rustc_const_eval/check_consts/qualifs.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
//! Structural const qualification.
//!
//! See the `Qualif` trait for more info.
// FIXME(const_trait_impl): This API should be really reworked. It's dangerously general for
// having basically only two use-cases that act in different ways.
use rustc_errors::ErrorGuaranteed;
use rustc_hir::LangItem;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, AdtDef, Ty};
use rustc_middle::{bug, mir};
use rustc_trait_selection::traits::{Obligation, ObligationCause, ObligationCtxt};
use tracing::instrument;
use super::ConstCx;
pub fn in_any_value_of_ty<'tcx>(
cx: &ConstCx<'_, 'tcx>,
ty: Ty<'tcx>,
tainted_by_errors: Option<ErrorGuaranteed>,
) -> ConstQualifs {
ConstQualifs {
has_mut_interior: HasMutInterior::in_any_value_of_ty(cx, ty),
needs_drop: NeedsDrop::in_any_value_of_ty(cx, ty),
needs_non_const_drop: NeedsNonConstDrop::in_any_value_of_ty(cx, ty),
tainted_by_errors,
}
}
/// A "qualif"(-ication) is a way to look for something "bad" in the MIR that would disqualify some
/// code for promotion or prevent it from evaluating at compile time.
///
/// Normally, we would determine what qualifications apply to each type and error when an illegal
/// operation is performed on such a type. However, this was found to be too imprecise, especially
/// in the presence of `enum`s. If only a single variant of an enum has a certain qualification, we
/// needn't reject code unless it actually constructs and operates on the qualified variant.
///
/// To accomplish this, const-checking and promotion use a value-based analysis (as opposed to a
/// type-based one). Qualifications propagate structurally across variables: If a local (or a
/// projection of a local) is assigned a qualified value, that local itself becomes qualified.
pub trait Qualif {
/// The name of the file used to debug the dataflow analysis that computes this qualif.
const ANALYSIS_NAME: &'static str;
/// Whether this `Qualif` is cleared when a local is moved from.
const IS_CLEARED_ON_MOVE: bool = false;
/// Whether this `Qualif` might be evaluated after the promotion and can encounter a promoted.
const ALLOW_PROMOTED: bool = false;
/// Extracts the field of `ConstQualifs` that corresponds to this `Qualif`.
fn in_qualifs(qualifs: &ConstQualifs) -> bool;
/// Returns `true` if *any* value of the given type could possibly have this `Qualif`.
///
/// This function determines `Qualif`s when we cannot do a value-based analysis. Since qualif
/// propagation is context-insensitive, this includes function arguments and values returned
/// from a call to another function.
///
/// It also determines the `Qualif`s for primitive types.
fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool;
/// Returns `true` if the `Qualif` is structural in an ADT's fields, i.e. if we may
/// recurse into an operand *value* to determine whether it has this `Qualif`.
///
/// If this returns false, `in_any_value_of_ty` will be invoked to determine the
/// final qualif for this ADT.
fn is_structural_in_adt_value<'tcx>(cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool;
}
/// Constant containing interior mutability (`UnsafeCell<T>`).
/// This must be ruled out to make sure that evaluating the constant at compile-time
/// and at *any point* during the run-time would produce the same result. In particular,
/// promotion of temporaries must not change program behavior; if the promoted could be
/// written to, that would be a problem.
pub struct HasMutInterior;
impl Qualif for HasMutInterior {
const ANALYSIS_NAME: &'static str = "flow_has_mut_interior";
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.has_mut_interior
}
fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
// Avoid selecting for simple cases, such as builtin types.
if ty.is_trivially_freeze() {
return false;
}
// Avoid selecting for `UnsafeCell` either.
if ty.ty_adt_def().is_some_and(|adt| adt.is_unsafe_cell()) {
return true;
}
// We do not use `ty.is_freeze` here, because that requires revealing opaque types, which
// requires borrowck, which in turn will invoke mir_const_qualifs again, causing a cycle error.
// Instead we invoke an obligation context manually, and provide the opaque type inference settings
// that allow the trait solver to just error out instead of cycling.
let freeze_def_id = cx.tcx.require_lang_item(LangItem::Freeze, Some(cx.body.span));
// FIXME(#132279): Once we've got a typing mode which reveals opaque types using the HIR
// typeck results without causing query cycles, we should use this here instead of defining
// opaque types.
let typing_env = ty::TypingEnv {
typing_mode: ty::TypingMode::analysis_in_body(
cx.tcx,
cx.body.source.def_id().expect_local(),
),
param_env: cx.typing_env.param_env,
};
let (infcx, param_env) = cx.tcx.infer_ctxt().build_with_typing_env(typing_env);
let ocx = ObligationCtxt::new(&infcx);
let obligation = Obligation::new(
cx.tcx,
ObligationCause::dummy_with_span(cx.body.span),
param_env,
ty::TraitRef::new(cx.tcx, freeze_def_id, [ty::GenericArg::from(ty)]),
);
ocx.register_obligation(obligation);
let errors = ocx.select_all_or_error();
!errors.is_empty()
}
fn is_structural_in_adt_value<'tcx>(_cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool {
// Exactly one type, `UnsafeCell`, has the `HasMutInterior` qualif inherently.
