            }
1329            GenericArgs::ParenthesizedElided(_) => {}
1330        }
1331    }
1332
1333    fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
1334        debug!("visit_where_predicate {:?}", p);
1335        let previous_value = replace(&mut self.diag_metadata.current_where_predicate, Some(p));
1336        self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
1337            if let WherePredicateKind::BoundPredicate(WhereBoundPredicate {
1338                bounded_ty,
1339                bounds,
1340                bound_generic_params,
1341                ..
1342            }) = &p.kind
1343            {
1344                let span = p.span.shrink_to_lo().to(bounded_ty.span.shrink_to_lo());
1345                this.with_generic_param_rib(
1346                    bound_generic_params,
1347                    RibKind::Normal,
1348                    LifetimeRibKind::Generics {
1349                        binder: bounded_ty.id,
1350                        kind: LifetimeBinderKind::WhereBound,
1351                        span,
1352                    },
1353                    |this| {
1354                        this.visit_generic_params(bound_generic_params, false);
1355                        this.visit_ty(bounded_ty);
1356                        for bound in bounds {
1357                            this.visit_param_bound(bound, BoundKind::Bound)
1358                        }
1359                    },
1360                );
1361            } else {
1362                visit::walk_where_predicate(this, p);
1363            }
1364        });
1365        self.diag_metadata.current_where_predicate = previous_value;
1366    }
1367
1368    fn visit_inline_asm(&mut self, asm: &'ast InlineAsm) {
1369        for (op, _) in &asm.operands {
1370            match op {
1371                InlineAsmOperand::In { expr, .. }
1372                | InlineAsmOperand::Out { expr: Some(expr), .. }
1373                | InlineAsmOperand::InOut { expr, .. } => self.visit_expr(expr),
1374                InlineAsmOperand::Out { expr: None, .. } => {}
1375                InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
1376                    self.visit_expr(in_expr);
1377                    if let Some(out_expr) = out_expr {
1378                        self.visit_expr(out_expr);
1379                    }
1380                }
1381                InlineAsmOperand::Const { anon_const, .. } => {
1382                    // Although this is `DefKind::AnonConst`, it is allowed to reference outer
1383                    // generic parameters like an inline const.
1384                    self.resolve_anon_const(anon_const, AnonConstKind::InlineConst);
1385                }
1386                InlineAsmOperand::Sym { sym } => self.visit_inline_asm_sym(sym),
1387                InlineAsmOperand::Label { block } => self.visit_block(block),
1388            }
1389        }
1390    }
1391
1392    fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) {
1393        // This is similar to the code for AnonConst.
1394        self.with_rib(ValueNS, RibKind::InlineAsmSym, |this| {
1395            this.with_rib(TypeNS, RibKind::InlineAsmSym, |this| {
1396                this.with_label_rib(RibKind::InlineAsmSym, |this| {
1397                    this.smart_resolve_path(sym.id, &sym.qself, &sym.path, PathSource::Expr(None));
1398                    visit::walk_inline_asm_sym(this, sym);
1399                });
1400            })
1401        });
1402    }
1403
1404    fn visit_variant(&mut self, v: &'ast Variant) {
1405        self.resolve_doc_links(&v.attrs, MaybeExported::Ok(v.id));
1406        visit::walk_variant(self, v)
1407    }
1408
1409    fn visit_variant_discr(&mut self, discr: &'ast AnonConst) {
1410        self.resolve_anon_const(discr, AnonConstKind::EnumDiscriminant);
1411    }
1412
1413    fn visit_field_def(&mut self, f: &'ast FieldDef) {
1414        self.resolve_doc_links(&f.attrs, MaybeExported::Ok(f.id));
1415        let FieldDef {
1416            attrs,
1417            id: _,
1418            span: _,
1419            vis,
1420            ident,
1421            ty,
1422            is_placeholder: _,
1423            default,
1424            safety: _,
1425        } = f;
1426        walk_list!(self, visit_attribute, attrs);
1427        try_visit!(self.visit_vis(vis));
1428        visit_opt!(self, visit_ident, ident);
1429        try_visit!(self.visit_ty(ty));
1430        if let Some(v) = &default {
1431            self.resolve_anon_const(v, AnonConstKind::FieldDefaultValue);
1432        }
1433    }
1434}
1435
1436impl<'a, 'ast, 'ra: 'ast, 'tcx> LateResolutionVisitor<'a, 'ast, 'ra, 'tcx> {
1437    fn new(resolver: &'a mut Resolver<'ra, 'tcx>) -> LateResolutionVisitor<'a, 'ast, 'ra, 'tcx> {
1438        // During late resolution we only track the module component of the parent scope,
1439        // although it may be useful to track other components as well for diagnostics.
1440        let graph_root = resolver.graph_root;
1441        let parent_scope = ParentScope::module(graph_root, resolver);
1442        let start_rib_kind = RibKind::Module(graph_root);
1443        LateResolutionVisitor {
1444            r: resolver,
1445            parent_scope,
1446            ribs: PerNS {
1447                value_ns: vec![Rib::new(start_rib_kind)],
1448                type_ns: vec![Rib::new(start_rib_kind)],
1449                macro_ns: vec![Rib::new(start_rib_kind)],
1450            },
1451            last_block_rib: None,
1452            label_ribs: Vec::new(),
1453            lifetime_ribs: Vec::new(),
1454            lifetime_elision_candidates: None,
1455            current_trait_ref: None,
1456            diag_metadata: Default::default(),
1457            // errors at module scope should always be reported
1458            in_func_body: false,
1459            lifetime_uses: Default::default(),
1460        }
1461    }
1462
1463    fn maybe_resolve_ident_in_lexical_scope(
1464        &mut self,
1465        ident: Ident,
1466        ns: Namespace,
1467    ) -> Option<LexicalScopeBinding<'ra>> {
1468        self.r.resolve_ident_in_lexical_scope(
1469            ident,
1470            ns,
1471            &self.parent_scope,
1472            None,
1473            &self.ribs[ns],
1474            None,
1475        )
1476    }
1477
1478    fn resolve_ident_in_lexical_scope(
1479        &mut self,
1480        ident: Ident,
1481        ns: Namespace,
1482        finalize: Option<Finalize>,
1483        ignore_binding: Option<NameBinding<'ra>>,
1484    ) -> Option<LexicalScopeBinding<'ra>> {
1485        self.r.resolve_ident_in_lexical_scope(
1486            ident,
1487            ns,
1488            &self.parent_scope,
1489            finalize,
1490            &self.ribs[ns],
1491            ignore_binding,
1492        )
1493    }
1494
1495    fn resolve_path(
1496        &mut self,
1497        path: &[Segment],
1498        opt_ns: Option<Namespace>, // `None` indicates a module path in import
1499        finalize: Option<Finalize>,
1500    ) -> PathResult<'ra> {
1501        self.r.resolve_path_with_ribs(
1502            path,
1503            opt_ns,
1504            &self.parent_scope,
1505            finalize,
1506            Some(&self.ribs),
1507            None,
1508            None,
1509        )
1510    }
1511
1512    // AST resolution
1513    //
1514    // We maintain a list of value ribs and type ribs.
1515    //
1516    // Simultaneously, we keep track of the current position in the module
1517    // graph in the `parent_scope.module` pointer. When we go to resolve a name in
1518    // the value or type namespaces, we first look through all the ribs and
1519    // then query the module graph. When we resolve a name in the module
1520    // namespace, we can skip all the ribs (since nested modules are not
1521    // allowed within blocks in Rust) and jump straight to the current module
1522    // graph node.
1523    //
1524    // Named implementations are handled separately. When we find a method
1525    // call, we consult the module node to find all of the implementations in
1526    // scope. This information is lazily cached in the module node. We then
1527    // generate a fake "implementation scope" containing all the
1528    // implementations thus found, for compatibility with old resolve pass.
1529
1530    /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
1531    fn with_rib<T>(
1532        &mut self,
1533        ns: Namespace,
1534        kind: RibKind<'ra>,
1535        work: impl FnOnce(&mut Self) -> T,
1536    ) -> T {
1537        self.ribs[ns].push(Rib::new(kind));
1538        let ret = work(self);
1539        self.ribs[ns].pop();
1540        ret
1541    }
1542
1543    fn with_mod_rib<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
1544        let module = self.r.expect_module(self.r.local_def_id(id).to_def_id());
1545        // Move down in the graph.
1546        let orig_module = replace(&mut self.parent_scope.module, module);
1547        self.with_rib(ValueNS, RibKind::Module(module), |this| {
1548            this.with_rib(TypeNS, RibKind::Module(module), |this| {
1549                let ret = f(this);
1550                this.parent_scope.module = orig_module;
1551                ret
1552            })
1553        })
1554    }
1555
1556    fn visit_generic_params(&mut self, params: &'ast [GenericParam], add_self_upper: bool) {
1557        // For type parameter defaults, we have to ban access
1558        // to following type parameters, as the GenericArgs can only
1559        // provide previous type parameters as they're built. We
1560        // put all the parameters on the ban list and then remove
1561        // them one by one as they are processed and become available.
1562        let mut forward_ty_ban_rib =
1563            Rib::new(RibKind::ForwardGenericParamBan(ForwardGenericParamBanReason::Default));
1564        let mut forward_const_ban_rib =
1565            Rib::new(RibKind::ForwardGenericParamBan(ForwardGenericParamBanReason::Default));
1566        for param in params.iter() {
1567            match param.kind {
1568                GenericParamKind::Type { .. } => {
1569                    forward_ty_ban_rib
1570                        .bindings
1571                        .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
1572                }
1573                GenericParamKind::Const { .. } => {
1574                    forward_const_ban_rib
1575                        .bindings
1576                        .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
1577                }
1578                GenericParamKind::Lifetime => {}
1579            }
1580        }
1581
1582        // rust-lang/rust#61631: The type `Self` is essentially
1583        // another type parameter. For ADTs, we consider it
1584        // well-defined only after all of the ADT type parameters have
1585        // been provided. Therefore, we do not allow use of `Self`
1586        // anywhere in ADT type parameter defaults.
1587        //
1588        // (We however cannot ban `Self` for defaults on *all* generic
1589        // lists; e.g. trait generics can usefully refer to `Self`,
1590        // such as in the case of `trait Add<Rhs = Self>`.)
1591        if add_self_upper {
1592            // (`Some` if + only if we are in ADT's generics.)
1593            forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
1594        }
1595
1596        // NOTE: We use different ribs here not for a technical reason, but just
1597        // for better diagnostics.
1598        let mut forward_ty_ban_rib_const_param_ty = Rib {
1599            bindings: forward_ty_ban_rib.bindings.clone(),
1600            patterns_with_skipped_bindings: Default::default(),
1601            kind: RibKind::ForwardGenericParamBan(ForwardGenericParamBanReason::ConstParamTy),
1602        };
1603        let mut forward_const_ban_rib_const_param_ty = Rib {
1604            bindings: forward_const_ban_rib.bindings.clone(),
1605            patterns_with_skipped_bindings: Default::default(),
1606            kind: RibKind::ForwardGenericParamBan(ForwardGenericParamBanReason::ConstParamTy),
1607        };
1608        // We'll ban these with a `ConstParamTy` rib, so just clear these ribs for better
1609        // diagnostics, so we don't mention anything about const param tys having generics at all.
1610        if !self.r.tcx.features().generic_const_parameter_types() {
1611            forward_ty_ban_rib_const_param_ty.bindings.clear();
1612            forward_const_ban_rib_const_param_ty.bindings.clear();
1613        }
1614
1615        self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
1616            for param in params {
1617                match param.kind {
1618                    GenericParamKind::Lifetime => {
1619                        for bound in &param.bounds {
1620                            this.visit_param_bound(bound, BoundKind::Bound);
1621                        }
1622                    }
1623                    GenericParamKind::Type { ref default } => {
1624                        for bound in &param.bounds {
1625                            this.visit_param_bound(bound, BoundKind::Bound);
1626                        }
1627
1628                        if let Some(ty) = default {
1629                            this.ribs[TypeNS].push(forward_ty_ban_rib);
1630                            this.ribs[ValueNS].push(forward_const_ban_rib);
1631                            this.visit_ty(ty);
1632                            forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
1633                            forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
1634                        }
1635
1636                        // Allow all following defaults to refer to this type parameter.
1637                        let i = &Ident::with_dummy_span(param.ident.name);
1638                        forward_ty_ban_rib.bindings.swap_remove(i);
1639                        forward_ty_ban_rib_const_param_ty.bindings.swap_remove(i);
1640                    }
1641                    GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
1642                        // Const parameters can't have param bounds.
1643                        assert!(param.bounds.is_empty());
1644
1645                        this.ribs[TypeNS].push(forward_ty_ban_rib_const_param_ty);
1646                        this.ribs[ValueNS].push(forward_const_ban_rib_const_param_ty);
1647                        if this.r.tcx.features().generic_const_parameter_types() {
1648                            this.visit_ty(ty)
1649                        } else {
1650                            this.ribs[TypeNS].push(Rib::new(RibKind::ConstParamTy));
1651                            this.ribs[ValueNS].push(Rib::new(RibKind::ConstParamTy));
1652                            this.with_lifetime_rib(LifetimeRibKind::ConstParamTy, |this| {
1653                                this.visit_ty(ty)
1654                            });
1655                            this.ribs[TypeNS].pop().unwrap();
1656                            this.ribs[ValueNS].pop().unwrap();
1657                        }
1658                        forward_const_ban_rib_const_param_ty = this.ribs[ValueNS].pop().unwrap();
1659                        forward_ty_ban_rib_const_param_ty = this.ribs[TypeNS].pop().unwrap();
1660
1661                        if let Some(expr) = default {
1662                            this.ribs[TypeNS].push(forward_ty_ban_rib);
1663                            this.ribs[ValueNS].push(forward_const_ban_rib);
1664                            this.resolve_anon_const(
1665                                expr,
1666                                AnonConstKind::ConstArg(IsRepeatExpr::No),
1667                            );
1668                            forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
1669                            forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
1670                        }
1671
1672                        // Allow all following defaults to refer to this const parameter.
1673                        let i = &Ident::with_dummy_span(param.ident.name);
1674                        forward_const_ban_rib.bindings.swap_remove(i);
1675                        forward_const_ban_rib_const_param_ty.bindings.swap_remove(i);
1676                    }
1677                }
1678            }
1679        })
1680    }
1681
1682    #[instrument(level = "debug", skip(self, work))]
1683    fn with_lifetime_rib<T>(
1684        &mut self,
1685        kind: LifetimeRibKind,
1686        work: impl FnOnce(&mut Self) -> T,
1687    ) -> T {
1688        self.lifetime_ribs.push(LifetimeRib::new(kind));
1689        let outer_elision_candidates = self.lifetime_elision_candidates.take();
1690        let ret = work(self);
1691        self.lifetime_elision_candidates = outer_elision_candidates;
1692        self.lifetime_ribs.pop();
1693        ret
1694    }
1695
1696    #[instrument(level = "debug", skip(self))]
1697    fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
1698        let ident = lifetime.ident;
1699
1700        if ident.name == kw::StaticLifetime {
1701            self.record_lifetime_res(
1702                lifetime.id,
1703                LifetimeRes::Static { suppress_elision_warning: false },
1704                LifetimeElisionCandidate::Named,
1705            );
1706            return;
1707        }
1708
1709        if ident.name == kw::UnderscoreLifetime {
1710            return self.resolve_anonymous_lifetime(lifetime, lifetime.id, false);
1711        }
1712
1713        let mut lifetime_rib_iter = self.lifetime_ribs.iter().rev();
1714        while let Some(rib) = lifetime_rib_iter.next() {
1715            let normalized_ident = ident.normalize_to_macros_2_0();
1716            if let Some(&(_, res)) = rib.bindings.get(&normalized_ident) {
1717                self.record_lifetime_res(lifetime.id, res, LifetimeElisionCandidate::Named);
1718
1719                if let LifetimeRes::Param { param, binder } = res {
1720                    match self.lifetime_uses.entry(param) {
1721                        Entry::Vacant(v) => {
1722                            debug!("First use of {:?} at {:?}", res, ident.span);
1723                            let use_set = self
1724                                .lifetime_ribs
1725                                .iter()
1726                                .rev()
1727                                .find_map(|rib| match rib.kind {
1728                                    // Do not suggest eliding a lifetime where an anonymous
1729                                    // lifetime would be illegal.
1730                                    LifetimeRibKind::Item
1731                                    | LifetimeRibKind::AnonymousReportError
1732                                    | LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
1733                                    | LifetimeRibKind::ElisionFailure => Some(LifetimeUseSet::Many),
1734                                    // An anonymous lifetime is legal here, and bound to the right
1735                                    // place, go ahead.
1736                                    LifetimeRibKind::AnonymousCreateParameter {
1737                                        binder: anon_binder,
1738                                        ..
1739                                    } => Some(if binder == anon_binder {
1740                                        LifetimeUseSet::One { use_span: ident.span, use_ctxt }
1741                                    } else {
1742                                        LifetimeUseSet::Many
1743                                    }),
1744                                    // Only report if eliding the lifetime would have the same
1745                                    // semantics.
