rustc_next_trait_solver/solve/assembly/
structural_traits.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
//! Code which is used by built-in goals that match "structurally", such a auto
//! traits, `Copy`/`Clone`.

use derive_where::derive_where;
use rustc_ast_ir::{Movability, Mutability};
use rustc_type_ir::data_structures::HashMap;
use rustc_type_ir::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_type_ir::inherent::*;
use rustc_type_ir::lang_items::TraitSolverLangItem;
use rustc_type_ir::{self as ty, Interner, Upcast as _, elaborate};
use rustc_type_ir_macros::{TypeFoldable_Generic, TypeVisitable_Generic};
use tracing::instrument;

use crate::delegate::SolverDelegate;
use crate::solve::{AdtDestructorKind, EvalCtxt, Goal, NoSolution};

// Calculates the constituent types of a type for `auto trait` purposes.
#[instrument(level = "trace", skip(ecx), ret)]
pub(in crate::solve) fn instantiate_constituent_tys_for_auto_trait<D, I>(
    ecx: &EvalCtxt<'_, D>,
    ty: I::Ty,
) -> Result<Vec<ty::Binder<I, I::Ty>>, NoSolution>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    let cx = ecx.cx();
    match ty.kind() {
        ty::Uint(_)
        | ty::Int(_)
        | ty::Bool
        | ty::Float(_)
        | ty::FnDef(..)
        | ty::FnPtr(..)
        | ty::Error(_)
        | ty::Never
        | ty::Char => Ok(vec![]),

        // Treat `str` like it's defined as `struct str([u8]);`
        ty::Str => Ok(vec![ty::Binder::dummy(Ty::new_slice(cx, Ty::new_u8(cx)))]),

        ty::Dynamic(..)
        | ty::Param(..)
        | ty::Foreign(..)
        | ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..)
        | ty::Placeholder(..)
        | ty::Bound(..)
        | ty::Infer(_) => {
            panic!("unexpected type `{ty:?}`")
        }

        ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => {
            Ok(vec![ty::Binder::dummy(element_ty)])
        }

        ty::Pat(element_ty, _) | ty::Array(element_ty, _) | ty::Slice(element_ty) => {
            Ok(vec![ty::Binder::dummy(element_ty)])
        }

        ty::Tuple(tys) => {
            // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
            Ok(tys.iter().map(ty::Binder::dummy).collect())
        }

        ty::Closure(_, args) => Ok(vec![ty::Binder::dummy(args.as_closure().tupled_upvars_ty())]),

        ty::CoroutineClosure(_, args) => {
            Ok(vec![ty::Binder::dummy(args.as_coroutine_closure().tupled_upvars_ty())])
        }

        ty::Coroutine(_, args) => {
            let coroutine_args = args.as_coroutine();
            Ok(vec![
                ty::Binder::dummy(coroutine_args.tupled_upvars_ty()),
                ty::Binder::dummy(coroutine_args.witness()),
            ])
        }

        ty::CoroutineWitness(def_id, args) => Ok(ecx
            .cx()
            .bound_coroutine_hidden_types(def_id)
            .into_iter()
            .map(|bty| bty.instantiate(cx, args))
            .collect()),

        // For `PhantomData<T>`, we pass `T`.
        ty::Adt(def, args) if def.is_phantom_data() => Ok(vec![ty::Binder::dummy(args.type_at(0))]),

        ty::Adt(def, args) => {
            Ok(def.all_field_tys(cx).iter_instantiated(cx, args).map(ty::Binder::dummy).collect())
        }

        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
            // We can resolve the `impl Trait` to its concrete type,
            // which enforces a DAG between the functions requiring
            // the auto trait bounds in question.
            Ok(vec![ty::Binder::dummy(cx.type_of(def_id).instantiate(cx, args))])
        }
    }
}

#[instrument(level = "trace", skip(ecx), ret)]
pub(in crate::solve) fn instantiate_constituent_tys_for_sized_trait<D, I>(
    ecx: &EvalCtxt<'_, D>,
    ty: I::Ty,
) -> Result<Vec<ty::Binder<I, I::Ty>>, NoSolution>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    match ty.kind() {
        // impl Sized for u*, i*, bool, f*, FnDef, FnPtr, *(const/mut) T, char, &mut? T, [T; N], dyn* Trait, !
        // impl Sized for Coroutine, CoroutineWitness, Closure, CoroutineClosure
        ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
        | ty::Uint(_)
        | ty::Int(_)
        | ty::Bool
        | ty::Float(_)
        | ty::FnDef(..)
        | ty::FnPtr(..)
        | ty::RawPtr(..)
        | ty::Char
        | ty::Ref(..)
        | ty::Coroutine(..)
        | ty::CoroutineWitness(..)
        | ty::Array(..)
        | ty::Pat(..)
        | ty::Closure(..)
        | ty::CoroutineClosure(..)
        | ty::Never
        | ty::Dynamic(_, _, ty::DynStar)
        | ty::Error(_) => Ok(vec![]),