// It arises structurally for all other types.
!adt.is_unsafe_cell()
}
}
/// Constant containing an ADT that implements `Drop`.
/// This must be ruled out because implicit promotion would remove side-effects
/// that occur as part of dropping that value. N.B., the implicit promotion has
/// to reject const Drop implementations because even if side-effects are ruled
/// out through other means, the execution of the drop could diverge.
pub struct NeedsDrop;
impl Qualif for NeedsDrop {
const ANALYSIS_NAME: &'static str = "flow_needs_drop";
const IS_CLEARED_ON_MOVE: bool = true;
const ALLOW_PROMOTED: bool = true;
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.needs_drop
}
fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
ty.needs_drop(cx.tcx, cx.typing_env)
}
fn is_structural_in_adt_value<'tcx>(cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool {
!adt.has_dtor(cx.tcx)
}
}
/// Constant containing an ADT that implements non-const `Drop`.
/// This must be ruled out because we cannot run `Drop` during compile-time.
pub struct NeedsNonConstDrop;
impl Qualif for NeedsNonConstDrop {
const ANALYSIS_NAME: &'static str = "flow_needs_nonconst_drop";
const IS_CLEARED_ON_MOVE: bool = true;
const ALLOW_PROMOTED: bool = true;
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.needs_non_const_drop
}
#[instrument(level = "trace", skip(cx), ret)]
fn in_any_value_of_ty<'tcx>(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
// If this doesn't need drop at all, then don't select `~const Destruct`.
if !ty.needs_drop(cx.tcx, cx.typing_env) {
return false;
}
// We check that the type is `~const Destruct` since that will verify that
// the type is both `~const Drop` (if a drop impl exists for the adt), *and*
// that the components of this type are also `~const Destruct`. This
// amounts to verifying that there are no values in this ADT that may have
// a non-const drop.
let destruct_def_id = cx.tcx.require_lang_item(LangItem::Destruct, Some(cx.body.span));
let (infcx, param_env) = cx.tcx.infer_ctxt().build_with_typing_env(cx.typing_env);
let ocx = ObligationCtxt::new(&infcx);
ocx.register_obligation(Obligation::new(
cx.tcx,
ObligationCause::misc(cx.body.span, cx.def_id()),
param_env,
ty::Binder::dummy(ty::TraitRef::new(cx.tcx, destruct_def_id, [ty]))
.to_host_effect_clause(cx.tcx, match cx.const_kind() {
rustc_hir::ConstContext::ConstFn => ty::BoundConstness::Maybe,
rustc_hir::ConstContext::Static(_) | rustc_hir::ConstContext::Const { .. } => {
ty::BoundConstness::Const
}
}),
));
!ocx.select_all_or_error().is_empty()
}
fn is_structural_in_adt_value<'tcx>(cx: &ConstCx<'_, 'tcx>, adt: AdtDef<'tcx>) -> bool {
// As soon as an ADT has a destructor, then the drop becomes non-structural
// in its value since:
// 1. The destructor may have `~const` bounds which are not present on the type.
// Someone needs to check that those are satisfied.
// While this could be instead satisfied by checking that the `~const Drop`
// impl holds (i.e. replicating part of the `in_any_value_of_ty` logic above),
// even in this case, we have another problem, which is,
// 2. The destructor may *modify* the operand being dropped, so even if we
// did recurse on the components of the operand, we may not be even dropping
// the same values that were present before the custom destructor was invoked.
!adt.has_dtor(cx.tcx)
}
}
// FIXME: Use `mir::visit::Visitor` for the `in_*` functions if/when it supports early return.