1746                                    LifetimeRibKind::Elided(r) => Some(if res == r {
1747                                        LifetimeUseSet::One { use_span: ident.span, use_ctxt }
1748                                    } else {
1749                                        LifetimeUseSet::Many
1750                                    }),
1751                                    LifetimeRibKind::Generics { .. }
1752                                    | LifetimeRibKind::ConstParamTy => None,
1753                                    LifetimeRibKind::ConcreteAnonConst(_) => {
1754                                        span_bug!(ident.span, "unexpected rib kind: {:?}", rib.kind)
1755                                    }
1756                                })
1757                                .unwrap_or(LifetimeUseSet::Many);
1758                            debug!(?use_ctxt, ?use_set);
1759                            v.insert(use_set);
1760                        }
1761                        Entry::Occupied(mut o) => {
1762                            debug!("Many uses of {:?} at {:?}", res, ident.span);
1763                            *o.get_mut() = LifetimeUseSet::Many;
1764                        }
1765                    }
1766                }
1767                return;
1768            }
1769
1770            match rib.kind {
1771                LifetimeRibKind::Item => break,
1772                LifetimeRibKind::ConstParamTy => {
1773                    self.emit_non_static_lt_in_const_param_ty_error(lifetime);
1774                    self.record_lifetime_res(
1775                        lifetime.id,
1776                        LifetimeRes::Error,
1777                        LifetimeElisionCandidate::Ignore,
1778                    );
1779                    return;
1780                }
1781                LifetimeRibKind::ConcreteAnonConst(cause) => {
1782                    self.emit_forbidden_non_static_lifetime_error(cause, lifetime);
1783                    self.record_lifetime_res(
1784                        lifetime.id,
1785                        LifetimeRes::Error,
1786                        LifetimeElisionCandidate::Ignore,
1787                    );
1788                    return;
1789                }
1790                LifetimeRibKind::AnonymousCreateParameter { .. }
1791                | LifetimeRibKind::Elided(_)
1792                | LifetimeRibKind::Generics { .. }
1793                | LifetimeRibKind::ElisionFailure
1794                | LifetimeRibKind::AnonymousReportError
1795                | LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {}
1796            }
1797        }
1798
1799        let normalized_ident = ident.normalize_to_macros_2_0();
1800        let outer_res = lifetime_rib_iter
1801            .find_map(|rib| rib.bindings.get_key_value(&normalized_ident).map(|(&outer, _)| outer));
1802
1803        self.emit_undeclared_lifetime_error(lifetime, outer_res);
1804        self.record_lifetime_res(lifetime.id, LifetimeRes::Error, LifetimeElisionCandidate::Named);
1805    }
1806
1807    #[instrument(level = "debug", skip(self))]
1808    fn resolve_anonymous_lifetime(
1809        &mut self,
1810        lifetime: &Lifetime,
1811        id_for_lint: NodeId,
1812        elided: bool,
1813    ) {
1814        debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
1815
1816        let kind =
1817            if elided { MissingLifetimeKind::Ampersand } else { MissingLifetimeKind::Underscore };
1818        let missing_lifetime = MissingLifetime {
1819            id: lifetime.id,
1820            span: lifetime.ident.span,
1821            kind,
1822            count: 1,
1823            id_for_lint,
1824        };
1825        let elision_candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
1826        for (i, rib) in self.lifetime_ribs.iter().enumerate().rev() {
1827            debug!(?rib.kind);
1828            match rib.kind {
1829                LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
1830                    let res = self.create_fresh_lifetime(lifetime.ident, binder, kind);
1831                    self.record_lifetime_res(lifetime.id, res, elision_candidate);
1832                    return;
1833                }
1834                LifetimeRibKind::StaticIfNoLifetimeInScope { lint_id: node_id, emit_lint } => {
1835                    let mut lifetimes_in_scope = vec![];
1836                    for rib in &self.lifetime_ribs[..i] {
1837                        lifetimes_in_scope.extend(rib.bindings.iter().map(|(ident, _)| ident.span));
1838                        // Consider any anonymous lifetimes, too
1839                        if let LifetimeRibKind::AnonymousCreateParameter { binder, .. } = rib.kind
1840                            && let Some(extra) = self.r.extra_lifetime_params_map.get(&binder)
1841                        {
1842                            lifetimes_in_scope.extend(extra.iter().map(|(ident, _, _)| ident.span));
1843                        }
1844                    }
1845                    if lifetimes_in_scope.is_empty() {
1846                        self.record_lifetime_res(
1847                            lifetime.id,
1848                            // We are inside a const item, so do not warn.
1849                            LifetimeRes::Static { suppress_elision_warning: true },
1850                            elision_candidate,
1851                        );
1852                        return;
1853                    } else if emit_lint {
1854                        self.r.lint_buffer.buffer_lint(
1855                            lint::builtin::ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT,
1856                            node_id,
1857                            lifetime.ident.span,
1858                            lint::BuiltinLintDiag::AssociatedConstElidedLifetime {
1859                                elided,
1860                                span: lifetime.ident.span,
1861                                lifetimes_in_scope: lifetimes_in_scope.into(),
1862                            },
1863                        );
1864                    }
1865                }
1866                LifetimeRibKind::AnonymousReportError => {
1867                    if elided {
1868                        let suggestion = self.lifetime_ribs[i..].iter().rev().find_map(|rib| {
1869                            if let LifetimeRibKind::Generics {
1870                                span,
1871                                kind: LifetimeBinderKind::PolyTrait | LifetimeBinderKind::WhereBound,
1872                                ..
1873                            } = rib.kind
1874                            {
1875                                Some(errors::ElidedAnonymousLivetimeReportErrorSuggestion {
1876                                    lo: span.shrink_to_lo(),
1877                                    hi: lifetime.ident.span.shrink_to_hi(),
1878                                })
1879                            } else {
1880                                None
1881                            }
1882                        });
1883                        // are we trying to use an anonymous lifetime
1884                        // on a non GAT associated trait type?
1885                        if !self.in_func_body
1886                            && let Some((module, _)) = &self.current_trait_ref
1887                            && let Some(ty) = &self.diag_metadata.current_self_type
1888                            && Some(true) == self.diag_metadata.in_non_gat_assoc_type
1889                            && let crate::ModuleKind::Def(DefKind::Trait, trait_id, _) = module.kind
1890                        {
1891                            if def_id_matches_path(
1892                                self.r.tcx,
1893                                trait_id,
1894                                &["core", "iter", "traits", "iterator", "Iterator"],
1895                            ) {
1896                                self.r.dcx().emit_err(errors::LendingIteratorReportError {
1897                                    lifetime: lifetime.ident.span,
1898                                    ty: ty.span,
1899                                });
1900                            } else {
1901                                self.r.dcx().emit_err(errors::AnonymousLivetimeNonGatReportError {
1902                                    lifetime: lifetime.ident.span,
1903                                });
1904                            }
1905                        } else {
1906                            self.r.dcx().emit_err(errors::ElidedAnonymousLivetimeReportError {
1907                                span: lifetime.ident.span,
1908                                suggestion,
1909                            });
1910                        }
1911                    } else {
1912                        self.r.dcx().emit_err(errors::ExplicitAnonymousLivetimeReportError {
1913                            span: lifetime.ident.span,
1914                        });
1915                    };
1916                    self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
1917                    return;
1918                }
1919                LifetimeRibKind::Elided(res) => {
1920                    self.record_lifetime_res(lifetime.id, res, elision_candidate);
1921                    return;
1922                }
1923                LifetimeRibKind::ElisionFailure => {
1924                    self.diag_metadata.current_elision_failures.push(missing_lifetime);
1925                    self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
1926                    return;
1927                }
1928                LifetimeRibKind::Item => break,
1929                LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
1930                LifetimeRibKind::ConcreteAnonConst(_) => {
1931                    // There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
1932                    span_bug!(lifetime.ident.span, "unexpected rib kind: {:?}", rib.kind)
1933                }
1934            }
1935        }
1936        self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
1937        self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
1938    }
1939
1940    #[instrument(level = "debug", skip(self))]
1941    fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) {
1942        let id = self.r.next_node_id();
1943        let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) };
1944
1945        self.record_lifetime_res(
1946            anchor_id,
1947            LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) },
1948            LifetimeElisionCandidate::Ignore,
1949        );
1950        self.resolve_anonymous_lifetime(&lt, anchor_id, true);
1951    }
1952
1953    #[instrument(level = "debug", skip(self))]
1954    fn create_fresh_lifetime(
1955        &mut self,
1956        ident: Ident,
1957        binder: NodeId,
1958        kind: MissingLifetimeKind,
1959    ) -> LifetimeRes {
1960        debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
1961        debug!(?ident.span);
1962
1963        // Leave the responsibility to create the `LocalDefId` to lowering.
1964        let param = self.r.next_node_id();
1965        let res = LifetimeRes::Fresh { param, binder, kind };
1966        self.record_lifetime_param(param, res);
1967
1968        // Record the created lifetime parameter so lowering can pick it up and add it to HIR.
1969        self.r
1970            .extra_lifetime_params_map
1971            .entry(binder)
1972            .or_insert_with(Vec::new)
1973            .push((ident, param, res));
1974        res
1975    }
1976
1977    #[instrument(level = "debug", skip(self))]
1978    fn resolve_elided_lifetimes_in_path(
1979        &mut self,
1980        partial_res: PartialRes,
1981        path: &[Segment],
1982        source: PathSource<'_>,
1983        path_span: Span,
1984    ) {
1985        let proj_start = path.len() - partial_res.unresolved_segments();
1986        for (i, segment) in path.iter().enumerate() {
1987            if segment.has_lifetime_args {
1988                continue;
1989            }
1990            let Some(segment_id) = segment.id else {
1991                continue;
1992            };
1993
1994            // Figure out if this is a type/trait segment,
1995            // which may need lifetime elision performed.
1996            let type_def_id = match partial_res.base_res() {
1997                Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1998                    self.r.tcx.parent(def_id)
1999                }
2000                Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
2001                    self.r.tcx.parent(def_id)
2002                }
2003                Res::Def(DefKind::Struct, def_id)
2004                | Res::Def(DefKind::Union, def_id)
2005                | Res::Def(DefKind::Enum, def_id)
2006                | Res::Def(DefKind::TyAlias, def_id)
2007                | Res::Def(DefKind::Trait, def_id)
2008                    if i + 1 == proj_start =>
2009                {
2010                    def_id
2011                }
2012                _ => continue,
2013            };
2014
2015            let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id);
2016            if expected_lifetimes == 0 {
2017                continue;
2018            }
2019
2020            let node_ids = self.r.next_node_ids(expected_lifetimes);
2021            self.record_lifetime_res(
2022                segment_id,
2023                LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end },
2024                LifetimeElisionCandidate::Ignore,
2025            );
2026
2027            let inferred = match source {
2028                PathSource::Trait(..)
2029                | PathSource::TraitItem(..)
2030                | PathSource::Type
2031                | PathSource::PreciseCapturingArg(..)
2032                | PathSource::ReturnTypeNotation => false,
2033                PathSource::Expr(..)
2034                | PathSource::Pat
2035                | PathSource::Struct
2036                | PathSource::TupleStruct(..)
2037                | PathSource::DefineOpaques
2038                | PathSource::Delegation => true,
2039            };
2040            if inferred {
2041                // Do not create a parameter for patterns and expressions: type checking can infer
2042                // the appropriate lifetime for us.
2043                for id in node_ids {
2044                    self.record_lifetime_res(
2045                        id,
2046                        LifetimeRes::Infer,
2047                        LifetimeElisionCandidate::Named,
2048                    );
2049                }
2050                continue;
2051            }
2052
2053            let elided_lifetime_span = if segment.has_generic_args {
2054                // If there are brackets, but not generic arguments, then use the opening bracket
2055                segment.args_span.with_hi(segment.args_span.lo() + BytePos(1))
2056            } else {
2057                // If there are no brackets, use the identifier span.
2058                // HACK: we use find_ancestor_inside to properly suggest elided spans in paths
2059                // originating from macros, since the segment's span might be from a macro arg.
2060                segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span)
2061            };
2062            let ident = Ident::new(kw::UnderscoreLifetime, elided_lifetime_span);
2063
2064            let kind = if segment.has_generic_args {
2065                MissingLifetimeKind::Comma
2066            } else {
2067                MissingLifetimeKind::Brackets
2068            };
2069            let missing_lifetime = MissingLifetime {
2070                id: node_ids.start,
2071                id_for_lint: segment_id,
2072                span: elided_lifetime_span,
2073                kind,
2074                count: expected_lifetimes,
2075            };
2076            let mut should_lint = true;
2077            for rib in self.lifetime_ribs.iter().rev() {
2078                match rib.kind {
2079                    // In create-parameter mode we error here because we don't want to support
2080                    // deprecated impl elision in new features like impl elision and `async fn`,
2081                    // both of which work using the `CreateParameter` mode:
2082                    //
2083                    //     impl Foo for std::cell::Ref<u32> // note lack of '_
2084                    //     async fn foo(_: std::cell::Ref<u32>) { ... }
2085                    LifetimeRibKind::AnonymousCreateParameter { report_in_path: true, .. }
2086                    | LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {
2087                        let sess = self.r.tcx.sess;
2088                        let subdiag = rustc_errors::elided_lifetime_in_path_suggestion(
2089                            sess.source_map(),
2090                            expected_lifetimes,
2091                            path_span,
2092                            !segment.has_generic_args,
2093                            elided_lifetime_span,
2094                        );
2095                        self.r.dcx().emit_err(errors::ImplicitElidedLifetimeNotAllowedHere {
2096                            span: path_span,
2097                            subdiag,
2098                        });
2099                        should_lint = false;
2100
2101                        for id in node_ids {
2102                            self.record_lifetime_res(
2103                                id,
2104                                LifetimeRes::Error,
2105                                LifetimeElisionCandidate::Named,
2106                            );
2107                        }
2108                        break;
2109                    }
2110                    // Do not create a parameter for patterns and expressions.
2111                    LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
2112                        // Group all suggestions into the first record.
2113                        let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
2114                        for id in node_ids {
2115                            let res = self.create_fresh_lifetime(ident, binder, kind);
2116                            self.record_lifetime_res(
2117                                id,
2118                                res,
2119                                replace(&mut candidate, LifetimeElisionCandidate::Named),
2120                            );
2121                        }
2122                        break;
2123                    }
2124                    LifetimeRibKind::Elided(res) => {
2125                        let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
2126                        for id in node_ids {
2127                            self.record_lifetime_res(
2128                                id,
2129                                res,
2130                                replace(&mut candidate, LifetimeElisionCandidate::Ignore),
2131                            );
2132                        }
2133                        break;
2134                    }
2135                    LifetimeRibKind::ElisionFailure => {
2136                        self.diag_metadata.current_elision_failures.push(missing_lifetime);
2137                        for id in node_ids {
2138                            self.record_lifetime_res(
2139                                id,
2140                                LifetimeRes::Error,
2141                                LifetimeElisionCandidate::Ignore,
2142                            );
2143                        }
2144                        break;
2145                    }
2146                    // `LifetimeRes::Error`, which would usually be used in the case of
2147                    // `ReportError`, is unsuitable here, as we don't emit an error yet. Instead,
2148                    // we simply resolve to an implicit lifetime, which will be checked later, at
2149                    // which point a suitable error will be emitted.
2150                    LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => {
2151                        for id in node_ids {
2152                            self.record_lifetime_res(
2153                                id,
2154                                LifetimeRes::Error,
2155                                LifetimeElisionCandidate::Ignore,
2156                            );
2157                        }
2158                        self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
2159                        break;
2160                    }
2161                    LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
2162                    LifetimeRibKind::ConcreteAnonConst(_) => {
2163                        // There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
2164                        span_bug!(elided_lifetime_span, "unexpected rib kind: {:?}", rib.kind)
2165                    }
2166                }
2167            }
2168
2169            if should_lint {
2170                self.r.lint_buffer.buffer_lint(
2171                    lint::builtin::ELIDED_LIFETIMES_IN_PATHS,
2172                    segment_id,
2173                    elided_lifetime_span,
2174                    lint::BuiltinLintDiag::ElidedLifetimesInPaths(
2175                        expected_lifetimes,
2176                        path_span,
2177                        !segment.has_generic_args,
2178                        elided_lifetime_span,
2179                    ),
2180                );
2181            }
2182        }
2183    }
2184
2185    #[instrument(level = "debug", skip(self))]
2186    fn record_lifetime_res(
2187        &mut self,
2188        id: NodeId,
2189        res: LifetimeRes,
2190        candidate: LifetimeElisionCandidate,
2191    ) {
2192        if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
2193            panic!("lifetime {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)")
2194        }
2195
2196        match candidate {
2197            LifetimeElisionCandidate::Missing(missing @ MissingLifetime { .. }) => {
2198                debug_assert_eq!(id, missing.id);
2199                match res {
2200                    LifetimeRes::Static { suppress_elision_warning } => {
2201                        if !suppress_elision_warning {
2202                            self.r.lint_buffer.buffer_lint(
2203                                lint::builtin::ELIDED_NAMED_LIFETIMES,
2204                                missing.id_for_lint,
2205                                missing.span,
2206                                BuiltinLintDiag::ElidedNamedLifetimes {
2207                                    elided: (missing.span, missing.kind),
2208                                    resolution: lint::ElidedLifetimeResolution::Static,
2209                                },
2210                            );
2211                        }
2212                    }
2213                    LifetimeRes::Param { param, binder: _ } => {
2214                        let tcx = self.r.tcx();
2215                        self.r.lint_buffer.buffer_lint(
2216                            lint::builtin::ELIDED_NAMED_LIFETIMES,
2217                            missing.id_for_lint,
2218                            missing.span,
2219                            BuiltinLintDiag::ElidedNamedLifetimes {
2220                                elided: (missing.span, missing.kind),
2221                                resolution: lint::ElidedLifetimeResolution::Param(
2222                                    tcx.item_name(param.into()),
2223                                    tcx.source_span(param),
2224                                ),
2225                            },
2226                        );
2227                    }
2228                    LifetimeRes::Fresh { .. }
2229                    | LifetimeRes::Infer
2230                    | LifetimeRes::Error
2231                    | LifetimeRes::ElidedAnchor { .. } => {}
2232                }
2233            }
2234            LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => {}
2235        }
2236
2237        match res {
2238            LifetimeRes::Param { .. } | LifetimeRes::Fresh { .. } | LifetimeRes::Static { .. } => {
2239                if let Some(ref mut candidates) = self.lifetime_elision_candidates {
2240                    candidates.push((res, candidate));
2241                }
2242            }
2243            LifetimeRes::Infer | LifetimeRes::Error | LifetimeRes::ElidedAnchor { .. } => {}
2244        }
2245    }
2246
2247    #[instrument(level = "debug", skip(self))]
2248    fn record_lifetime_param(&mut self, id: NodeId, res: LifetimeRes) {
2249        if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
2250            panic!(
2251                "lifetime parameter {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)"
2252            )
2253        }
2254    }
2255
2256    /// Perform resolution of a function signature, accounting for lifetime elision.
2257    #[instrument(level = "debug", skip(self, inputs))]
2258    fn resolve_fn_signature(
2259        &mut self,
2260        fn_id: NodeId,
2261        has_self: bool,
2262        inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)> + Clone,
2263        output_ty: &'ast FnRetTy,
2264    ) {
2265        // Add each argument to the rib.
2266        let elision_lifetime = self.resolve_fn_params(has_self, inputs);
2267        debug!(?elision_lifetime);
2268
2269        let outer_failures = take(&mut self.diag_metadata.current_elision_failures);
2270        let output_rib = if let Ok(res) = elision_lifetime.as_ref() {
2271            self.r.lifetime_elision_allowed.insert(fn_id);
2272            LifetimeRibKind::Elided(*res)
2273        } else {
2274            LifetimeRibKind::ElisionFailure
2275        };
2276        self.with_lifetime_rib(output_rib, |this| visit::walk_fn_ret_ty(this, output_ty));
2277        let elision_failures =
2278            replace(&mut self.diag_metadata.current_elision_failures, outer_failures);
2279        if !elision_failures.is_empty() {
2280            let Err(failure_info) = elision_lifetime else { bug!() };
2281            self.report_missing_lifetime_specifiers(elision_failures, Some(failure_info));
2282        }
2283    }
2284
2285    /// Resolve inside function parameters and parameter types.