        ty::Str
        | ty::Slice(_)
        | ty::Dynamic(..)
        | ty::Foreign(..)
        | ty::Alias(..)
        | ty::Param(_)
        | ty::Placeholder(..) => Err(NoSolution),

        ty::Bound(..)
        | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
            panic!("unexpected type `{ty:?}`")
        }

        // impl Sized for ()
        // impl Sized for (T1, T2, .., Tn) where Tn: Sized if n >= 1
        ty::Tuple(tys) => Ok(tys.last().map_or_else(Vec::new, |ty| vec![ty::Binder::dummy(ty)])),

        // impl Sized for Adt<Args...> where sized_constraint(Adt)<Args...>: Sized
        //   `sized_constraint(Adt)` is the deepest struct trail that can be determined
        //   by the definition of `Adt`, independent of the generic args.
        // impl Sized for Adt<Args...> if sized_constraint(Adt) == None
        //   As a performance optimization, `sized_constraint(Adt)` can return `None`
        //   if the ADTs definition implies that it is sized by for all possible args.
        //   In this case, the builtin impl will have no nested subgoals. This is a
        //   "best effort" optimization and `sized_constraint` may return `Some`, even
        //   if the ADT is sized for all possible args.
        ty::Adt(def, args) => {
            if let Some(sized_crit) = def.sized_constraint(ecx.cx()) {
                Ok(vec![ty::Binder::dummy(sized_crit.instantiate(ecx.cx(), args))])
            } else {
                Ok(vec![])
            }
        }
    }
}

#[instrument(level = "trace", skip(ecx), ret)]
pub(in crate::solve) fn instantiate_constituent_tys_for_copy_clone_trait<D, I>(
    ecx: &EvalCtxt<'_, D>,
    ty: I::Ty,
) -> Result<Vec<ty::Binder<I, I::Ty>>, NoSolution>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    match ty.kind() {
        // impl Copy/Clone for FnDef, FnPtr
        ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => Ok(vec![]),

        // Implementations are provided in core
        ty::Uint(_)
        | ty::Int(_)
        | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
        | ty::Bool
        | ty::Float(_)
        | ty::Char
        | ty::RawPtr(..)
        | ty::Never
        | ty::Ref(_, _, Mutability::Not)
        | ty::Array(..) => Err(NoSolution),

        // Cannot implement in core, as we can't be generic over patterns yet,
        // so we'd have to list all patterns and type combinations.
        ty::Pat(ty, ..) => Ok(vec![ty::Binder::dummy(ty)]),

        ty::Dynamic(..)
        | ty::Str
        | ty::Slice(_)
        | ty::Foreign(..)
        | ty::Ref(_, _, Mutability::Mut)
        | ty::Adt(_, _)
        | ty::Alias(_, _)
        | ty::Param(_)
        | ty::Placeholder(..) => Err(NoSolution),

        ty::Bound(..)
        | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
            panic!("unexpected type `{ty:?}`")
        }

        // impl Copy/Clone for (T1, T2, .., Tn) where T1: Copy/Clone, T2: Copy/Clone, .. Tn: Copy/Clone
        ty::Tuple(tys) => Ok(tys.iter().map(ty::Binder::dummy).collect()),

        // impl Copy/Clone for Closure where Self::TupledUpvars: Copy/Clone
        ty::Closure(_, args) => Ok(vec![ty::Binder::dummy(args.as_closure().tupled_upvars_ty())]),

        // impl Copy/Clone for CoroutineClosure where Self::TupledUpvars: Copy/Clone
        ty::CoroutineClosure(_, args) => {
            Ok(vec![ty::Binder::dummy(args.as_coroutine_closure().tupled_upvars_ty())])
        }

        // only when `coroutine_clone` is enabled and the coroutine is movable
        // impl Copy/Clone for Coroutine where T: Copy/Clone forall T in (upvars, witnesses)
        ty::Coroutine(def_id, args) => match ecx.cx().coroutine_movability(def_id) {
            Movability::Static => Err(NoSolution),
            Movability::Movable => {
                if ecx.cx().features().coroutine_clone() {
                    let coroutine = args.as_coroutine();
                    Ok(vec![
                        ty::Binder::dummy(coroutine.tupled_upvars_ty()),
                        ty::Binder::dummy(coroutine.witness()),
                    ])
                } else {
                    Err(NoSolution)
                }
            }
        },