/// Returns `true` if this `Rvalue` contains qualif `Q`.
pub fn in_rvalue<'tcx, Q, F>(
cx: &ConstCx<'_, 'tcx>,
in_local: &mut F,
rvalue: &Rvalue<'tcx>,
) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
match rvalue {
Rvalue::ThreadLocalRef(_) | Rvalue::NullaryOp(..) => {
Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx))
}
Rvalue::Discriminant(place) | Rvalue::Len(place) => {
in_place::<Q, _>(cx, in_local, place.as_ref())
}
Rvalue::CopyForDeref(place) => in_place::<Q, _>(cx, in_local, place.as_ref()),
Rvalue::Use(operand)
| Rvalue::Repeat(operand, _)
| Rvalue::UnaryOp(_, operand)
| Rvalue::Cast(_, operand, _)
| Rvalue::ShallowInitBox(operand, _) => in_operand::<Q, _>(cx, in_local, operand),
Rvalue::BinaryOp(_, box (lhs, rhs)) => {
in_operand::<Q, _>(cx, in_local, lhs) || in_operand::<Q, _>(cx, in_local, rhs)
}
Rvalue::Ref(_, _, place) | Rvalue::RawPtr(_, place) => {
// Special-case reborrows to be more like a copy of the reference.
if let Some((place_base, ProjectionElem::Deref)) = place.as_ref().last_projection() {
let base_ty = place_base.ty(cx.body, cx.tcx).ty;
if let ty::Ref(..) = base_ty.kind() {
return in_place::<Q, _>(cx, in_local, place_base);
}
}
in_place::<Q, _>(cx, in_local, place.as_ref())
}
Rvalue::Aggregate(kind, operands) => {
// Return early if we know that the struct or enum being constructed is always
// qualified.
if let AggregateKind::Adt(adt_did, ..) = **kind {
let def = cx.tcx.adt_def(adt_did);
// Don't do any value-based reasoning for unions.
// Also, if the ADT is not structural in its fields,
// then we cannot recurse on its fields. Instead,
// we fall back to checking the qualif for *any* value
// of the ADT.
if def.is_union() || !Q::is_structural_in_adt_value(cx, def) {
return Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx));
}
}
// Otherwise, proceed structurally...
operands.iter().any(|o| in_operand::<Q, _>(cx, in_local, o))
}
}
}
/// Returns `true` if this `Place` contains qualif `Q`.
pub fn in_place<'tcx, Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, place: PlaceRef<'tcx>) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
let mut place = place;
while let Some((place_base, elem)) = place.last_projection() {
match elem {
ProjectionElem::Index(index) if in_local(index) => return true,
ProjectionElem::Deref
| ProjectionElem::Subtype(_)
| ProjectionElem::Field(_, _)
| ProjectionElem::OpaqueCast(_)
| ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. }
| ProjectionElem::Downcast(_, _)
| ProjectionElem::Index(_) => {}
}
let base_ty = place_base.ty(cx.body, cx.tcx);
let proj_ty = base_ty.projection_ty(cx.tcx, elem).ty;
if !Q::in_any_value_of_ty(cx, proj_ty) {
return false;
}
// `Deref` currently unconditionally "qualifies" if `in_any_value_of_ty` returns true,
// i.e., we treat all qualifs as non-structural for deref projections. Generally,
// we can say very little about `*ptr` even if we know that `ptr` satisfies all
// sorts of properties.
if matches!(elem, ProjectionElem::Deref) {
// We have to assume that this qualifies.
return true;
}
place = place_base;
}
assert!(place.projection.is_empty());
in_local(place.local)
}
/// Returns `true` if this `Operand` contains qualif `Q`.
pub fn in_operand<'tcx, Q, F>(
cx: &ConstCx<'_, 'tcx>,
in_local: &mut F,
operand: &Operand<'tcx>,
) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
let constant = match operand {
Operand::Copy(place) | Operand::Move(place) => {
return in_place::<Q, _>(cx, in_local, place.as_ref());
}
Operand::Constant(c) => c,
};
// Check the qualifs of the value of `const` items.
let uneval = match constant.const_ {
Const::Ty(_, ct)
if matches!(
ct.kind(),
ty::ConstKind::Param(_) | ty::ConstKind::Error(_) | ty::ConstKind::Value(_, _)
) =>
{
None
}
Const::Ty(_, c) => {
bug!("expected ConstKind::Param or ConstKind::Value here, found {:?}", c)
}
Const::Unevaluated(uv, _) => Some(uv),
Const::Val(..) => None,
};
if let Some(mir::UnevaluatedConst { def, args: _, promoted }) = uneval {
// Use qualifs of the type for the promoted. Promoteds in MIR body should be possible
// only for `NeedsNonConstDrop` with precise drop checking. This is the only const
// check performed after the promotion. Verify that with an assertion.
assert!(promoted.is_none() || Q::ALLOW_PROMOTED);
// Don't peek inside trait associated constants.
if promoted.is_none() && cx.tcx.trait_of_item(def).is_none() {
let qualifs = cx.tcx.at(constant.span).mir_const_qualif(def);
if !Q::in_qualifs(&qualifs) {
return false;
}
// Just in case the type is more specific than
// the definition, e.g., impl associated const
// with type parameters, take it into account.
}
}
// Otherwise use the qualifs of the type.
Q::in_any_value_of_ty(cx, constant.const_.ty())
}