2286    /// Returns the lifetime for elision in fn return type,
2287    /// or diagnostic information in case of elision failure.
2288    fn resolve_fn_params(
2289        &mut self,
2290        has_self: bool,
2291        inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)>,
2292    ) -> Result<LifetimeRes, (Vec<MissingLifetime>, Vec<ElisionFnParameter>)> {
2293        enum Elision {
2294            /// We have not found any candidate.
2295            None,
2296            /// We have a candidate bound to `self`.
2297            Self_(LifetimeRes),
2298            /// We have a candidate bound to a parameter.
2299            Param(LifetimeRes),
2300            /// We failed elision.
2301            Err,
2302        }
2303
2304        // Save elision state to reinstate it later.
2305        let outer_candidates = self.lifetime_elision_candidates.take();
2306
2307        // Result of elision.
2308        let mut elision_lifetime = Elision::None;
2309        // Information for diagnostics.
2310        let mut parameter_info = Vec::new();
2311        let mut all_candidates = Vec::new();
2312
2313        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
2314        for (index, (pat, ty)) in inputs.enumerate() {
2315            debug!(?pat, ?ty);
2316            self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
2317                if let Some(pat) = pat {
2318                    this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
2319                }
2320            });
2321
2322            // Record elision candidates only for this parameter.
2323            debug_assert_matches!(self.lifetime_elision_candidates, None);
2324            self.lifetime_elision_candidates = Some(Default::default());
2325            self.visit_ty(ty);
2326            let local_candidates = self.lifetime_elision_candidates.take();
2327
2328            if let Some(candidates) = local_candidates {
2329                let distinct: UnordSet<_> = candidates.iter().map(|(res, _)| *res).collect();
2330                let lifetime_count = distinct.len();
2331                if lifetime_count != 0 {
2332                    parameter_info.push(ElisionFnParameter {
2333                        index,
2334                        ident: if let Some(pat) = pat
2335                            && let PatKind::Ident(_, ident, _) = pat.kind
2336                        {
2337                            Some(ident)
2338                        } else {
2339                            None
2340                        },
2341                        lifetime_count,
2342                        span: ty.span,
2343                    });
2344                    all_candidates.extend(candidates.into_iter().filter_map(|(_, candidate)| {
2345                        match candidate {
2346                            LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => {
2347                                None
2348                            }
2349                            LifetimeElisionCandidate::Missing(missing) => Some(missing),
2350                        }
2351                    }));
2352                }
2353                if !distinct.is_empty() {
2354                    match elision_lifetime {
2355                        // We are the first parameter to bind lifetimes.
2356                        Elision::None => {
2357                            if let Some(res) = distinct.get_only() {
2358                                // We have a single lifetime => success.
2359                                elision_lifetime = Elision::Param(*res)
2360                            } else {
2361                                // We have multiple lifetimes => error.
2362                                elision_lifetime = Elision::Err;
2363                            }
2364                        }
2365                        // We have 2 parameters that bind lifetimes => error.
2366                        Elision::Param(_) => elision_lifetime = Elision::Err,
2367                        // `self` elision takes precedence over everything else.
2368                        Elision::Self_(_) | Elision::Err => {}
2369                    }
2370                }
2371            }
2372
2373            // Handle `self` specially.
2374            if index == 0 && has_self {
2375                let self_lifetime = self.find_lifetime_for_self(ty);
2376                elision_lifetime = match self_lifetime {
2377                    // We found `self` elision.
2378                    Set1::One(lifetime) => Elision::Self_(lifetime),
2379                    // `self` itself had ambiguous lifetimes, e.g.
2380                    // &Box<&Self>. In this case we won't consider
2381                    // taking an alternative parameter lifetime; just avoid elision
2382                    // entirely.
2383                    Set1::Many => Elision::Err,
2384                    // We do not have `self` elision: disregard the `Elision::Param` that we may
2385                    // have found.
2386                    Set1::Empty => Elision::None,
2387                }
2388            }
2389            debug!("(resolving function / closure) recorded parameter");
2390        }
2391
2392        // Reinstate elision state.
2393        debug_assert_matches!(self.lifetime_elision_candidates, None);
2394        self.lifetime_elision_candidates = outer_candidates;
2395
2396        if let Elision::Param(res) | Elision::Self_(res) = elision_lifetime {
2397            return Ok(res);
2398        }
2399
2400        // We do not have a candidate.
2401        Err((all_candidates, parameter_info))
2402    }
2403
2404    /// List all the lifetimes that appear in the provided type.
2405    fn find_lifetime_for_self(&self, ty: &'ast Ty) -> Set1<LifetimeRes> {
2406        /// Visits a type to find all the &references, and determines the
2407        /// set of lifetimes for all of those references where the referent
2408        /// contains Self.
2409        struct FindReferenceVisitor<'a, 'ra, 'tcx> {
2410            r: &'a Resolver<'ra, 'tcx>,
2411            impl_self: Option<Res>,
2412            lifetime: Set1<LifetimeRes>,
2413        }
2414
2415        impl<'ra> Visitor<'ra> for FindReferenceVisitor<'_, '_, '_> {
2416            fn visit_ty(&mut self, ty: &'ra Ty) {
2417                trace!("FindReferenceVisitor considering ty={:?}", ty);
2418                if let TyKind::Ref(lt, _) | TyKind::PinnedRef(lt, _) = ty.kind {
2419                    // See if anything inside the &thing contains Self
2420                    let mut visitor =
2421                        SelfVisitor { r: self.r, impl_self: self.impl_self, self_found: false };
2422                    visitor.visit_ty(ty);
2423                    trace!("FindReferenceVisitor: SelfVisitor self_found={:?}", visitor.self_found);
2424                    if visitor.self_found {
2425                        let lt_id = if let Some(lt) = lt {
2426                            lt.id
2427                        } else {
2428                            let res = self.r.lifetimes_res_map[&ty.id];
2429                            let LifetimeRes::ElidedAnchor { start, .. } = res else { bug!() };
2430                            start
2431                        };
2432                        let lt_res = self.r.lifetimes_res_map[&lt_id];
2433                        trace!("FindReferenceVisitor inserting res={:?}", lt_res);
2434                        self.lifetime.insert(lt_res);
2435                    }
2436                }
2437                visit::walk_ty(self, ty)
2438            }
2439
2440            // A type may have an expression as a const generic argument.
2441            // We do not want to recurse into those.
2442            fn visit_expr(&mut self, _: &'ra Expr) {}
2443        }
2444
2445        /// Visitor which checks the referent of a &Thing to see if the
2446        /// Thing contains Self
2447        struct SelfVisitor<'a, 'ra, 'tcx> {
2448            r: &'a Resolver<'ra, 'tcx>,
2449            impl_self: Option<Res>,
2450            self_found: bool,
2451        }
2452
2453        impl SelfVisitor<'_, '_, '_> {
2454            // Look for `self: &'a Self` - also desugared from `&'a self`
2455            fn is_self_ty(&self, ty: &Ty) -> bool {
2456                match ty.kind {
2457                    TyKind::ImplicitSelf => true,
2458                    TyKind::Path(None, _) => {
2459                        let path_res = self.r.partial_res_map[&ty.id].full_res();
2460                        if let Some(Res::SelfTyParam { .. } | Res::SelfTyAlias { .. }) = path_res {
2461                            return true;
2462                        }
2463                        self.impl_self.is_some() && path_res == self.impl_self
2464                    }
2465                    _ => false,
2466                }
2467            }
2468        }
2469
2470        impl<'ra> Visitor<'ra> for SelfVisitor<'_, '_, '_> {
2471            fn visit_ty(&mut self, ty: &'ra Ty) {
2472                trace!("SelfVisitor considering ty={:?}", ty);
2473                if self.is_self_ty(ty) {
2474                    trace!("SelfVisitor found Self");
2475                    self.self_found = true;
2476                }
2477                visit::walk_ty(self, ty)
2478            }
2479
2480            // A type may have an expression as a const generic argument.
2481            // We do not want to recurse into those.
2482            fn visit_expr(&mut self, _: &'ra Expr) {}
2483        }
2484
2485        let impl_self = self
2486            .diag_metadata
2487            .current_self_type
2488            .as_ref()
2489            .and_then(|ty| {
2490                if let TyKind::Path(None, _) = ty.kind {
2491                    self.r.partial_res_map.get(&ty.id)
2492                } else {
2493                    None
2494                }
2495            })
2496            .and_then(|res| res.full_res())
2497            .filter(|res| {
2498                // Permit the types that unambiguously always
2499                // result in the same type constructor being used
2500                // (it can't differ between `Self` and `self`).
2501                matches!(
2502                    res,
2503                    Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _,) | Res::PrimTy(_)
2504                )
2505            });
2506        let mut visitor = FindReferenceVisitor { r: self.r, impl_self, lifetime: Set1::Empty };
2507        visitor.visit_ty(ty);
2508        trace!("FindReferenceVisitor found={:?}", visitor.lifetime);
2509        visitor.lifetime
2510    }
2511
2512    /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
2513    /// label and reports an error if the label is not found or is unreachable.
2514    fn resolve_label(&mut self, mut label: Ident) -> Result<(NodeId, Span), ResolutionError<'ra>> {
2515        let mut suggestion = None;
2516
2517        for i in (0..self.label_ribs.len()).rev() {
2518            let rib = &self.label_ribs[i];
2519
2520            if let RibKind::MacroDefinition(def) = rib.kind
2521                // If an invocation of this macro created `ident`, give up on `ident`
2522                // and switch to `ident`'s source from the macro definition.
2523                && def == self.r.macro_def(label.span.ctxt())
2524            {
2525                label.span.remove_mark();
2526            }
2527
2528            let ident = label.normalize_to_macro_rules();
2529            if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
2530                let definition_span = ident.span;
2531                return if self.is_label_valid_from_rib(i) {
2532                    Ok((*id, definition_span))
2533                } else {
2534                    Err(ResolutionError::UnreachableLabel {
2535                        name: label.name,
2536                        definition_span,
2537                        suggestion,
2538                    })
2539                };
2540            }
2541
2542            // Diagnostics: Check if this rib contains a label with a similar name, keep track of
2543            // the first such label that is encountered.
2544            suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
2545        }
2546
2547        Err(ResolutionError::UndeclaredLabel { name: label.name, suggestion })
2548    }
2549
2550    /// Determine whether or not a label from the `rib_index`th label rib is reachable.
2551    fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
2552        let ribs = &self.label_ribs[rib_index + 1..];
2553        ribs.iter().all(|rib| !rib.kind.is_label_barrier())
2554    }
2555
2556    fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
2557        debug!("resolve_adt");
2558        let kind = self.r.local_def_kind(item.id);
2559        self.with_current_self_item(item, |this| {
2560            this.with_generic_param_rib(
2561                &generics.params,
2562                RibKind::Item(HasGenericParams::Yes(generics.span), kind),
2563                LifetimeRibKind::Generics {
2564                    binder: item.id,
2565                    kind: LifetimeBinderKind::Item,
2566                    span: generics.span,
2567                },
2568                |this| {
2569                    let item_def_id = this.r.local_def_id(item.id).to_def_id();
2570                    this.with_self_rib(
2571                        Res::SelfTyAlias {
2572                            alias_to: item_def_id,
2573                            forbid_generic: false,
2574                            is_trait_impl: false,
2575                        },
2576                        |this| {
2577                            visit::walk_item(this, item);
2578                        },
2579                    );
2580                },
2581            );
2582        });
2583    }
2584
2585    fn future_proof_import(&mut self, use_tree: &UseTree) {
2586        if let [segment, rest @ ..] = use_tree.prefix.segments.as_slice() {
2587            let ident = segment.ident;
2588            if ident.is_path_segment_keyword() || ident.span.is_rust_2015() {
2589                return;
2590            }
2591
2592            let nss = match use_tree.kind {
2593                UseTreeKind::Simple(..) if rest.is_empty() => &[TypeNS, ValueNS][..],
2594                _ => &[TypeNS],
2595            };
2596            let report_error = |this: &Self, ns| {
2597                if this.should_report_errs() {
2598                    let what = if ns == TypeNS { "type parameters" } else { "local variables" };
2599                    this.r.dcx().emit_err(errors::ImportsCannotReferTo { span: ident.span, what });
2600                }
2601            };
2602
2603            for &ns in nss {
2604                match self.maybe_resolve_ident_in_lexical_scope(ident, ns) {
2605                    Some(LexicalScopeBinding::Res(..)) => {
2606                        report_error(self, ns);
2607                    }
2608                    Some(LexicalScopeBinding::Item(binding)) => {
2609                        if let Some(LexicalScopeBinding::Res(..)) =
2610                            self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding))
2611                        {
2612                            report_error(self, ns);
2613                        }
2614                    }
2615                    None => {}
2616                }
2617            }
2618        } else if let UseTreeKind::Nested { items, .. } = &use_tree.kind {
2619            for (use_tree, _) in items {
2620                self.future_proof_import(use_tree);
2621            }
2622        }
2623    }
2624
2625    fn resolve_item(&mut self, item: &'ast Item) {
2626        let mod_inner_docs =
2627            matches!(item.kind, ItemKind::Mod(..)) && rustdoc::inner_docs(&item.attrs);
2628        if !mod_inner_docs && !matches!(item.kind, ItemKind::Impl(..) | ItemKind::Use(..)) {
2629            self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
2630        }
2631
2632        let name = item.ident.name;
2633        debug!("(resolving item) resolving {} ({:?})", name, item.kind);
2634
2635        let def_kind = self.r.local_def_kind(item.id);
2636        match item.kind {
2637            ItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
2638                self.with_generic_param_rib(
2639                    &generics.params,
2640                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
2641                    LifetimeRibKind::Generics {
2642                        binder: item.id,
2643                        kind: LifetimeBinderKind::Item,
2644                        span: generics.span,
2645                    },
2646                    |this| visit::walk_item(this, item),
2647                );
2648            }
2649
2650            ItemKind::Fn(box Fn { ref generics, ref define_opaque, .. }) => {
2651                self.with_generic_param_rib(
2652                    &generics.params,
2653                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
2654                    LifetimeRibKind::Generics {
2655                        binder: item.id,
2656                        kind: LifetimeBinderKind::Function,
2657                        span: generics.span,
2658                    },
2659                    |this| visit::walk_item(this, item),
2660                );
2661                self.resolve_define_opaques(define_opaque);
2662            }
2663
2664            ItemKind::Enum(_, ref generics)
2665            | ItemKind::Struct(_, ref generics)
2666            | ItemKind::Union(_, ref generics) => {
2667                self.resolve_adt(item, generics);
2668            }
2669
2670            ItemKind::Impl(box Impl {
2671                ref generics,
2672                ref of_trait,
2673                ref self_ty,
2674                items: ref impl_items,
2675                ..
2676            }) => {
2677                self.diag_metadata.current_impl_items = Some(impl_items);
2678                self.resolve_implementation(
2679                    &item.attrs,
2680                    generics,
2681                    of_trait,
2682                    self_ty,
2683                    item.id,
2684                    impl_items,
2685                );
2686                self.diag_metadata.current_impl_items = None;
2687            }
2688
2689            ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
2690                // Create a new rib for the trait-wide type parameters.
2691                self.with_generic_param_rib(
2692                    &generics.params,
2693                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
2694                    LifetimeRibKind::Generics {
2695                        binder: item.id,
2696                        kind: LifetimeBinderKind::Item,
2697                        span: generics.span,
2698                    },
2699                    |this| {
2700                        let local_def_id = this.r.local_def_id(item.id).to_def_id();
2701                        this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
2702                            this.visit_generics(generics);
2703                            walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits);
2704                            this.resolve_trait_items(items);
2705                        });
2706                    },
2707                );
2708            }
2709
2710            ItemKind::TraitAlias(ref generics, ref bounds) => {
2711                // Create a new rib for the trait-wide type parameters.
2712                self.with_generic_param_rib(
2713                    &generics.params,
2714                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
2715                    LifetimeRibKind::Generics {
2716                        binder: item.id,
2717                        kind: LifetimeBinderKind::Item,
2718                        span: generics.span,
2719                    },
2720                    |this| {
2721                        let local_def_id = this.r.local_def_id(item.id).to_def_id();
2722                        this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
2723                            this.visit_generics(generics);
2724                            walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
2725                        });
2726                    },
2727                );
2728            }
2729
2730            ItemKind::Mod(..) => {
2731                self.with_mod_rib(item.id, |this| {
2732                    if mod_inner_docs {
2733                        this.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
2734                    }
2735                    let old_macro_rules = this.parent_scope.macro_rules;
2736                    visit::walk_item(this, item);
2737                    // Maintain macro_rules scopes in the same way as during early resolution
2738                    // for diagnostics and doc links.
2739                    if item.attrs.iter().all(|attr| {
2740                        !attr.has_name(sym::macro_use) && !attr.has_name(sym::macro_escape)
2741                    }) {
2742                        this.parent_scope.macro_rules = old_macro_rules;
2743                    }
2744                });
2745            }
2746
2747            ItemKind::Static(box ast::StaticItem {
2748                ref ty, ref expr, ref define_opaque, ..
2749            }) => {
2750                self.with_static_rib(def_kind, |this| {
2751                    this.with_lifetime_rib(
2752                        LifetimeRibKind::Elided(LifetimeRes::Static {
2753                            suppress_elision_warning: true,
2754                        }),
2755                        |this| {
2756                            this.visit_ty(ty);
2757                        },
2758                    );
2759                    if let Some(expr) = expr {
2760                        // We already forbid generic params because of the above item rib,
2761                        // so it doesn't matter whether this is a trivial constant.
2762                        this.resolve_const_body(expr, Some((item.ident, ConstantItemKind::Static)));
2763                    }
2764                });
2765                self.resolve_define_opaques(define_opaque);
2766            }
2767
2768            ItemKind::Const(box ast::ConstItem {
2769                ref generics,
2770                ref ty,
2771                ref expr,
2772                ref define_opaque,
2773                ..