        // impl Copy/Clone for CoroutineWitness where T: Copy/Clone forall T in coroutine_hidden_types
        ty::CoroutineWitness(def_id, args) => Ok(ecx
            .cx()
            .bound_coroutine_hidden_types(def_id)
            .into_iter()
            .map(|bty| bty.instantiate(ecx.cx(), args))
            .collect()),
    }
}

// Returns a binder of the tupled inputs types and output type from a builtin callable type.
pub(in crate::solve) fn extract_tupled_inputs_and_output_from_callable<I: Interner>(
    cx: I,
    self_ty: I::Ty,
    goal_kind: ty::ClosureKind,
) -> Result<Option<ty::Binder<I, (I::Ty, I::Ty)>>, NoSolution> {
    match self_ty.kind() {
        // keep this in sync with assemble_fn_pointer_candidates until the old solver is removed.
        ty::FnDef(def_id, args) => {
            let sig = cx.fn_sig(def_id);
            if sig.skip_binder().is_fn_trait_compatible() && !cx.has_target_features(def_id) {
                Ok(Some(
                    sig.instantiate(cx, args)
                        .map_bound(|sig| (Ty::new_tup(cx, sig.inputs().as_slice()), sig.output())),
                ))
            } else {
                Err(NoSolution)
            }
        }
        // keep this in sync with assemble_fn_pointer_candidates until the old solver is removed.
        ty::FnPtr(sig_tys, hdr) => {
            let sig = sig_tys.with(hdr);
            if sig.is_fn_trait_compatible() {
                Ok(Some(
                    sig.map_bound(|sig| (Ty::new_tup(cx, sig.inputs().as_slice()), sig.output())),
                ))
            } else {
                Err(NoSolution)
            }
        }
        ty::Closure(_, args) => {
            let closure_args = args.as_closure();
            match closure_args.kind_ty().to_opt_closure_kind() {
                // If the closure's kind doesn't extend the goal kind,
                // then the closure doesn't implement the trait.
                Some(closure_kind) => {
                    if !closure_kind.extends(goal_kind) {
                        return Err(NoSolution);
                    }
                }
                // Closure kind is not yet determined, so we return ambiguity unless
                // the expected kind is `FnOnce` as that is always implemented.
                None => {
                    if goal_kind != ty::ClosureKind::FnOnce {
                        return Ok(None);
                    }
                }
            }
            Ok(Some(
                closure_args.sig().map_bound(|sig| (sig.inputs().get(0).unwrap(), sig.output())),
            ))
        }

        // Coroutine-closures don't implement `Fn` traits the normal way.
        // Instead, they always implement `FnOnce`, but only implement
        // `FnMut`/`Fn` if they capture no upvars, since those may borrow
        // from the closure.
        ty::CoroutineClosure(def_id, args) => {
            let args = args.as_coroutine_closure();
            let kind_ty = args.kind_ty();
            let sig = args.coroutine_closure_sig().skip_binder();

            // FIXME: let_chains
            let kind = kind_ty.to_opt_closure_kind();
            let coroutine_ty = if kind.is_some() && !args.tupled_upvars_ty().is_ty_var() {
                let closure_kind = kind.unwrap();
                if !closure_kind.extends(goal_kind) {
                    return Err(NoSolution);
                }

                // A coroutine-closure implements `FnOnce` *always*, since it may
                // always be called once. It additionally implements `Fn`/`FnMut`
                // only if it has no upvars referencing the closure-env lifetime,
                // and if the closure kind permits it.
                if closure_kind != ty::ClosureKind::FnOnce && args.has_self_borrows() {
                    return Err(NoSolution);
                }

                coroutine_closure_to_certain_coroutine(
                    cx,
                    goal_kind,
                    // No captures by ref, so this doesn't matter.
                    Region::new_static(cx),
                    def_id,
                    args,
                    sig,
                )
            } else {
                // Closure kind is not yet determined, so we return ambiguity unless
                // the expected kind is `FnOnce` as that is always implemented.
                if goal_kind != ty::ClosureKind::FnOnce {
                    return Ok(None);
                }

                coroutine_closure_to_ambiguous_coroutine(
                    cx,
                    goal_kind, // No captures by ref, so this doesn't matter.
                    Region::new_static(cx),
                    def_id,
                    args,
                    sig,
                )
            };

            Ok(Some(args.coroutine_closure_sig().rebind((sig.tupled_inputs_ty, coroutine_ty))))
        }

        ty::Bool
        | ty::Char
        | ty::Int(_)
        | ty::Uint(_)
        | ty::Float(_)
        | ty::Adt(_, _)
        | ty::Foreign(_)
        | ty::Str
        | ty::Array(_, _)
        | ty::Slice(_)
        | ty::RawPtr(_, _)
        | ty::Ref(_, _, _)
        | ty::Dynamic(_, _, _)
        | ty::Coroutine(_, _)
        | ty::CoroutineWitness(..)
        | ty::Never
        | ty::Tuple(_)
        | ty::Pat(_, _)
        | ty::Alias(_, _)
        | ty::Param(_)
        | ty::Placeholder(..)
        | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
        | ty::Error(_) => Err(NoSolution),

        ty::Bound(..)
        | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
            panic!("unexpected type `{self_ty:?}`")
        }
    }
}

/// Relevant types for an async callable, including its inputs, output,
/// and the return type you get from awaiting the output.
#[derive_where(Clone, Copy, Debug; I: Interner)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
pub(in crate::solve) struct AsyncCallableRelevantTypes<I: Interner> {
    pub tupled_inputs_ty: I::Ty,
    /// Type returned by calling the closure
    /// i.e. `f()`.
    pub output_coroutine_ty: I::Ty,
    /// Type returned by `await`ing the output
    /// i.e. `f().await`.
    pub coroutine_return_ty: I::Ty,
}

// Returns a binder of the tupled inputs types, output type, and coroutine type
// from a builtin coroutine-closure type. If we don't yet know the closure kind of
// the coroutine-closure, emit an additional trait predicate for `AsyncFnKindHelper`
// which enforces the closure is actually callable with the given trait. When we
// know the kind already, we can short-circuit this check.
pub(in crate::solve) fn extract_tupled_inputs_and_output_from_async_callable<I: Interner>(
    cx: I,
    self_ty: I::Ty,
    goal_kind: ty::ClosureKind,
    env_region: I::Region,
) -> Result<(ty::Binder<I, AsyncCallableRelevantTypes<I>>, Vec<I::Predicate>), NoSolution> {
    match self_ty.kind() {
        ty::CoroutineClosure(def_id, args) => {
            let args = args.as_coroutine_closure();
            let kind_ty = args.kind_ty();
            let sig = args.coroutine_closure_sig().skip_binder();
            let mut nested = vec![];

            // FIXME: let_chains
            let kind = kind_ty.to_opt_closure_kind();
            let coroutine_ty = if kind.is_some() && !args.tupled_upvars_ty().is_ty_var() {
                if !kind.unwrap().extends(goal_kind) {
                    return Err(NoSolution);
                }

                coroutine_closure_to_certain_coroutine(cx, goal_kind, env_region, def_id, args, sig)
            } else {
                // When we don't know the closure kind (and therefore also the closure's upvars,
                // which are computed at the same time), we must delay the computation of the
                // generator's upvars. We do this using the `AsyncFnKindHelper`, which as a trait
                // goal functions similarly to the old `ClosureKind` predicate, and ensures that
                // the goal kind <= the closure kind. As a projection `AsyncFnKindHelper::Upvars`
                // will project to the right upvars for the generator, appending the inputs and
                // coroutine upvars respecting the closure kind.
                nested.push(
                    ty::TraitRef::new(
                        cx,
                        cx.require_lang_item(TraitSolverLangItem::AsyncFnKindHelper),
                        [kind_ty, Ty::from_closure_kind(cx, goal_kind)],
                    )
                    .upcast(cx),
                );

                coroutine_closure_to_ambiguous_coroutine(
                    cx, goal_kind, env_region, def_id, args, sig,
                )
            };

            Ok((
                args.coroutine_closure_sig().rebind(AsyncCallableRelevantTypes {
                    tupled_inputs_ty: sig.tupled_inputs_ty,
                    output_coroutine_ty: coroutine_ty,
                    coroutine_return_ty: sig.return_ty,
                }),
                nested,
            ))
        }

        ty::FnDef(def_id, _) => {
            let sig = self_ty.fn_sig(cx);
            if sig.is_fn_trait_compatible() && !cx.has_target_features(def_id) {
                fn_item_to_async_callable(cx, sig)
            } else {
                Err(NoSolution)
            }
        }
        ty::FnPtr(..) => {
            let sig = self_ty.fn_sig(cx);
            if sig.is_fn_trait_compatible() {
                fn_item_to_async_callable(cx, sig)
            } else {
                Err(NoSolution)
            }
        }

        ty::Closure(_, args) => {
            let args = args.as_closure();
            let bound_sig = args.sig();
            let sig = bound_sig.skip_binder();
            let future_trait_def_id = cx.require_lang_item(TraitSolverLangItem::Future);
            // `Closure`s only implement `AsyncFn*` when their return type
            // implements `Future`.
            let mut nested = vec![
                bound_sig
                    .rebind(ty::TraitRef::new(cx, future_trait_def_id, [sig.output()]))
                    .upcast(cx),
            ];