2774            }) => {
2775                self.with_generic_param_rib(
2776                    &generics.params,
2777                    RibKind::Item(
2778                        if self.r.tcx.features().generic_const_items() {
2779                            HasGenericParams::Yes(generics.span)
2780                        } else {
2781                            HasGenericParams::No
2782                        },
2783                        def_kind,
2784                    ),
2785                    LifetimeRibKind::Generics {
2786                        binder: item.id,
2787                        kind: LifetimeBinderKind::ConstItem,
2788                        span: generics.span,
2789                    },
2790                    |this| {
2791                        this.visit_generics(generics);
2792
2793                        this.with_lifetime_rib(
2794                            LifetimeRibKind::Elided(LifetimeRes::Static {
2795                                suppress_elision_warning: true,
2796                            }),
2797                            |this| this.visit_ty(ty),
2798                        );
2799
2800                        if let Some(expr) = expr {
2801                            this.resolve_const_body(
2802                                expr,
2803                                Some((item.ident, ConstantItemKind::Const)),
2804                            );
2805                        }
2806                    },
2807                );
2808                self.resolve_define_opaques(define_opaque);
2809            }
2810
2811            ItemKind::Use(ref use_tree) => {
2812                let maybe_exported = match use_tree.kind {
2813                    UseTreeKind::Simple(_) | UseTreeKind::Glob => MaybeExported::Ok(item.id),
2814                    UseTreeKind::Nested { .. } => MaybeExported::NestedUse(&item.vis),
2815                };
2816                self.resolve_doc_links(&item.attrs, maybe_exported);
2817
2818                self.future_proof_import(use_tree);
2819            }
2820
2821            ItemKind::MacroDef(ref macro_def) => {
2822                // Maintain macro_rules scopes in the same way as during early resolution
2823                // for diagnostics and doc links.
2824                if macro_def.macro_rules {
2825                    let def_id = self.r.local_def_id(item.id);
2826                    self.parent_scope.macro_rules = self.r.macro_rules_scopes[&def_id];
2827                }
2828            }
2829
2830            ItemKind::ForeignMod(_) | ItemKind::GlobalAsm(_) => {
2831                visit::walk_item(self, item);
2832            }
2833
2834            ItemKind::Delegation(ref delegation) => {
2835                let span = delegation.path.segments.last().unwrap().ident.span;
2836                self.with_generic_param_rib(
2837                    &[],
2838                    RibKind::Item(HasGenericParams::Yes(span), def_kind),
2839                    LifetimeRibKind::Generics {
2840                        binder: item.id,
2841                        kind: LifetimeBinderKind::Function,
2842                        span,
2843                    },
2844                    |this| this.resolve_delegation(delegation),
2845                );
2846            }
2847
2848            ItemKind::ExternCrate(..) => {}
2849
2850            ItemKind::MacCall(_) | ItemKind::DelegationMac(..) => {
2851                panic!("unexpanded macro in resolve!")
2852            }
2853        }
2854    }
2855
2856    fn with_generic_param_rib<'c, F>(
2857        &'c mut self,
2858        params: &'c [GenericParam],
2859        kind: RibKind<'ra>,
2860        lifetime_kind: LifetimeRibKind,
2861        f: F,
2862    ) where
2863        F: FnOnce(&mut Self),
2864    {
2865        debug!("with_generic_param_rib");
2866        let LifetimeRibKind::Generics { binder, span: generics_span, kind: generics_kind, .. } =
2867            lifetime_kind
2868        else {
2869            panic!()
2870        };
2871
2872        let mut function_type_rib = Rib::new(kind);
2873        let mut function_value_rib = Rib::new(kind);
2874        let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind);
2875
2876        // Only check for shadowed bindings if we're declaring new params.
2877        if !params.is_empty() {
2878            let mut seen_bindings = FxHashMap::default();
2879            // Store all seen lifetimes names from outer scopes.
2880            let mut seen_lifetimes = FxHashSet::default();
2881
2882            // We also can't shadow bindings from associated parent items.
2883            for ns in [ValueNS, TypeNS] {
2884                for parent_rib in self.ribs[ns].iter().rev() {
2885                    // Break at mod level, to account for nested items which are
2886                    // allowed to shadow generic param names.
2887                    if matches!(parent_rib.kind, RibKind::Module(..)) {
2888                        break;
2889                    }
2890
2891                    seen_bindings
2892                        .extend(parent_rib.bindings.keys().map(|ident| (*ident, ident.span)));
2893                }
2894            }
2895
2896            // Forbid shadowing lifetime bindings
2897            for rib in self.lifetime_ribs.iter().rev() {
2898                seen_lifetimes.extend(rib.bindings.iter().map(|(ident, _)| *ident));
2899                if let LifetimeRibKind::Item = rib.kind {
2900                    break;
2901                }
2902            }
2903
2904            for param in params {
2905                let ident = param.ident.normalize_to_macros_2_0();
2906                debug!("with_generic_param_rib: {}", param.id);
2907
2908                if let GenericParamKind::Lifetime = param.kind
2909                    && let Some(&original) = seen_lifetimes.get(&ident)
2910                {
2911                    diagnostics::signal_lifetime_shadowing(self.r.tcx.sess, original, param.ident);
2912                    // Record lifetime res, so lowering knows there is something fishy.
2913                    self.record_lifetime_param(param.id, LifetimeRes::Error);
2914                    continue;
2915                }
2916
2917                match seen_bindings.entry(ident) {
2918                    Entry::Occupied(entry) => {
2919                        let span = *entry.get();
2920                        let err = ResolutionError::NameAlreadyUsedInParameterList(ident, span);
2921                        self.report_error(param.ident.span, err);
2922                        let rib = match param.kind {
2923                            GenericParamKind::Lifetime => {
2924                                // Record lifetime res, so lowering knows there is something fishy.
2925                                self.record_lifetime_param(param.id, LifetimeRes::Error);
2926                                continue;
2927                            }
2928                            GenericParamKind::Type { .. } => &mut function_type_rib,
2929                            GenericParamKind::Const { .. } => &mut function_value_rib,
2930                        };
2931
2932                        // Taint the resolution in case of errors to prevent follow up errors in typeck
2933                        self.r.record_partial_res(param.id, PartialRes::new(Res::Err));
2934                        rib.bindings.insert(ident, Res::Err);
2935                        continue;
2936                    }
2937                    Entry::Vacant(entry) => {
2938                        entry.insert(param.ident.span);
2939                    }
2940                }
2941
2942                if param.ident.name == kw::UnderscoreLifetime {
2943                    self.r
2944                        .dcx()
2945                        .emit_err(errors::UnderscoreLifetimeIsReserved { span: param.ident.span });
2946                    // Record lifetime res, so lowering knows there is something fishy.
2947                    self.record_lifetime_param(param.id, LifetimeRes::Error);
2948                    continue;
2949                }
2950
2951                if param.ident.name == kw::StaticLifetime {
2952                    self.r.dcx().emit_err(errors::StaticLifetimeIsReserved {
2953                        span: param.ident.span,
2954                        lifetime: param.ident,
2955                    });
2956                    // Record lifetime res, so lowering knows there is something fishy.
2957                    self.record_lifetime_param(param.id, LifetimeRes::Error);
2958                    continue;
2959                }
2960
2961                let def_id = self.r.local_def_id(param.id);
2962
2963                // Plain insert (no renaming).
2964                let (rib, def_kind) = match param.kind {
2965                    GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
2966                    GenericParamKind::Const { .. } => {
2967                        (&mut function_value_rib, DefKind::ConstParam)
2968                    }
2969                    GenericParamKind::Lifetime => {
2970                        let res = LifetimeRes::Param { param: def_id, binder };
2971                        self.record_lifetime_param(param.id, res);
2972                        function_lifetime_rib.bindings.insert(ident, (param.id, res));
2973                        continue;
2974                    }
2975                };
2976
2977                let res = match kind {
2978                    RibKind::Item(..) | RibKind::AssocItem => {
2979                        Res::Def(def_kind, def_id.to_def_id())
2980                    }
2981                    RibKind::Normal => {
2982                        // FIXME(non_lifetime_binders): Stop special-casing
2983                        // const params to error out here.
2984                        if self.r.tcx.features().non_lifetime_binders()
2985                            && matches!(param.kind, GenericParamKind::Type { .. })
2986                        {
2987                            Res::Def(def_kind, def_id.to_def_id())
2988                        } else {
2989                            Res::Err
2990                        }
2991                    }
2992                    _ => span_bug!(param.ident.span, "Unexpected rib kind {:?}", kind),
2993                };
2994                self.r.record_partial_res(param.id, PartialRes::new(res));
2995                rib.bindings.insert(ident, res);
2996            }
2997        }
2998
2999        self.lifetime_ribs.push(function_lifetime_rib);
3000        self.ribs[ValueNS].push(function_value_rib);
3001        self.ribs[TypeNS].push(function_type_rib);
3002
3003        f(self);
3004
3005        self.ribs[TypeNS].pop();
3006        self.ribs[ValueNS].pop();
3007        let function_lifetime_rib = self.lifetime_ribs.pop().unwrap();
3008
3009        // Do not account for the parameters we just bound for function lifetime elision.
3010        if let Some(ref mut candidates) = self.lifetime_elision_candidates {
3011            for (_, res) in function_lifetime_rib.bindings.values() {
3012                candidates.retain(|(r, _)| r != res);
3013            }
3014        }
3015
3016        if let LifetimeBinderKind::BareFnType
3017        | LifetimeBinderKind::WhereBound
3018        | LifetimeBinderKind::Function
3019        | LifetimeBinderKind::ImplBlock = generics_kind
3020        {
3021            self.maybe_report_lifetime_uses(generics_span, params)
3022        }
3023    }
3024
3025    fn with_label_rib(&mut self, kind: RibKind<'ra>, f: impl FnOnce(&mut Self)) {
3026        self.label_ribs.push(Rib::new(kind));
3027        f(self);
3028        self.label_ribs.pop();
3029    }
3030
3031    fn with_static_rib(&mut self, def_kind: DefKind, f: impl FnOnce(&mut Self)) {
3032        let kind = RibKind::Item(HasGenericParams::No, def_kind);
3033        self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
3034    }
3035
3036    // HACK(min_const_generics, generic_const_exprs): We
3037    // want to keep allowing `[0; size_of::<*mut T>()]`
3038    // with a future compat lint for now. We do this by adding an
3039    // additional special case for repeat expressions.
3040    //
3041    // Note that we intentionally still forbid `[0; N + 1]` during
3042    // name resolution so that we don't extend the future
3043    // compat lint to new cases.
3044    #[instrument(level = "debug", skip(self, f))]
3045    fn with_constant_rib(
3046        &mut self,
3047        is_repeat: IsRepeatExpr,
3048        may_use_generics: ConstantHasGenerics,
3049        item: Option<(Ident, ConstantItemKind)>,
3050        f: impl FnOnce(&mut Self),
3051    ) {
3052        let f = |this: &mut Self| {
3053            this.with_rib(ValueNS, RibKind::ConstantItem(may_use_generics, item), |this| {
3054                this.with_rib(
3055                    TypeNS,
3056                    RibKind::ConstantItem(
3057                        may_use_generics.force_yes_if(is_repeat == IsRepeatExpr::Yes),
3058                        item,
3059                    ),
3060                    |this| {
3061                        this.with_label_rib(RibKind::ConstantItem(may_use_generics, item), f);
3062                    },
3063                )
3064            })
3065        };
3066
3067        if let ConstantHasGenerics::No(cause) = may_use_generics {
3068            self.with_lifetime_rib(LifetimeRibKind::ConcreteAnonConst(cause), f)
3069        } else {
3070            f(self)
3071        }
3072    }
3073
3074    fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
3075        // Handle nested impls (inside fn bodies)
3076        let previous_value =
3077            replace(&mut self.diag_metadata.current_self_type, Some(self_type.clone()));
3078        let result = f(self);
3079        self.diag_metadata.current_self_type = previous_value;
3080        result
3081    }
3082
3083    fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
3084        let previous_value = replace(&mut self.diag_metadata.current_self_item, Some(self_item.id));
3085        let result = f(self);
3086        self.diag_metadata.current_self_item = previous_value;
3087        result
3088    }
3089
3090    /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
3091    fn resolve_trait_items(&mut self, trait_items: &'ast [P<AssocItem>]) {
3092        let trait_assoc_items =
3093            replace(&mut self.diag_metadata.current_trait_assoc_items, Some(trait_items));
3094
3095        let walk_assoc_item =
3096            |this: &mut Self, generics: &Generics, kind, item: &'ast AssocItem| {
3097                this.with_generic_param_rib(
3098                    &generics.params,
3099                    RibKind::AssocItem,
3100                    LifetimeRibKind::Generics { binder: item.id, span: generics.span, kind },
3101                    |this| visit::walk_assoc_item(this, item, AssocCtxt::Trait),
3102                );
3103            };
3104
3105        for item in trait_items {
3106            self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
3107            match &item.kind {
3108                AssocItemKind::Const(box ast::ConstItem {
3109                    generics,
3110                    ty,
3111                    expr,
3112                    define_opaque,
3113                    ..
3114                }) => {
3115                    self.with_generic_param_rib(
3116                        &generics.params,
3117                        RibKind::AssocItem,
3118                        LifetimeRibKind::Generics {
3119                            binder: item.id,
3120                            span: generics.span,
3121                            kind: LifetimeBinderKind::ConstItem,
3122                        },
3123                        |this| {
3124                            this.with_lifetime_rib(
3125                                LifetimeRibKind::StaticIfNoLifetimeInScope {
3126                                    lint_id: item.id,
3127                                    emit_lint: false,
3128                                },
3129                                |this| {
3130                                    this.visit_generics(generics);
3131                                    this.visit_ty(ty);
3132
3133                                    // Only impose the restrictions of `ConstRibKind` for an
3134                                    // actual constant expression in a provided default.
3135                                    if let Some(expr) = expr {
3136                                        // We allow arbitrary const expressions inside of associated consts,
3137                                        // even if they are potentially not const evaluatable.
3138                                        //
3139                                        // Type parameters can already be used and as associated consts are
3140                                        // not used as part of the type system, this is far less surprising.
3141                                        this.resolve_const_body(expr, None);
3142                                    }
3143                                },
3144                            )
3145                        },
3146                    );
3147
3148                    self.resolve_define_opaques(define_opaque);
3149                }
3150                AssocItemKind::Fn(box Fn { generics, define_opaque, .. }) => {
3151                    walk_assoc_item(self, generics, LifetimeBinderKind::Function, item);
3152
3153                    self.resolve_define_opaques(define_opaque);
3154                }
3155                AssocItemKind::Delegation(delegation) => {
3156                    self.with_generic_param_rib(
3157                        &[],
3158                        RibKind::AssocItem,
3159                        LifetimeRibKind::Generics {
3160                            binder: item.id,
3161                            kind: LifetimeBinderKind::Function,
3162                            span: delegation.path.segments.last().unwrap().ident.span,
3163                        },
3164                        |this| this.resolve_delegation(delegation),
3165                    );
3166                }
3167                AssocItemKind::Type(box TyAlias { generics, .. }) => self
3168                    .with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
3169                        walk_assoc_item(this, generics, LifetimeBinderKind::Item, item)
3170                    }),
3171                AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
3172                    panic!("unexpanded macro in resolve!")
3173                }
3174            };
3175        }
3176
3177        self.diag_metadata.current_trait_assoc_items = trait_assoc_items;
3178    }
3179
3180    /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
3181    fn with_optional_trait_ref<T>(
3182        &mut self,
3183        opt_trait_ref: Option<&TraitRef>,
3184        self_type: &'ast Ty,
3185        f: impl FnOnce(&mut Self, Option<DefId>) -> T,
3186    ) -> T {
3187        let mut new_val = None;
3188        let mut new_id = None;
3189        if let Some(trait_ref) = opt_trait_ref {
3190            let path: Vec<_> = Segment::from_path(&trait_ref.path);
3191            self.diag_metadata.currently_processing_impl_trait =
3192                Some((trait_ref.clone(), self_type.clone()));
3193            let res = self.smart_resolve_path_fragment(
3194                &None,
3195                &path,
3196                PathSource::Trait(AliasPossibility::No),
3197                Finalize::new(trait_ref.ref_id, trait_ref.path.span),
3198                RecordPartialRes::Yes,
3199                None,
3200            );
3201            self.diag_metadata.currently_processing_impl_trait = None;
3202            if let Some(def_id) = res.expect_full_res().opt_def_id() {
3203                new_id = Some(def_id);
3204                new_val = Some((self.r.expect_module(def_id), trait_ref.clone()));
3205            }
3206        }
3207        let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
3208        let result = f(self, new_id);
3209        self.current_trait_ref = original_trait_ref;
3210        result
3211    }
3212
3213    fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
3214        let mut self_type_rib = Rib::new(RibKind::Normal);
3215
3216        // Plain insert (no renaming, since types are not currently hygienic)
3217        self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
3218        self.ribs[ns].push(self_type_rib);
3219        f(self);
3220        self.ribs[ns].pop();
3221    }
3222
3223    fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
3224        self.with_self_rib_ns(TypeNS, self_res, f)
3225    }
3226
3227    fn resolve_implementation(
3228        &mut self,
3229        attrs: &[ast::Attribute],
3230        generics: &'ast Generics,
3231        opt_trait_reference: &'ast Option<TraitRef>,
3232        self_type: &'ast Ty,
3233        item_id: NodeId,
3234        impl_items: &'ast [P<AssocItem>],
3235    ) {
3236        debug!("resolve_implementation");
3237        // If applicable, create a rib for the type parameters.
3238        self.with_generic_param_rib(
3239            &generics.params,
3240            RibKind::Item(HasGenericParams::Yes(generics.span), self.r.local_def_kind(item_id)),
3241            LifetimeRibKind::Generics {
3242                span: generics.span,
3243                binder: item_id,
3244                kind: LifetimeBinderKind::ImplBlock,
3245            },
3246            |this| {
3247                // Dummy self type for better errors if `Self` is used in the trait path.
3248                this.with_self_rib(Res::SelfTyParam { trait_: LOCAL_CRATE.as_def_id() }, |this| {
3249                    this.with_lifetime_rib(
3250                        LifetimeRibKind::AnonymousCreateParameter {
3251                            binder: item_id,
3252                            report_in_path: true
3253                        },
3254                        |this| {
3255                            // Resolve the trait reference, if necessary.
3256                            this.with_optional_trait_ref(
3257                                opt_trait_reference.as_ref(),
3258                                self_type,
3259                                |this, trait_id| {
3260                                    this.resolve_doc_links(attrs, MaybeExported::Impl(trait_id));
3261
3262                                    let item_def_id = this.r.local_def_id(item_id);
3263
3264                                    // Register the trait definitions from here.
3265                                    if let Some(trait_id) = trait_id {
3266                                        this.r
3267                                            .trait_impls
3268                                            .entry(trait_id)
3269                                            .or_default()
3270                                            .push(item_def_id);
3271                                    }
3272
3273                                    let item_def_id = item_def_id.to_def_id();
3274                                    let res = Res::SelfTyAlias {
3275                                        alias_to: item_def_id,
3276                                        forbid_generic: false,
3277                                        is_trait_impl: trait_id.is_some()
3278                                    };
3279                                    this.with_self_rib(res, |this| {
3280                                        if let Some(trait_ref) = opt_trait_reference.as_ref() {
3281                                            // Resolve type arguments in the trait path.
3282                                            visit::walk_trait_ref(this, trait_ref);
3283                                        }
3284                                        // Resolve the self type.
3285                                        this.visit_ty(self_type);
3286                                        // Resolve the generic parameters.
3287                                        this.visit_generics(generics);
3288
3289                                        // Resolve the items within the impl.
3290                                        this.with_current_self_type(self_type, |this| {
3291                                            this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
3292                                                debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
3293                                                let mut seen_trait_items = Default::default();
3294                                                for item in impl_items {
3295                                                    this.resolve_impl_item(&**item, &mut seen_trait_items, trait_id);
3296                                                }
3297                                            });
3298                                        });
3299                                    });
3300                                },
3301                            )
3302                        },
3303                    );
3304                });
3305            },
3306        );
3307    }
3308
3309    fn resolve_impl_item(
3310        &mut self,
3311        item: &'ast AssocItem,
3312        seen_trait_items: &mut FxHashMap<DefId, Span>,
3313        trait_id: Option<DefId>,
3314    ) {
3315        use crate::ResolutionError::*;
3316        self.resolve_doc_links(&item.attrs, MaybeExported::ImplItem(trait_id.ok_or(&item.vis)));
3317        match &item.kind {
3318            AssocItemKind::Const(box ast::ConstItem {
3319                generics, ty, expr, define_opaque, ..
3320            }) => {
3321                debug!("resolve_implementation AssocItemKind::Const");
3322                self.with_generic_param_rib(
3323                    &generics.params,
3324                    RibKind::AssocItem,
3325                    LifetimeRibKind::Generics {
3326                        binder: item.id,
3327                        span: generics.span,
3328                        kind: LifetimeBinderKind::ConstItem,
3329                    },
3330                    |this| {
3331                        this.with_lifetime_rib(
3332                            LifetimeRibKind::StaticIfNoLifetimeInScope {
3333                                lint_id: item.id,
3334                                // In impls, it's not a hard error yet due to backcompat.
3335                                emit_lint: true,
3336                            },
3337                            |this| {
3338                                // If this is a trait impl, ensure the const
3339                                // exists in trait
3340                                this.check_trait_item(
3341                                    item.id,
3342                                    item.ident,
3343                                    &item.kind,
3344                                    ValueNS,
3345                                    item.span,
3346                                    seen_trait_items,
3347                                    |i, s, c| ConstNotMemberOfTrait(i, s, c),
3348                                );
3349
3350                                this.visit_generics(generics);
3351                                this.visit_ty(ty);
3352                                if let Some(expr) = expr {
3353                                    // We allow arbitrary const expressions inside of associated consts,
3354                                    // even if they are potentially not const evaluatable.
3355                                    //
3356                                    // Type parameters can already be used and as associated consts are
3357                                    // not used as part of the type system, this is far less surprising.
3358                                    this.resolve_const_body(expr, None);
3359                                }
3360                            },
3361                        );
3362                    },
3363                );
3364                self.resolve_define_opaques(define_opaque);
3365            }
3366            AssocItemKind::Fn(box Fn { generics, define_opaque, .. }) => {
3367                debug!("resolve_implementation AssocItemKind::Fn");
3368                // We also need a new scope for the impl item type parameters.
3369                self.with_generic_param_rib(
3370                    &generics.params,
3371                    RibKind::AssocItem,
3372                    LifetimeRibKind::Generics {
3373                        binder: item.id,
3374                        span: generics.span,
3375                        kind: LifetimeBinderKind::Function,
3376                    },
3377                    |this| {
3378                        // If this is a trait impl, ensure the method
3379                        // exists in trait
3380                        this.check_trait_item(
3381                            item.id,
3382                            item.ident,
3383                            &item.kind,
3384                            ValueNS,
3385                            item.span,
3386                            seen_trait_items,
3387                            |i, s, c| MethodNotMemberOfTrait(i, s, c),
3388                        );
3389
3390                        visit::walk_assoc_item(this, item, AssocCtxt::Impl { of_trait: true })
3391                    },
3392                );
3393
3394                self.resolve_define_opaques(define_opaque);
3395            }
3396            AssocItemKind::Type(box TyAlias { generics, .. }) => {
3397                self.diag_metadata.in_non_gat_assoc_type = Some(generics.params.is_empty());
3398                debug!("resolve_implementation AssocItemKind::Type");
3399                // We also need a new scope for the impl item type parameters.
3400                self.with_generic_param_rib(
3401                    &generics.params,
3402                    RibKind::AssocItem,
3403                    LifetimeRibKind::Generics {
3404                        binder: item.id,
3405                        span: generics.span,
3406                        kind: LifetimeBinderKind::Item,
3407                    },
3408                    |this| {
3409                        this.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
3410                            // If this is a trait impl, ensure the type
3411                            // exists in trait
3412                            this.check_trait_item(
3413                                item.id,
3414                                item.ident,
3415                                &item.kind,
3416                                TypeNS,
3417                                item.span,
3418                                seen_trait_items,
3419                                |i, s, c| TypeNotMemberOfTrait(i, s, c),
3420                            );
3421
3422                            visit::walk_assoc_item(this, item, AssocCtxt::Impl { of_trait: true })
3423                        });
3424                    },
3425                );
3426                self.diag_metadata.in_non_gat_assoc_type = None;
3427            }
3428            AssocItemKind::Delegation(box delegation) => {
3429                debug!("resolve_implementation AssocItemKind::Delegation");
3430                self.with_generic_param_rib(
3431                    &[],
3432                    RibKind::AssocItem,
3433                    LifetimeRibKind::Generics {
3434                        binder: item.id,
3435                        kind: LifetimeBinderKind::Function,
3436                        span: delegation.path.segments.last().unwrap().ident.span,
3437                    },
3438                    |this| {
3439                        this.check_trait_item(
3440                            item.id,
3441                            item.ident,
3442                            &item.kind,
3443                            ValueNS,
3444                            item.span,
3445                            seen_trait_items,
3446                            |i, s, c| MethodNotMemberOfTrait(i, s, c),
3447                        );
3448
3449                        this.resolve_delegation(delegation)
3450                    },
3451                );
3452            }
3453            AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
3454                panic!("unexpanded macro in resolve!")
3455            }
3456        }
3457    }
3458
3459    fn check_trait_item<F>(
3460        &mut self,
3461        id: NodeId,
3462        mut ident: Ident,
3463        kind: &AssocItemKind,
3464        ns: Namespace,
3465        span: Span,
3466        seen_trait_items: &mut FxHashMap<DefId, Span>,
3467        err: F,
3468    ) where
3469        F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'ra>,
3470    {
3471        // If there is a TraitRef in scope for an impl, then the method must be in the trait.
3472        let Some((module, _)) = self.current_trait_ref else {
3473            return;
3474        };
3475        ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
3476        let key = BindingKey::new(ident, ns);
3477        let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
3478        debug!(?binding);
3479        if binding.is_none() {
3480            // We could not find the trait item in the correct namespace.
3481            // Check the other namespace to report an error.
3482            let ns = match ns {
3483                ValueNS => TypeNS,
3484                TypeNS => ValueNS,
3485                _ => ns,
3486            };
3487            let key = BindingKey::new(ident, ns);
3488            binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
3489            debug!(?binding);
3490        }
3491
3492        let feed_visibility = |this: &mut Self, def_id| {
3493            let vis = this.r.tcx.visibility(def_id);
3494            let vis = if vis.is_visible_locally() {
3495                vis.expect_local()
3496            } else {
3497                this.r.dcx().span_delayed_bug(
3498                    span,
3499                    "error should be emitted when an unexpected trait item is used",
3500                );
3501                rustc_middle::ty::Visibility::Public
3502            };
3503            this.r.feed_visibility(this.r.feed(id), vis);
3504        };
3505
3506        let Some(binding) = binding else {
3507            // We could not find the method: report an error.
3508            let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
3509            let path = &self.current_trait_ref.as_ref().unwrap().1.path;
3510            let path_names = path_names_to_string(path);
3511            self.report_error(span, err(ident, path_names, candidate));
3512            feed_visibility(self, module.def_id());
3513            return;
3514        };
3515
3516        let res = binding.res();
3517        let Res::Def(def_kind, id_in_trait) = res else { bug!() };
3518        feed_visibility(self, id_in_trait);
3519
3520        match seen_trait_items.entry(id_in_trait) {
3521            Entry::Occupied(entry) => {
3522                self.report_error(
3523                    span,
3524                    ResolutionError::TraitImplDuplicate {
3525                        name: ident,
3526                        old_span: *entry.get(),
3527                        trait_item_span: binding.span,
3528                    },
3529                );
3530                return;
3531            }
3532            Entry::Vacant(entry) => {
3533                entry.insert(span);
3534            }
3535        };
3536
3537        match (def_kind, kind) {
3538            (DefKind::AssocTy, AssocItemKind::Type(..))
3539            | (DefKind::AssocFn, AssocItemKind::Fn(..))
3540            | (DefKind::AssocConst, AssocItemKind::Const(..))
3541            | (DefKind::AssocFn, AssocItemKind::Delegation(..)) => {
3542                self.r.record_partial_res(id, PartialRes::new(res));
3543                return;
3544            }
3545            _ => {}
3546        }
3547
3548        // The method kind does not correspond to what appeared in the trait, report.
3549        let path = &self.current_trait_ref.as_ref().unwrap().1.path;
3550        let (code, kind) = match kind {
3551            AssocItemKind::Const(..) => (E0323, "const"),
3552            AssocItemKind::Fn(..) => (E0324, "method"),
3553            AssocItemKind::Type(..) => (E0325, "type"),
3554            AssocItemKind::Delegation(..) => (E0324, "method"),
3555            AssocItemKind::MacCall(..) | AssocItemKind::DelegationMac(..) => {
3556                span_bug!(span, "unexpanded macro")
3557            }
3558        };
3559        let trait_path = path_names_to_string(path);
3560        self.report_error(
3561            span,
3562            ResolutionError::TraitImplMismatch {
3563                name: ident,
3564                kind,
3565                code,
3566                trait_path,
3567                trait_item_span: binding.span,
3568            },
3569        );
3570    }
3571
3572    fn resolve_const_body(&mut self, expr: &'ast Expr, item: Option<(Ident, ConstantItemKind)>) {
3573        self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
3574            this.with_constant_rib(IsRepeatExpr::No, ConstantHasGenerics::Yes, item, |this| {
3575                this.visit_expr(expr)
3576            });
3577        })
3578    }
3579
3580    fn resolve_delegation(&mut self, delegation: &'ast Delegation) {
3581        self.smart_resolve_path(
3582            delegation.id,
3583            &delegation.qself,
3584            &delegation.path,
3585            PathSource::Delegation,
3586        );
3587        if let Some(qself) = &delegation.qself {
3588            self.visit_ty(&qself.ty);
3589        }
3590        self.visit_path(&delegation.path, delegation.id);
3591        let Some(body) = &delegation.body else { return };
3592        self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
3593            // `PatBoundCtx` is not necessary in this context
3594            let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
3595
3596            let span = delegation.path.segments.last().unwrap().ident.span;
3597            this.fresh_binding(
3598                Ident::new(kw::SelfLower, span),
3599                delegation.id,
3600                PatternSource::FnParam,
3601                &mut bindings,
3602            );
3603            this.visit_block(body);
3604        });
3605    }
3606
3607    fn resolve_params(&mut self, params: &'ast [Param]) {
3608        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
3609        self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
3610            for Param { pat, .. } in params {
3611                this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
3612            }
3613        });
3614        for Param { ty, .. } in params {
3615            self.visit_ty(ty);
3616        }
3617    }
3618
3619    fn resolve_local(&mut self, local: &'ast Local) {
3620        debug!("resolving local ({:?})", local);
3621        // Resolve the type.
3622        visit_opt!(self, visit_ty, &local.ty);
3623
3624        // Resolve the initializer.
3625        if let Some((init, els)) = local.kind.init_else_opt() {
3626            self.visit_expr(init);
3627
3628            // Resolve the `else` block
3629            if let Some(els) = els {
3630                self.visit_block(els);
3631            }
3632        }
3633
3634        // Resolve the pattern.
3635        self.resolve_pattern_top(&local.pat, PatternSource::Let);
3636    }
3637
3638    /// Build a map from pattern identifiers to binding-info's, and check the bindings are
3639    /// consistent when encountering or-patterns and never patterns.
3640    /// This is done hygienically: this could arise for a macro that expands into an or-pattern
3641    /// where one 'x' was from the user and one 'x' came from the macro.
3642    ///
3643    /// A never pattern by definition indicates an unreachable case. For example, matching on
3644    /// `Result<T, &!>` could look like:
3645    /// ```rust
3646    /// # #![feature(never_type)]
3647    /// # #![feature(never_patterns)]
3648    /// # fn bar(_x: u32) {}
3649    /// let foo: Result<u32, &!> = Ok(0);
3650    /// match foo {
3651    ///     Ok(x) => bar(x),
3652    ///     Err(&!),
3653    /// }
3654    /// ```
3655    /// This extends to product types: `(x, !)` is likewise unreachable. So it doesn't make sense to
3656    /// have a binding here, and we tell the user to use `_` instead.
3657    fn compute_and_check_binding_map(
3658        &mut self,
3659        pat: &Pat,
3660    ) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
3661        let mut binding_map = FxIndexMap::default();
3662        let mut is_never_pat = false;
3663
3664        pat.walk(&mut |pat| {
3665            match pat.kind {
3666                PatKind::Ident(annotation, ident, ref sub_pat)
3667                    if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
3668                {
3669                    binding_map.insert(ident, BindingInfo { span: ident.span, annotation });
3670                }
3671                PatKind::Or(ref ps) => {
3672                    // Check the consistency of this or-pattern and
3673                    // then add all bindings to the larger map.
3674                    match self.compute_and_check_or_pat_binding_map(ps) {
3675                        Ok(bm) => binding_map.extend(bm),
3676                        Err(IsNeverPattern) => is_never_pat = true,
3677                    }
3678                    return false;
3679                }
3680                PatKind::Never => is_never_pat = true,
3681                _ => {}
3682            }
3683
3684            true
3685        });
3686
3687        if is_never_pat {
3688            for (_, binding) in binding_map {
3689                self.report_error(binding.span, ResolutionError::BindingInNeverPattern);
3690            }
3691            Err(IsNeverPattern)
3692        } else {
3693            Ok(binding_map)
3694        }
3695    }
3696
3697    fn is_base_res_local(&self, nid: NodeId) -> bool {
3698        matches!(
3699            self.r.partial_res_map.get(&nid).map(|res| res.expect_full_res()),
3700            Some(Res::Local(..))
3701        )
3702    }
3703
3704    /// Compute the binding map for an or-pattern. Checks that all of the arms in the or-pattern
3705    /// have exactly the same set of bindings, with the same binding modes for each.
3706    /// Returns the computed binding map and a boolean indicating whether the pattern is a never
3707    /// pattern.
3708    ///
3709    /// A never pattern by definition indicates an unreachable case. For example, destructuring a
3710    /// `Result<T, &!>` could look like:
3711    /// ```rust
3712    /// # #![feature(never_type)]
3713    /// # #![feature(never_patterns)]
3714    /// # fn foo() -> Result<bool, &'static !> { Ok(true) }
3715    /// let (Ok(x) | Err(&!)) = foo();
3716    /// # let _ = x;
3717    /// ```
3718    /// Because the `Err(&!)` branch is never reached, it does not need to have the same bindings as
3719    /// the other branches of the or-pattern. So we must ignore never pattern when checking the
3720    /// bindings of an or-pattern.
3721    /// Moreover, if all the subpatterns are never patterns (e.g. `Ok(!) | Err(!)`), then the
3722    /// pattern as a whole counts as a never pattern (since it's definitionallly unreachable).
3723    fn compute_and_check_or_pat_binding_map(
3724        &mut self,
3725        pats: &[P<Pat>],
3726    ) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
3727        let mut missing_vars = FxIndexMap::default();
3728        let mut inconsistent_vars = FxIndexMap::default();
3729
3730        // 1) Compute the binding maps of all arms; we must ignore never patterns here.
3731        let not_never_pats = pats
3732            .iter()
3733            .filter_map(|pat| {
3734                let binding_map = self.compute_and_check_binding_map(pat).ok()?;
3735                Some((binding_map, pat))
3736            })
3737            .collect::<Vec<_>>();
3738
3739        // 2) Record any missing bindings or binding mode inconsistencies.
3740        for (map_outer, pat_outer) in not_never_pats.iter() {
3741            // Check against all arms except for the same pattern which is always self-consistent.
3742            let inners = not_never_pats
3743                .iter()
3744                .filter(|(_, pat)| pat.id != pat_outer.id)
3745                .flat_map(|(map, _)| map);
3746
3747            for (&name, binding_inner) in inners {
3748                match map_outer.get(&name) {
3749                    None => {
3750                        // The inner binding is missing in the outer.
3751                        let binding_error =
3752                            missing_vars.entry(name).or_insert_with(|| BindingError {
3753                                name,
3754                                origin: BTreeSet::new(),
3755                                target: BTreeSet::new(),
3756                                could_be_path: name.as_str().starts_with(char::is_uppercase),
3757                            });
3758                        binding_error.origin.insert(binding_inner.span);
3759                        binding_error.target.insert(pat_outer.span);
3760                    }
3761                    Some(binding_outer) => {
3762                        if binding_outer.annotation != binding_inner.annotation {
3763                            // The binding modes in the outer and inner bindings differ.
3764                            inconsistent_vars
3765                                .entry(name)
3766                                .or_insert((binding_inner.span, binding_outer.span));
3767                        }
3768                    }
3769                }
3770            }
3771        }
3772
3773        // 3) Report all missing variables we found.
3774        for (name, mut v) in missing_vars {
3775            if inconsistent_vars.contains_key(&name) {
3776                v.could_be_path = false;
3777            }
3778            self.report_error(
3779                *v.origin.iter().next().unwrap(),
3780                ResolutionError::VariableNotBoundInPattern(v, self.parent_scope),
3781            );
3782        }
3783
3784        // 4) Report all inconsistencies in binding modes we found.
3785        for (name, v) in inconsistent_vars {
3786            self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(name, v.1));
3787        }
3788
3789        // 5) Bubble up the final binding map.
3790        if not_never_pats.is_empty() {
3791            // All the patterns are never patterns, so the whole or-pattern is one too.
3792            Err(IsNeverPattern)
3793        } else {
3794            let mut binding_map = FxIndexMap::default();
3795            for (bm, _) in not_never_pats {
3796                binding_map.extend(bm);
3797            }
3798            Ok(binding_map)
3799        }
3800    }
3801
3802    /// Check the consistency of bindings wrt or-patterns and never patterns.
3803    fn check_consistent_bindings(&mut self, pat: &'ast Pat) {
3804        let mut is_or_or_never = false;
3805        pat.walk(&mut |pat| match pat.kind {
3806            PatKind::Or(..) | PatKind::Never => {
3807                is_or_or_never = true;
3808                false
3809            }
3810            _ => true,
3811        });
3812        if is_or_or_never {
3813            let _ = self.compute_and_check_binding_map(pat);
3814        }
3815    }
3816
3817    fn resolve_arm(&mut self, arm: &'ast Arm) {
3818        self.with_rib(ValueNS, RibKind::Normal, |this| {
3819            this.resolve_pattern_top(&arm.pat, PatternSource::Match);
3820            visit_opt!(this, visit_expr, &arm.guard);
3821            visit_opt!(this, visit_expr, &arm.body);
3822        });
3823    }
3824
3825    /// Arising from `source`, resolve a top level pattern.
3826    fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
3827        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
3828        self.resolve_pattern(pat, pat_src, &mut bindings);
3829    }
3830
3831    fn resolve_pattern(
3832        &mut self,
3833        pat: &'ast Pat,
3834        pat_src: PatternSource,
3835        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
3836    ) {
3837        // We walk the pattern before declaring the pattern's inner bindings,
3838        // so that we avoid resolving a literal expression to a binding defined
3839        // by the pattern.
3840        visit::walk_pat(self, pat);
3841        self.resolve_pattern_inner(pat, pat_src, bindings);
3842        // This has to happen *after* we determine which pat_idents are variants:
3843        self.check_consistent_bindings(pat);
3844    }
3845
3846    /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
3847    ///
3848    /// ### `bindings`
3849    ///
3850    /// A stack of sets of bindings accumulated.
3851    ///
3852    /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
3853    /// be interpreted as re-binding an already bound binding. This results in an error.
3854    /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
3855    /// in reusing this binding rather than creating a fresh one.
3856    ///
3857    /// When called at the top level, the stack must have a single element
3858    /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
3859    /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
3860    /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
3861    /// When each `p_i` has been dealt with, the top set is merged with its parent.
3862    /// When a whole or-pattern has been dealt with, the thing happens.
3863    ///
3864    /// See the implementation and `fresh_binding` for more details.
3865    #[tracing::instrument(skip(self, bindings), level = "debug")]
3866    fn resolve_pattern_inner(
3867        &mut self,
3868        pat: &Pat,
3869        pat_src: PatternSource,
3870        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
3871    ) {
3872        // Visit all direct subpatterns of this pattern.
3873        pat.walk(&mut |pat| {
3874            match pat.kind {
3875                PatKind::Ident(bmode, ident, ref sub) => {
3876                    // First try to resolve the identifier as some existing entity,
3877                    // then fall back to a fresh binding.
3878                    let has_sub = sub.is_some();
3879                    let res = self
3880                        .try_resolve_as_non_binding(pat_src, bmode, ident, has_sub)
3881                        .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
3882                    self.r.record_partial_res(pat.id, PartialRes::new(res));
3883                    self.r.record_pat_span(pat.id, pat.span);
3884                }
3885                PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
3886                    self.smart_resolve_path(
3887                        pat.id,
3888                        qself,
3889                        path,
3890                        PathSource::TupleStruct(
3891                            pat.span,
3892                            self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
3893                        ),
3894                    );
3895                }
3896                PatKind::Path(ref qself, ref path) => {
3897                    self.smart_resolve_path(pat.id, qself, path, PathSource::Pat);
3898                }
3899                PatKind::Struct(ref qself, ref path, ref _fields, ref rest) => {
3900                    self.smart_resolve_path(pat.id, qself, path, PathSource::Struct);
3901                    self.record_patterns_with_skipped_bindings(pat, rest);
3902                }
3903                PatKind::Or(ref ps) => {
3904                    // Add a new set of bindings to the stack. `Or` here records that when a
3905                    // binding already exists in this set, it should not result in an error because
3906                    // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
3907                    bindings.push((PatBoundCtx::Or, Default::default()));
3908                    for p in ps {
3909                        // Now we need to switch back to a product context so that each
3910                        // part of the or-pattern internally rejects already bound names.
3911                        // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
3912                        bindings.push((PatBoundCtx::Product, Default::default()));
3913                        self.resolve_pattern_inner(p, pat_src, bindings);
3914                        // Move up the non-overlapping bindings to the or-pattern.
3915                        // Existing bindings just get "merged".
3916                        let collected = bindings.pop().unwrap().1;
3917                        bindings.last_mut().unwrap().1.extend(collected);
3918                    }
3919                    // This or-pattern itself can itself be part of a product,
3920                    // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
3921                    // Both cases bind `a` again in a product pattern and must be rejected.
3922                    let collected = bindings.pop().unwrap().1;
3923                    bindings.last_mut().unwrap().1.extend(collected);
3924
3925                    // Prevent visiting `ps` as we've already done so above.
3926                    return false;
3927                }
3928                _ => {}
3929            }
3930            true
3931        });
3932    }
3933
3934    fn record_patterns_with_skipped_bindings(&mut self, pat: &Pat, rest: &ast::PatFieldsRest) {
3935        match rest {
3936            ast::PatFieldsRest::Rest | ast::PatFieldsRest::Recovered(_) => {
3937                // Record that the pattern doesn't introduce all the bindings it could.
3938                if let Some(partial_res) = self.r.partial_res_map.get(&pat.id)
3939                    && let Some(res) = partial_res.full_res()
3940                    && let Some(def_id) = res.opt_def_id()
3941                {
3942                    self.ribs[ValueNS]
3943                        .last_mut()
3944                        .unwrap()
3945                        .patterns_with_skipped_bindings
3946                        .entry(def_id)
3947                        .or_default()
3948                        .push((
3949                            pat.span,
3950                            match rest {
3951                                ast::PatFieldsRest::Recovered(guar) => Err(*guar),
3952                                _ => Ok(()),
3953                            },
3954                        ));
3955                }
3956            }
3957            ast::PatFieldsRest::None => {}
3958        }
3959    }
3960
3961    fn fresh_binding(
3962        &mut self,
3963        ident: Ident,
3964        pat_id: NodeId,
3965        pat_src: PatternSource,
3966        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
3967    ) -> Res {
3968        // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
3969        // (We must not add it if it's in the bindings map because that breaks the assumptions
3970        // later passes make about or-patterns.)
3971        let ident = ident.normalize_to_macro_rules();
3972
3973        let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
3974        // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
3975        let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
3976        // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
3977        // This is *required* for consistency which is checked later.
3978        let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
3979
3980        if already_bound_and {
3981            // Overlap in a product pattern somewhere; report an error.
3982            use ResolutionError::*;
3983            let error = match pat_src {
3984                // `fn f(a: u8, a: u8)`:
3985                PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
3986                // `Variant(a, a)`:
3987                _ => IdentifierBoundMoreThanOnceInSamePattern,
3988            };
3989            self.report_error(ident.span, error(ident));
3990        }
3991
3992        // Record as bound if it's valid:
3993        let ident_valid = ident.name != kw::Empty;
3994        if ident_valid {
3995            bindings.last_mut().unwrap().1.insert(ident);
3996        }
3997
3998        if already_bound_or {
3999            // `Variant1(a) | Variant2(a)`, ok
4000            // Reuse definition from the first `a`.
4001            self.innermost_rib_bindings(ValueNS)[&ident]
4002        } else {
4003            let res = Res::Local(pat_id);
4004            if ident_valid {
4005                // A completely fresh binding add to the set if it's valid.
4006                self.innermost_rib_bindings(ValueNS).insert(ident, res);
4007            }
4008            res
4009        }
4010    }
4011
4012    fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut FxIndexMap<Ident, Res> {
4013        &mut self.ribs[ns].last_mut().unwrap().bindings
4014    }
4015
4016    fn try_resolve_as_non_binding(
4017        &mut self,
4018        pat_src: PatternSource,
4019        ann: BindingMode,
4020        ident: Ident,
4021        has_sub: bool,
4022    ) -> Option<Res> {
4023        // An immutable (no `mut`) by-value (no `ref`) binding pattern without
4024        // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
4025        // also be interpreted as a path to e.g. a constant, variant, etc.
4026        let is_syntactic_ambiguity = !has_sub && ann == BindingMode::NONE;
4027
4028        let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?;
4029        let (res, binding) = match ls_binding {
4030            LexicalScopeBinding::Item(binding)
4031                if is_syntactic_ambiguity && binding.is_ambiguity_recursive() =>
4032            {
4033                // For ambiguous bindings we don't know all their definitions and cannot check
4034                // whether they can be shadowed by fresh bindings or not, so force an error.
4035                // issues/33118#issuecomment-233962221 (see below) still applies here,
4036                // but we have to ignore it for backward compatibility.
4037                self.r.record_use(ident, binding, Used::Other);
4038                return None;
4039            }
4040            LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
4041            LexicalScopeBinding::Res(res) => (res, None),
4042        };
4043
4044        match res {
4045            Res::SelfCtor(_) // See #70549.
4046            | Res::Def(
4047                DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst | DefKind::ConstParam,
4048                _,
4049            ) if is_syntactic_ambiguity => {
4050                // Disambiguate in favor of a unit struct/variant or constant pattern.
4051                if let Some(binding) = binding {
4052                    self.r.record_use(ident, binding, Used::Other);
4053                }
4054                Some(res)
4055            }
4056            Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::AssocConst | DefKind::Static { .. }, _) => {
4057                // This is unambiguously a fresh binding, either syntactically
4058                // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
4059                // to something unusable as a pattern (e.g., constructor function),
4060                // but we still conservatively report an error, see
4061                // issues/33118#issuecomment-233962221 for one reason why.
4062                let binding = binding.expect("no binding for a ctor or static");
4063                self.report_error(
4064                    ident.span,
4065                    ResolutionError::BindingShadowsSomethingUnacceptable {
4066                        shadowing_binding: pat_src,
4067                        name: ident.name,
4068                        participle: if binding.is_import() { "imported" } else { "defined" },
4069                        article: binding.res().article(),
4070                        shadowed_binding: binding.res(),
4071                        shadowed_binding_span: binding.span,
4072                    },
4073                );
4074                None
4075            }
4076            Res::Def(DefKind::ConstParam, def_id) => {
4077                // Same as for DefKind::Const above, but here, `binding` is `None`, so we
4078                // have to construct the error differently
4079                self.report_error(
4080                    ident.span,
4081                    ResolutionError::BindingShadowsSomethingUnacceptable {
4082                        shadowing_binding: pat_src,
4083                        name: ident.name,
4084                        participle: "defined",
4085                        article: res.article(),
4086                        shadowed_binding: res,
4087                        shadowed_binding_span: self.r.def_span(def_id),
4088                    }
4089                );
4090                None
4091            }
4092            Res::Def(DefKind::Fn | DefKind::AssocFn, _) | Res::Local(..) | Res::Err => {
4093                // These entities are explicitly allowed to be shadowed by fresh bindings.
4094                None
4095            }
4096            Res::SelfCtor(_) => {
4097                // We resolve `Self` in pattern position as an ident sometimes during recovery,
4098                // so delay a bug instead of ICEing.
4099                self.r.dcx().span_delayed_bug(
4100                    ident.span,
4101                    "unexpected `SelfCtor` in pattern, expected identifier"
4102                );
4103                None
4104            }
4105            _ => span_bug!(
4106                ident.span,
4107                "unexpected resolution for an identifier in pattern: {:?}",
4108                res,
4109            ),
4110        }
4111    }
4112
4113    // High-level and context dependent path resolution routine.
4114    // Resolves the path and records the resolution into definition map.
4115    // If resolution fails tries several techniques to find likely
4116    // resolution candidates, suggest imports or other help, and report
4117    // errors in user friendly way.
4118    fn smart_resolve_path(
4119        &mut self,
4120        id: NodeId,
4121        qself: &Option<P<QSelf>>,
4122        path: &Path,
4123        source: PathSource<'ast>,
4124    ) {
4125        self.smart_resolve_path_fragment(
4126            qself,
4127            &Segment::from_path(path),
4128            source,
4129            Finalize::new(id, path.span),
4130            RecordPartialRes::Yes,
4131            None,
4132        );
4133    }
4134
4135    #[instrument(level = "debug", skip(self))]
4136    fn smart_resolve_path_fragment(
4137        &mut self,
4138        qself: &Option<P<QSelf>>,
4139        path: &[Segment],
4140        source: PathSource<'ast>,
4141        finalize: Finalize,
4142        record_partial_res: RecordPartialRes,
4143        parent_qself: Option<&QSelf>,
4144    ) -> PartialRes {
4145        let ns = source.namespace();
4146
4147        let Finalize { node_id, path_span, .. } = finalize;
4148        let report_errors = |this: &mut Self, res: Option<Res>| {
4149            if this.should_report_errs() {
4150                let (err, candidates) = this.smart_resolve_report_errors(
4151                    path,
4152                    None,
4153                    path_span,
4154                    source,
4155                    res,
4156                    parent_qself,
4157                );
4158
4159                let def_id = this.parent_scope.module.nearest_parent_mod();
4160                let instead = res.is_some();
4161                let suggestion = if let Some((start, end)) = this.diag_metadata.in_range
4162                    && path[0].ident.span.lo() == end.span.lo()
4163                    && !matches!(start.kind, ExprKind::Lit(_))
4164                {
4165                    let mut sugg = ".";
4166                    let mut span = start.span.between(end.span);
4167                    if span.lo() + BytePos(2) == span.hi() {
4168                        // There's no space between the start, the range op and the end, suggest
4169                        // removal which will look better.
4170                        span = span.with_lo(span.lo() + BytePos(1));
4171                        sugg = "";
4172                    }
4173                    Some((
4174                        span,
4175                        "you might have meant to write `.` instead of `..`",
4176                        sugg.to_string(),
4177                        Applicability::MaybeIncorrect,
4178                    ))
4179                } else if res.is_none()
4180                    && let PathSource::Type
4181                    | PathSource::Expr(_)
4182                    | PathSource::PreciseCapturingArg(..) = source
4183                {
4184                    this.suggest_adding_generic_parameter(path, source)
4185                } else {
4186                    None
4187                };
4188
4189                let ue = UseError {
4190                    err,
4191                    candidates,
4192                    def_id,
4193                    instead,
4194                    suggestion,
4195                    path: path.into(),
4196                    is_call: source.is_call(),
4197                };
4198
4199                this.r.use_injections.push(ue);
4200            }
4201
4202            PartialRes::new(Res::Err)
4203        };
4204
4205        // For paths originating from calls (like in `HashMap::new()`), tries
4206        // to enrich the plain `failed to resolve: ...` message with hints
4207        // about possible missing imports.
4208        //
4209        // Similar thing, for types, happens in `report_errors` above.
4210        let report_errors_for_call =
4211            |this: &mut Self, parent_err: Spanned<ResolutionError<'ra>>| {
4212                // Before we start looking for candidates, we have to get our hands
4213                // on the type user is trying to perform invocation on; basically:
4214                // we're transforming `HashMap::new` into just `HashMap`.
4215                let (following_seg, prefix_path) = match path.split_last() {
4216                    Some((last, path)) if !path.is_empty() => (Some(last), path),
4217                    _ => return Some(parent_err),
4218                };
4219
4220                let (mut err, candidates) = this.smart_resolve_report_errors(
4221                    prefix_path,
4222                    following_seg,
4223                    path_span,
4224                    PathSource::Type,
4225                    None,
4226                    parent_qself,
4227                );
4228
4229                // There are two different error messages user might receive at
4230                // this point:
4231                // - E0412 cannot find type `{}` in this scope
4232                // - E0433 failed to resolve: use of undeclared type or module `{}`
4233                //
4234                // The first one is emitted for paths in type-position, and the
4235                // latter one - for paths in expression-position.
4236                //
4237                // Thus (since we're in expression-position at this point), not to
4238                // confuse the user, we want to keep the *message* from E0433 (so
4239                // `parent_err`), but we want *hints* from E0412 (so `err`).
4240                //
4241                // And that's what happens below - we're just mixing both messages
4242                // into a single one.
4243                let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
4244
4245                // overwrite all properties with the parent's error message
4246                err.messages = take(&mut parent_err.messages);
4247                err.code = take(&mut parent_err.code);
4248                swap(&mut err.span, &mut parent_err.span);
4249                err.children = take(&mut parent_err.children);
4250                err.sort_span = parent_err.sort_span;
4251                err.is_lint = parent_err.is_lint.clone();
4252
4253                // merge the parent_err's suggestions with the typo (err's) suggestions
4254                match &mut err.suggestions {
4255                    Suggestions::Enabled(typo_suggestions) => match &mut parent_err.suggestions {
4256                        Suggestions::Enabled(parent_suggestions) => {
4257                            // If both suggestions are enabled, append parent_err's suggestions to err's suggestions.
4258                            typo_suggestions.append(parent_suggestions)
4259                        }
4260                        Suggestions::Sealed(_) | Suggestions::Disabled => {
4261                            // If the parent's suggestions are either sealed or disabled, it signifies that
4262                            // new suggestions cannot be added or removed from the diagnostic. Therefore,
4263                            // we assign both types of suggestions to err's suggestions and discard the
4264                            // existing suggestions in err.
4265                            err.suggestions = std::mem::take(&mut parent_err.suggestions);
4266                        }
4267                    },
4268                    Suggestions::Sealed(_) | Suggestions::Disabled => (),
4269                }
4270
4271                parent_err.cancel();
4272
4273                let def_id = this.parent_scope.module.nearest_parent_mod();
4274
4275                if this.should_report_errs() {
4276                    if candidates.is_empty() {
4277                        if path.len() == 2
4278                            && let [segment] = prefix_path
4279                        {
4280                            // Delay to check whether methond name is an associated function or not
4281                            // ```
4282                            // let foo = Foo {};
4283                            // foo::bar(); // possibly suggest to foo.bar();
4284                            //```
4285                            err.stash(segment.ident.span, rustc_errors::StashKey::CallAssocMethod);
4286                        } else {
4287                            // When there is no suggested imports, we can just emit the error
4288                            // and suggestions immediately. Note that we bypass the usually error
4289                            // reporting routine (ie via `self.r.report_error`) because we need
4290                            // to post-process the `ResolutionError` above.
4291                            err.emit();
4292                        }
4293                    } else {
4294                        // If there are suggested imports, the error reporting is delayed
4295                        this.r.use_injections.push(UseError {
4296                            err,
4297                            candidates,
4298                            def_id,
4299                            instead: false,
4300                            suggestion: None,
4301                            path: prefix_path.into(),
4302                            is_call: source.is_call(),
4303                        });
4304                    }
4305                } else {
4306                    err.cancel();
4307                }
4308
4309                // We don't return `Some(parent_err)` here, because the error will
4310                // be already printed either immediately or as part of the `use` injections
4311                None
4312            };
4313
4314        let partial_res = match self.resolve_qpath_anywhere(
4315            qself,
4316            path,
4317            ns,
4318            path_span,
4319            source.defer_to_typeck(),
4320            finalize,
4321        ) {
4322            Ok(Some(partial_res)) if let Some(res) = partial_res.full_res() => {
4323                // if we also have an associated type that matches the ident, stash a suggestion
4324                if let Some(items) = self.diag_metadata.current_trait_assoc_items
4325                    && let [Segment { ident, .. }] = path
4326                    && items.iter().any(|item| {
4327                        item.ident == *ident && matches!(item.kind, AssocItemKind::Type(_))
4328                    })
4329                {
4330                    let mut diag = self.r.tcx.dcx().struct_allow("");
4331                    diag.span_suggestion_verbose(
4332                        path_span.shrink_to_lo(),
4333                        "there is an associated type with the same name",
4334                        "Self::",
4335                        Applicability::MaybeIncorrect,
4336                    );
4337                    diag.stash(path_span, StashKey::AssociatedTypeSuggestion);
4338                }
4339
4340                if source.is_expected(res) || res == Res::Err {
4341                    partial_res
4342                } else {
4343                    report_errors(self, Some(res))
4344                }
4345            }
4346
4347            Ok(Some(partial_res)) if source.defer_to_typeck() => {
4348                // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
4349                // or `<T>::A::B`. If `B` should be resolved in value namespace then
4350                // it needs to be added to the trait map.
4351                if ns == ValueNS {
4352                    let item_name = path.last().unwrap().ident;
4353                    let traits = self.traits_in_scope(item_name, ns);
4354                    self.r.trait_map.insert(node_id, traits);
4355                }
4356
4357                if PrimTy::from_name(path[0].ident.name).is_some() {
4358                    let mut std_path = Vec::with_capacity(1 + path.len());
4359
4360                    std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
4361                    std_path.extend(path);
4362                    if let PathResult::Module(_) | PathResult::NonModule(_) =
4363                        self.resolve_path(&std_path, Some(ns), None)
4364                    {
4365                        // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
4366                        let item_span =
4367                            path.iter().last().map_or(path_span, |segment| segment.ident.span);
4368
4369                        self.r.confused_type_with_std_module.insert(item_span, path_span);
4370                        self.r.confused_type_with_std_module.insert(path_span, path_span);
4371                    }
4372                }
4373
4374                partial_res
4375            }
4376
4377            Err(err) => {
4378                if let Some(err) = report_errors_for_call(self, err) {
4379                    self.report_error(err.span, err.node);
4380                }
4381
4382                PartialRes::new(Res::Err)
4383            }
4384
4385            _ => report_errors(self, None),
4386        };
4387
4388        if record_partial_res == RecordPartialRes::Yes {
4389            // Avoid recording definition of `A::B` in `<T as A>::B::C`.
4390            self.r.record_partial_res(node_id, partial_res);
4391            self.resolve_elided_lifetimes_in_path(partial_res, path, source, path_span);
4392            self.lint_unused_qualifications(path, ns, finalize);
4393        }
4394
4395        partial_res
4396    }
4397
4398    fn self_type_is_available(&mut self) -> bool {
4399        let binding = self
4400            .maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS);
4401        if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
4402    }
4403
4404    fn self_value_is_available(&mut self, self_span: Span) -> bool {
4405        let ident = Ident::new(kw::SelfLower, self_span);
4406        let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS);
4407        if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
4408    }
4409
4410    /// A wrapper around [`Resolver::report_error`].
4411    ///
4412    /// This doesn't emit errors for function bodies if this is rustdoc.
4413    fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'ra>) {
4414        if self.should_report_errs() {
4415            self.r.report_error(span, resolution_error);
4416        }
4417    }
4418
4419    #[inline]
4420    /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items or
4421    // an invalid `use foo::*;` was found, which can cause unbounded amounts of "item not found"
4422    // errors. We silence them all.
4423    fn should_report_errs(&self) -> bool {
4424        !(self.r.tcx.sess.opts.actually_rustdoc && self.in_func_body)
4425            && !self.r.glob_error.is_some()
4426    }
4427
4428    // Resolve in alternative namespaces if resolution in the primary namespace fails.
4429    fn resolve_qpath_anywhere(
4430        &mut self,
4431        qself: &Option<P<QSelf>>,
4432        path: &[Segment],
4433        primary_ns: Namespace,
4434        span: Span,
4435        defer_to_typeck: bool,
4436        finalize: Finalize,
4437    ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'ra>>> {
4438        let mut fin_res = None;
4439
4440        for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
4441            if i == 0 || ns != primary_ns {
4442                match self.resolve_qpath(qself, path, ns, finalize)? {
4443                    Some(partial_res)
4444                        if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
4445                    {
4446                        return Ok(Some(partial_res));
4447                    }
4448                    partial_res => {
4449                        if fin_res.is_none() {
4450                            fin_res = partial_res;
4451                        }
4452                    }
4453                }
4454            }
4455        }
4456
4457        assert!(primary_ns != MacroNS);
4458
4459        if qself.is_none() {
4460            let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
4461            let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
4462            if let Ok((_, res)) =
4463                self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false, None)
4464            {
4465                return Ok(Some(PartialRes::new(res)));
4466            }
4467        }
4468
4469        Ok(fin_res)
4470    }
4471
4472    /// Handles paths that may refer to associated items.
4473    fn resolve_qpath(
4474        &mut self,
4475        qself: &Option<P<QSelf>>,
4476        path: &[Segment],
4477        ns: Namespace,
4478        finalize: Finalize,
4479    ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'ra>>> {
4480        debug!(
4481            "resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})",
4482            qself, path, ns, finalize,
4483        );
4484
4485        if let Some(qself) = qself {
4486            if qself.position == 0 {
4487                // This is a case like `<T>::B`, where there is no
4488                // trait to resolve. In that case, we leave the `B`
4489                // segment to be resolved by type-check.
4490                return Ok(Some(PartialRes::with_unresolved_segments(
4491                    Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()),
4492                    path.len(),
4493                )));
4494            }
4495
4496            let num_privacy_errors = self.r.privacy_errors.len();
4497            // Make sure that `A` in `<T as A>::B::C` is a trait.
4498            let trait_res = self.smart_resolve_path_fragment(
4499                &None,
4500                &path[..qself.position],
4501                PathSource::Trait(AliasPossibility::No),
4502                Finalize::new(finalize.node_id, qself.path_span),
4503                RecordPartialRes::No,
4504                Some(&qself),
4505            );
4506
4507            if trait_res.expect_full_res() == Res::Err {
4508                return Ok(Some(trait_res));
4509            }
4510
4511            // Truncate additional privacy errors reported above,
4512            // because they'll be recomputed below.
4513            self.r.privacy_errors.truncate(num_privacy_errors);
4514
4515            // Make sure `A::B` in `<T as A>::B::C` is a trait item.
4516            //
4517            // Currently, `path` names the full item (`A::B::C`, in
4518            // our example). so we extract the prefix of that that is
4519            // the trait (the slice upto and including
4520            // `qself.position`). And then we recursively resolve that,
4521            // but with `qself` set to `None`.
4522            let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
4523            let partial_res = self.smart_resolve_path_fragment(
4524                &None,
4525                &path[..=qself.position],
4526                PathSource::TraitItem(ns),
4527                Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span),
4528                RecordPartialRes::No,
4529                Some(&qself),
4530            );
4531
4532            // The remaining segments (the `C` in our example) will
4533            // have to be resolved by type-check, since that requires doing
4534            // trait resolution.
4535            return Ok(Some(PartialRes::with_unresolved_segments(
4536                partial_res.base_res(),
4537                partial_res.unresolved_segments() + path.len() - qself.position - 1,
4538            )));
4539        }
4540
4541        let result = match self.resolve_path(path, Some(ns), Some(finalize)) {
4542            PathResult::NonModule(path_res) => path_res,
4543            PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
4544                PartialRes::new(module.res().unwrap())
4545            }
4546            // A part of this path references a `mod` that had a parse error. To avoid resolution
4547            // errors for each reference to that module, we don't emit an error for them until the
4548            // `mod` is fixed. this can have a significant cascade effect.
4549            PathResult::Failed { error_implied_by_parse_error: true, .. } => {
4550                PartialRes::new(Res::Err)
4551            }
4552            // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
4553            // don't report an error right away, but try to fallback to a primitive type.
4554            // So, we are still able to successfully resolve something like
4555            //
4556            // use std::u8; // bring module u8 in scope
4557            // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
4558            //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
4559            //                     // not to nonexistent std::u8::max_value
4560            // }
4561            //
4562            // Such behavior is required for backward compatibility.
4563            // The same fallback is used when `a` resolves to nothing.
4564            PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
4565                if (ns == TypeNS || path.len() > 1)
4566                    && PrimTy::from_name(path[0].ident.name).is_some() =>
4567            {
4568                let prim = PrimTy::from_name(path[0].ident.name).unwrap();
4569                let tcx = self.r.tcx();
4570
4571                let gate_err_sym_msg = match prim {
4572                    PrimTy::Float(FloatTy::F16) if !tcx.features().f16() => {
4573                        Some((sym::f16, "the type `f16` is unstable"))
4574                    }
4575                    PrimTy::Float(FloatTy::F128) if !tcx.features().f128() => {
4576                        Some((sym::f128, "the type `f128` is unstable"))
4577                    }
4578                    _ => None,
4579                };
4580
4581                if let Some((sym, msg)) = gate_err_sym_msg {
4582                    let span = path[0].ident.span;
4583                    if !span.allows_unstable(sym) {
4584                        feature_err(tcx.sess, sym, span, msg).emit();
4585                    }
4586                };
4587
4588                PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
4589            }
4590            PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
4591                PartialRes::new(module.res().unwrap())
4592            }
4593            PathResult::Failed {
4594                is_error_from_last_segment: false,
4595                span,
4596                label,
4597                suggestion,
4598                module,
4599                segment_name,
4600                error_implied_by_parse_error: _,
4601            } => {
4602                return Err(respan(
4603                    span,
4604                    ResolutionError::FailedToResolve {
4605                        segment: Some(segment_name),
4606                        label,
4607                        suggestion,
4608                        module,
4609                    },
4610                ));
4611            }
4612            PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
4613            PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
4614        };
4615
4616        Ok(Some(result))
4617    }
4618
4619    fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
4620        if let Some(label) = label {
4621            if label.ident.as_str().as_bytes()[1] != b'_' {
4622                self.diag_metadata.unused_labels.insert(id, label.ident.span);
4623            }
4624
4625            if let Ok((_, orig_span)) = self.resolve_label(label.ident) {
4626                diagnostics::signal_label_shadowing(self.r.tcx.sess, orig_span, label.ident)
4627            }
4628
4629            self.with_label_rib(RibKind::Normal, |this| {
4630                let ident = label.ident.normalize_to_macro_rules();
4631                this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
4632                f(this);
4633            });
4634        } else {
4635            f(self);
4636        }
4637    }
4638
4639    fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
4640        self.with_resolved_label(label, id, |this| this.visit_block(block));
4641    }
4642
4643    fn resolve_block(&mut self, block: &'ast Block) {
4644        debug!("(resolving block) entering block");
4645        // Move down in the graph, if there's an anonymous module rooted here.
4646        let orig_module = self.parent_scope.module;
4647        let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
4648
4649        let mut num_macro_definition_ribs = 0;
4650        if let Some(anonymous_module) = anonymous_module {
4651            debug!("(resolving block) found anonymous module, moving down");
4652            self.ribs[ValueNS].push(Rib::new(RibKind::Module(anonymous_module)));
4653            self.ribs[TypeNS].push(Rib::new(RibKind::Module(anonymous_module)));
4654            self.parent_scope.module = anonymous_module;
4655        } else {
4656            self.ribs[ValueNS].push(Rib::new(RibKind::Normal));
4657        }
4658
4659        // Descend into the block.
4660        for stmt in &block.stmts {
4661            if let StmtKind::Item(ref item) = stmt.kind
4662                && let ItemKind::MacroDef(..) = item.kind
4663            {
4664                num_macro_definition_ribs += 1;
4665                let res = self.r.local_def_id(item.id).to_def_id();
4666                self.ribs[ValueNS].push(Rib::new(RibKind::MacroDefinition(res)));
4667                self.label_ribs.push(Rib::new(RibKind::MacroDefinition(res)));
4668            }
4669
4670            self.visit_stmt(stmt);
4671        }
4672
4673        // Move back up.
4674        self.parent_scope.module = orig_module;
4675        for _ in 0..num_macro_definition_ribs {
4676            self.ribs[ValueNS].pop();
4677            self.label_ribs.pop();
4678        }
4679        self.last_block_rib = self.ribs[ValueNS].pop();
4680        if anonymous_module.is_some() {
4681            self.ribs[TypeNS].pop();
4682        }
4683        debug!("(resolving block) leaving block");
4684    }
4685
4686    fn resolve_anon_const(&mut self, constant: &'ast AnonConst, anon_const_kind: AnonConstKind) {
4687        debug!(
4688            "resolve_anon_const(constant: {:?}, anon_const_kind: {:?})",
4689            constant, anon_const_kind
4690        );
4691
4692        let is_trivial_const_arg = constant
4693            .value
4694            .is_potential_trivial_const_arg(self.r.tcx.features().min_generic_const_args());
4695        self.resolve_anon_const_manual(is_trivial_const_arg, anon_const_kind, |this| {
4696            this.resolve_expr(&constant.value, None)
4697        })
4698    }
4699
4700    /// There are a few places that we need to resolve an anon const but we did not parse an
4701    /// anon const so cannot provide an `&'ast AnonConst`. Right now this is just unbraced
4702    /// const arguments that were parsed as type arguments, and `legacy_const_generics` which
4703    /// parse as normal function argument expressions. To avoid duplicating the code for resolving
4704    /// an anon const we have this function which lets the caller manually call `resolve_expr` or
4705    /// `smart_resolve_path`.
4706    fn resolve_anon_const_manual(
4707        &mut self,
4708        is_trivial_const_arg: bool,
4709        anon_const_kind: AnonConstKind,
4710        resolve_expr: impl FnOnce(&mut Self),
4711    ) {
4712        let is_repeat_expr = match anon_const_kind {
4713            AnonConstKind::ConstArg(is_repeat_expr) => is_repeat_expr,
4714            _ => IsRepeatExpr::No,
4715        };
4716
4717        let may_use_generics = match anon_const_kind {
4718            AnonConstKind::EnumDiscriminant => {
4719                ConstantHasGenerics::No(NoConstantGenericsReason::IsEnumDiscriminant)
4720            }
4721            AnonConstKind::FieldDefaultValue => ConstantHasGenerics::Yes,
4722            AnonConstKind::InlineConst => ConstantHasGenerics::Yes,
4723            AnonConstKind::ConstArg(_) => {
4724                if self.r.tcx.features().generic_const_exprs() || is_trivial_const_arg {
4725                    ConstantHasGenerics::Yes
4726                } else {
4727                    ConstantHasGenerics::No(NoConstantGenericsReason::NonTrivialConstArg)
4728                }
4729            }
4730        };
4731
4732        self.with_constant_rib(is_repeat_expr, may_use_generics, None, |this| {
4733            this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
4734                resolve_expr(this);
4735            });
4736        });
4737    }
4738
4739    fn resolve_expr_field(&mut self, f: &'ast ExprField, e: &'ast Expr) {
4740        self.resolve_expr(&f.expr, Some(e));
4741        self.visit_ident(&f.ident);
4742        walk_list!(self, visit_attribute, f.attrs.iter());
4743    }
4744
4745    fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
4746        // First, record candidate traits for this expression if it could
4747        // result in the invocation of a method call.
4748
4749        self.record_candidate_traits_for_expr_if_necessary(expr);
4750
4751        // Next, resolve the node.
4752        match expr.kind {
4753            ExprKind::Path(ref qself, ref path) => {
4754                self.smart_resolve_path(expr.id, qself, path, PathSource::Expr(parent));
4755                visit::walk_expr(self, expr);
4756            }
4757
4758            ExprKind::Struct(ref se) => {
4759                self.smart_resolve_path(expr.id, &se.qself, &se.path, PathSource::Struct);
4760                // This is the same as `visit::walk_expr(self, expr);`, but we want to pass the
4761                // parent in for accurate suggestions when encountering `Foo { bar }` that should
4762                // have been `Foo { bar: self.bar }`.
4763                if let Some(qself) = &se.qself {
4764                    self.visit_ty(&qself.ty);
4765                }
4766                self.visit_path(&se.path, expr.id);
4767                walk_list!(self, resolve_expr_field, &se.fields, expr);
4768                match &se.rest {
4769                    StructRest::Base(expr) => self.visit_expr(expr),
4770                    StructRest::Rest(_span) => {}
4771                    StructRest::None => {}
4772                }
4773            }
4774
4775            ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
4776                match self.resolve_label(label.ident) {
4777                    Ok((node_id, _)) => {
4778                        // Since this res is a label, it is never read.
4779                        self.r.label_res_map.insert(expr.id, node_id);
4780                        self.diag_metadata.unused_labels.swap_remove(&node_id);
4781                    }
4782                    Err(error) => {
4783                        self.report_error(label.ident.span, error);
4784                    }
4785                }
4786
4787                // visit `break` argument if any
4788                visit::walk_expr(self, expr);
4789            }
4790
4791            ExprKind::Break(None, Some(ref e)) => {
4792                // We use this instead of `visit::walk_expr` to keep the parent expr around for
4793                // better diagnostics.
4794                self.resolve_expr(e, Some(expr));
4795            }
4796
4797            ExprKind::Let(ref pat, ref scrutinee, _, _) => {
4798                self.visit_expr(scrutinee);
4799                self.resolve_pattern_top(pat, PatternSource::Let);
4800            }
4801
4802            ExprKind::If(ref cond, ref then, ref opt_else) => {
4803                self.with_rib(ValueNS, RibKind::Normal, |this| {
4804                    let old = this.diag_metadata.in_if_condition.replace(cond);
4805                    this.visit_expr(cond);
4806                    this.diag_metadata.in_if_condition = old;
4807                    this.visit_block(then);
4808                });
4809                if let Some(expr) = opt_else {
4810                    self.visit_expr(expr);
4811                }
4812            }
4813
4814            ExprKind::Loop(ref block, label, _) => {
4815                self.resolve_labeled_block(label, expr.id, block)
4816            }
4817
4818            ExprKind::While(ref cond, ref block, label) => {
4819                self.with_resolved_label(label, expr.id, |this| {
4820                    this.with_rib(ValueNS, RibKind::Normal, |this| {
4821                        let old = this.diag_metadata.in_if_condition.replace(cond);
4822                        this.visit_expr(cond);
4823                        this.diag_metadata.in_if_condition = old;
4824                        this.visit_block(block);
4825                    })
4826                });
4827            }
4828
4829            ExprKind::ForLoop { ref pat, ref iter, ref body, label, kind: _ } => {
4830                self.visit_expr(iter);
4831                self.with_rib(ValueNS, RibKind::Normal, |this| {
4832                    this.resolve_pattern_top(pat, PatternSource::For);
4833                    this.resolve_labeled_block(label, expr.id, body);
4834                });
4835            }
4836
4837            ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
4838
4839            // Equivalent to `visit::walk_expr` + passing some context to children.
4840            ExprKind::Field(ref subexpression, _) => {
4841                self.resolve_expr(subexpression, Some(expr));
4842            }
4843            ExprKind::MethodCall(box MethodCall { ref seg, ref receiver, ref args, .. }) => {
4844                self.resolve_expr(receiver, Some(expr));
4845                for arg in args {
4846                    self.resolve_expr(arg, None);
4847                }
4848                self.visit_path_segment(seg);
4849            }
4850
4851            ExprKind::Call(ref callee, ref arguments) => {
4852                self.resolve_expr(callee, Some(expr));
4853                let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
4854                for (idx, argument) in arguments.iter().enumerate() {
4855                    // Constant arguments need to be treated as AnonConst since
4856                    // that is how they will be later lowered to HIR.
4857                    if const_args.contains(&idx) {
4858                        let is_trivial_const_arg = argument.is_potential_trivial_const_arg(
4859                            self.r.tcx.features().min_generic_const_args(),
4860                        );
4861                        self.resolve_anon_const_manual(
4862                            is_trivial_const_arg,
4863                            AnonConstKind::ConstArg(IsRepeatExpr::No),
4864                            |this| this.resolve_expr(argument, None),
4865                        );
4866                    } else {
4867                        self.resolve_expr(argument, None);
4868                    }
4869                }
4870            }
4871            ExprKind::Type(ref _type_expr, ref _ty) => {
4872                visit::walk_expr(self, expr);
4873            }
4874            // For closures, RibKind::FnOrCoroutine is added in visit_fn
4875            ExprKind::Closure(box ast::Closure {
4876                binder: ClosureBinder::For { ref generic_params, span },
4877                ..
4878            }) => {
4879                self.with_generic_param_rib(
4880                    generic_params,
4881                    RibKind::Normal,
4882                    LifetimeRibKind::Generics {
4883                        binder: expr.id,
4884                        kind: LifetimeBinderKind::Closure,
4885                        span,
4886                    },
4887                    |this| visit::walk_expr(this, expr),
4888                );
4889            }
4890            ExprKind::Closure(..) => visit::walk_expr(self, expr),
4891            ExprKind::Gen(..) => {
4892                self.with_label_rib(RibKind::FnOrCoroutine, |this| visit::walk_expr(this, expr));
4893            }
4894            ExprKind::Repeat(ref elem, ref ct) => {
4895                self.visit_expr(elem);
4896                self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::Yes));
4897            }
4898            ExprKind::ConstBlock(ref ct) => {
4899                self.resolve_anon_const(ct, AnonConstKind::InlineConst);
4900            }
4901            ExprKind::Index(ref elem, ref idx, _) => {
4902                self.resolve_expr(elem, Some(expr));
4903                self.visit_expr(idx);
4904            }
4905            ExprKind::Assign(ref lhs, ref rhs, _) => {
4906                if !self.diag_metadata.is_assign_rhs {
4907                    self.diag_metadata.in_assignment = Some(expr);
4908                }
4909                self.visit_expr(lhs);
4910                self.diag_metadata.is_assign_rhs = true;
4911                self.diag_metadata.in_assignment = None;
4912                self.visit_expr(rhs);
4913                self.diag_metadata.is_assign_rhs = false;
4914            }
4915            ExprKind::Range(Some(ref start), Some(ref end), RangeLimits::HalfOpen) => {
4916                self.diag_metadata.in_range = Some((start, end));
4917                self.resolve_expr(start, Some(expr));
4918                self.resolve_expr(end, Some(expr));
4919                self.diag_metadata.in_range = None;
4920            }
4921            _ => {
4922                visit::walk_expr(self, expr);
4923            }
4924        }
4925    }
4926
4927    fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
4928        match expr.kind {
4929            ExprKind::Field(_, ident) => {
4930                // #6890: Even though you can't treat a method like a field,
4931                // we need to add any trait methods we find that match the
4932                // field name so that we can do some nice error reporting
4933                // later on in typeck.
4934                let traits = self.traits_in_scope(ident, ValueNS);
4935                self.r.trait_map.insert(expr.id, traits);
4936            }
4937            ExprKind::MethodCall(ref call) => {
4938                debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
4939                let traits = self.traits_in_scope(call.seg.ident, ValueNS);
4940                self.r.trait_map.insert(expr.id, traits);
4941            }
4942            _ => {
4943                // Nothing to do.
4944            }
4945        }
4946    }
4947
4948    fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
4949        self.r.traits_in_scope(
4950            self.current_trait_ref.as_ref().map(|(module, _)| *module),
4951            &self.parent_scope,
4952            ident.span.ctxt(),
4953            Some((ident.name, ns)),
4954        )
4955    }
4956
4957    fn resolve_and_cache_rustdoc_path(&mut self, path_str: &str, ns: Namespace) -> Option<Res> {
4958        // FIXME: This caching may be incorrect in case of multiple `macro_rules`
4959        // items with the same name in the same module.
4960        // Also hygiene is not considered.
4961        let mut doc_link_resolutions = std::mem::take(&mut self.r.doc_link_resolutions);
4962        let res = *doc_link_resolutions
4963            .entry(self.parent_scope.module.nearest_parent_mod().expect_local())
4964            .or_default()
4965            .entry((Symbol::intern(path_str), ns))
4966            .or_insert_with_key(|(path, ns)| {
4967                let res = self.r.resolve_rustdoc_path(path.as_str(), *ns, self.parent_scope);
4968                if let Some(res) = res
4969                    && let Some(def_id) = res.opt_def_id()
4970                    && self.is_invalid_proc_macro_item_for_doc(def_id)
4971                {
4972                    // Encoding def ids in proc macro crate metadata will ICE,
4973                    // because it will only store proc macros for it.
4974                    return None;
4975                }
4976                res
4977            });
4978        self.r.doc_link_resolutions = doc_link_resolutions;
4979        res
4980    }
4981
4982    fn is_invalid_proc_macro_item_for_doc(&self, did: DefId) -> bool {
4983        if !matches!(self.r.tcx.sess.opts.resolve_doc_links, ResolveDocLinks::ExportedMetadata)
4984            || !self.r.tcx.crate_types().contains(&CrateType::ProcMacro)
4985        {
4986            return false;
4987        }
4988        let Some(local_did) = did.as_local() else { return true };
4989        let Some(node_id) = self.r.def_id_to_node_id.get(local_did) else { return true };
4990        !self.r.proc_macros.contains(node_id)
4991    }
4992
4993    fn resolve_doc_links(&mut self, attrs: &[Attribute], maybe_exported: MaybeExported<'_>) {
4994        match self.r.tcx.sess.opts.resolve_doc_links {
4995            ResolveDocLinks::None => return,
4996            ResolveDocLinks::ExportedMetadata
4997                if !self.r.tcx.crate_types().iter().copied().any(CrateType::has_metadata)
4998                    || !maybe_exported.eval(self.r) =>
4999            {
5000                return;
5001            }
5002            ResolveDocLinks::Exported
5003                if !maybe_exported.eval(self.r)
5004                    && !rustdoc::has_primitive_or_keyword_docs(attrs) =>
5005            {
5006                return;
5007            }
5008            ResolveDocLinks::ExportedMetadata
5009            | ResolveDocLinks::Exported
5010            | ResolveDocLinks::All => {}
5011        }
5012
5013        if !attrs.iter().any(|attr| attr.may_have_doc_links()) {
5014            return;
5015        }
5016
5017        let mut need_traits_in_scope = false;
5018        for path_str in rustdoc::attrs_to_preprocessed_links(attrs) {
5019            // Resolve all namespaces due to no disambiguator or for diagnostics.
5020            let mut any_resolved = false;
5021            let mut need_assoc = false;
5022            for ns in [TypeNS, ValueNS, MacroNS] {
5023                if let Some(res) = self.resolve_and_cache_rustdoc_path(&path_str, ns) {
5024                    // Rustdoc ignores tool attribute resolutions and attempts
5025                    // to resolve their prefixes for diagnostics.
5026                    any_resolved = !matches!(res, Res::NonMacroAttr(NonMacroAttrKind::Tool));
5027                } else if ns != MacroNS {
5028                    need_assoc = true;
5029                }
5030            }
5031
5032            // Resolve all prefixes for type-relative resolution or for diagnostics.
5033            if need_assoc || !any_resolved {
5034                let mut path = &path_str[..];
5035                while let Some(idx) = path.rfind("::") {
5036                    path = &path[..idx];
5037                    need_traits_in_scope = true;
5038                    for ns in [TypeNS, ValueNS, MacroNS] {
5039                        self.resolve_and_cache_rustdoc_path(path, ns);
5040                    }
5041                }
5042            }
5043        }
5044
5045        if need_traits_in_scope {
5046            // FIXME: hygiene is not considered.
5047            let mut doc_link_traits_in_scope = std::mem::take(&mut self.r.doc_link_traits_in_scope);
5048            doc_link_traits_in_scope
5049                .entry(self.parent_scope.module.nearest_parent_mod().expect_local())
5050                .or_insert_with(|| {
5051                    self.r
5052                        .traits_in_scope(None, &self.parent_scope, SyntaxContext::root(), None)
5053                        .into_iter()
5054                        .filter_map(|tr| {
5055                            if self.is_invalid_proc_macro_item_for_doc(tr.def_id) {
5056                                // Encoding def ids in proc macro crate metadata will ICE.
5057                                // because it will only store proc macros for it.
5058                                return None;
5059                            }
5060                            Some(tr.def_id)
5061                        })
5062                        .collect()
5063                });
5064            self.r.doc_link_traits_in_scope = doc_link_traits_in_scope;
5065        }
5066    }
5067
5068    fn lint_unused_qualifications(&mut self, path: &[Segment], ns: Namespace, finalize: Finalize) {
5069        // Don't lint on global paths because the user explicitly wrote out the full path.
5070        if let Some(seg) = path.first()
5071            && seg.ident.name == kw::PathRoot
5072        {
5073            return;
5074        }
5075
5076        if finalize.path_span.from_expansion()
5077            || path.iter().any(|seg| seg.ident.span.from_expansion())
5078        {
5079            return;
5080        }
5081
5082        let end_pos =
5083            path.iter().position(|seg| seg.has_generic_args).map_or(path.len(), |pos| pos + 1);
5084        let unqualified = path[..end_pos].iter().enumerate().skip(1).rev().find_map(|(i, seg)| {
5085            // Preserve the current namespace for the final path segment, but use the type
5086            // namespace for all preceding segments
5087            //
5088            // e.g. for `std::env::args` check the `ValueNS` for `args` but the `TypeNS` for
5089            // `std` and `env`
5090            //
5091            // If the final path segment is beyond `end_pos` all the segments to check will
5092            // use the type namespace
5093            let ns = if i + 1 == path.len() { ns } else { TypeNS };
5094            let res = self.r.partial_res_map.get(&seg.id?)?.full_res()?;
5095            let binding = self.resolve_ident_in_lexical_scope(seg.ident, ns, None, None)?;
5096            (res == binding.res()).then_some((seg, binding))
5097        });
5098
5099        if let Some((seg, binding)) = unqualified {
5100            self.r.potentially_unnecessary_qualifications.push(UnnecessaryQualification {
5101                binding,
5102                node_id: finalize.node_id,
5103                path_span: finalize.path_span,
5104                removal_span: path[0].ident.span.until(seg.ident.span),
5105            });
5106        }
5107    }
5108
5109    fn resolve_define_opaques(&mut self, define_opaque: &Option<ThinVec<(NodeId, Path)>>) {
5110        if let Some(define_opaque) = define_opaque {
5111            for (id, path) in define_opaque {
5112                self.smart_resolve_path(*id, &None, path, PathSource::DefineOpaques);
5113            }
5114        }
5115    }
5116}
5117
5118/// Walks the whole crate in DFS order, visiting each item, counting the declared number of
5119/// lifetime generic parameters and function parameters.
5120struct ItemInfoCollector<'a, 'ra, 'tcx> {
5121    r: &'a mut Resolver<'ra, 'tcx>,
5122}
5123
5124impl ItemInfoCollector<'_, '_, '_> {
5125    fn collect_fn_info(
5126        &mut self,
5127        header: FnHeader,
5128        decl: &FnDecl,
5129        id: NodeId,
5130        attrs: &[Attribute],
5131    ) {
5132        let sig = DelegationFnSig {
5133            header,
5134            param_count: decl.inputs.len(),
5135            has_self: decl.has_self(),
5136            c_variadic: decl.c_variadic(),
5137            target_feature: attrs.iter().any(|attr| attr.has_name(sym::target_feature)),
5138        };
5139        self.r.delegation_fn_sigs.insert(self.r.local_def_id(id), sig);
5140    }
5141}
5142
5143impl<'ast> Visitor<'ast> for ItemInfoCollector<'_, '_, '_> {
5144    fn visit_item(&mut self, item: &'ast Item) {
5145        match &item.kind {
5146            ItemKind::TyAlias(box TyAlias { generics, .. })
5147            | ItemKind::Const(box ConstItem { generics, .. })
5148            | ItemKind::Fn(box Fn { generics, .. })
5149            | ItemKind::Enum(_, generics)
5150            | ItemKind::Struct(_, generics)
5151            | ItemKind::Union(_, generics)
5152            | ItemKind::Impl(box Impl { generics, .. })
5153            | ItemKind::Trait(box Trait { generics, .. })
5154            | ItemKind::TraitAlias(generics, _) => {
5155                if let ItemKind::Fn(box Fn { sig, .. }) = &item.kind {
5156                    self.collect_fn_info(sig.header, &sig.decl, item.id, &item.attrs);
5157                }
5158
5159                let def_id = self.r.local_def_id(item.id);
5160                let count = generics
5161                    .params
5162                    .iter()
5163                    .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
5164                    .count();
5165                self.r.item_generics_num_lifetimes.insert(def_id, count);
5166            }
5167
5168            ItemKind::ForeignMod(ForeignMod { extern_span, safety: _, abi, items }) => {
5169                for foreign_item in items {
5170                    if let ForeignItemKind::Fn(box Fn { sig, .. }) = &foreign_item.kind {
5171                        let new_header =
5172                            FnHeader { ext: Extern::from_abi(*abi, *extern_span), ..sig.header };
5173                        self.collect_fn_info(new_header, &sig.decl, foreign_item.id, &item.attrs);
5174                    }
5175                }
5176            }
5177
5178            ItemKind::Mod(..)
5179            | ItemKind::Static(..)
5180            | ItemKind::Use(..)
5181            | ItemKind::ExternCrate(..)
5182            | ItemKind::MacroDef(..)
5183            | ItemKind::GlobalAsm(..)
5184            | ItemKind::MacCall(..)
5185            | ItemKind::DelegationMac(..) => {}
5186            ItemKind::Delegation(..) => {
5187                // Delegated functions have lifetimes, their count is not necessarily zero.
5188                // But skipping the delegation items here doesn't mean that the count will be considered zero,
5189                // it means there will be a panic when retrieving the count,
5190                // but for delegation items we are never actually retrieving that count in practice.
5191            }
5192        }
5193        visit::walk_item(self, item)
5194    }
5195
5196    fn visit_assoc_item(&mut self, item: &'ast AssocItem, ctxt: AssocCtxt) {
5197        if let AssocItemKind::Fn(box Fn { sig, .. }) = &item.kind {
5198            self.collect_fn_info(sig.header, &sig.decl, item.id, &item.attrs);
5199        }
5200        visit::walk_assoc_item(self, item, ctxt);
5201    }
5202}
5203
5204impl<'ra, 'tcx> Resolver<'ra, 'tcx> {
5205    pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
5206        visit::walk_crate(&mut ItemInfoCollector { r: self }, krate);
5207        let mut late_resolution_visitor = LateResolutionVisitor::new(self);
5208        late_resolution_visitor.resolve_doc_links(&krate.attrs, MaybeExported::Ok(CRATE_NODE_ID));
5209        visit::walk_crate(&mut late_resolution_visitor, krate);
5210        for (id, span) in late_resolution_visitor.diag_metadata.unused_labels.iter() {
5211            self.lint_buffer.buffer_lint(
5212                lint::builtin::UNUSED_LABELS,
5213                *id,
5214                *span,
5215                BuiltinLintDiag::UnusedLabel,
5216            );
5217        }
5218    }
5219}
5220
5221/// Check if definition matches a path
5222fn def_id_matches_path(tcx: TyCtxt<'_>, mut def_id: DefId, expected_path: &[&str]) -> bool {
5223    let mut path = expected_path.iter().rev();
5224    while let (Some(parent), Some(next_step)) = (tcx.opt_parent(def_id), path.next()) {
5225        if !tcx.opt_item_name(def_id).is_some_and(|n| n.as_str() == *next_step) {
5226            return false;
5227        }
5228        def_id = parent;
5229    }
5230    true
5231}