            // Additionally, we need to check that the closure kind
            // is still compatible.
            let kind_ty = args.kind_ty();
            if let Some(closure_kind) = kind_ty.to_opt_closure_kind() {
                if !closure_kind.extends(goal_kind) {
                    return Err(NoSolution);
                }
            } else {
                let async_fn_kind_trait_def_id =
                    cx.require_lang_item(TraitSolverLangItem::AsyncFnKindHelper);
                // When we don't know the closure kind (and therefore also the closure's upvars,
                // which are computed at the same time), we must delay the computation of the
                // generator's upvars. We do this using the `AsyncFnKindHelper`, which as a trait
                // goal functions similarly to the old `ClosureKind` predicate, and ensures that
                // the goal kind <= the closure kind. As a projection `AsyncFnKindHelper::Upvars`
                // will project to the right upvars for the generator, appending the inputs and
                // coroutine upvars respecting the closure kind.
                nested.push(
                    ty::TraitRef::new(cx, async_fn_kind_trait_def_id, [
                        kind_ty,
                        Ty::from_closure_kind(cx, goal_kind),
                    ])
                    .upcast(cx),
                );
            }

            let future_output_def_id = cx.require_lang_item(TraitSolverLangItem::FutureOutput);
            let future_output_ty = Ty::new_projection(cx, future_output_def_id, [sig.output()]);
            Ok((
                bound_sig.rebind(AsyncCallableRelevantTypes {
                    tupled_inputs_ty: sig.inputs().get(0).unwrap(),
                    output_coroutine_ty: sig.output(),
                    coroutine_return_ty: future_output_ty,
                }),
                nested,
            ))
        }

        ty::Bool
        | ty::Char
        | ty::Int(_)
        | ty::Uint(_)
        | ty::Float(_)
        | ty::Adt(_, _)
        | ty::Foreign(_)
        | ty::Str
        | ty::Array(_, _)
        | ty::Pat(_, _)
        | ty::Slice(_)
        | ty::RawPtr(_, _)
        | ty::Ref(_, _, _)
        | ty::Dynamic(_, _, _)
        | ty::Coroutine(_, _)
        | ty::CoroutineWitness(..)
        | ty::Never
        | ty::Tuple(_)
        | ty::Alias(_, _)
        | ty::Param(_)
        | ty::Placeholder(..)
        | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
        | ty::Error(_) => Err(NoSolution),

        ty::Bound(..)
        | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
            panic!("unexpected type `{self_ty:?}`")
        }
    }
}

fn fn_item_to_async_callable<I: Interner>(
    cx: I,
    bound_sig: ty::Binder<I, ty::FnSig<I>>,
) -> Result<(ty::Binder<I, AsyncCallableRelevantTypes<I>>, Vec<I::Predicate>), NoSolution> {
    let sig = bound_sig.skip_binder();
    let future_trait_def_id = cx.require_lang_item(TraitSolverLangItem::Future);
    // `FnDef` and `FnPtr` only implement `AsyncFn*` when their
    // return type implements `Future`.
    let nested = vec![
        bound_sig.rebind(ty::TraitRef::new(cx, future_trait_def_id, [sig.output()])).upcast(cx),
    ];
    let future_output_def_id = cx.require_lang_item(TraitSolverLangItem::FutureOutput);
    let future_output_ty = Ty::new_projection(cx, future_output_def_id, [sig.output()]);
    Ok((
        bound_sig.rebind(AsyncCallableRelevantTypes {
            tupled_inputs_ty: Ty::new_tup(cx, sig.inputs().as_slice()),
            output_coroutine_ty: sig.output(),
            coroutine_return_ty: future_output_ty,
        }),
        nested,
    ))
}

/// Given a coroutine-closure, project to its returned coroutine when we are *certain*
/// that the closure's kind is compatible with the goal.
fn coroutine_closure_to_certain_coroutine<I: Interner>(
    cx: I,
    goal_kind: ty::ClosureKind,
    goal_region: I::Region,
    def_id: I::DefId,
    args: ty::CoroutineClosureArgs<I>,
    sig: ty::CoroutineClosureSignature<I>,
) -> I::Ty {
    sig.to_coroutine_given_kind_and_upvars(
        cx,
        args.parent_args(),
        cx.coroutine_for_closure(def_id),
        goal_kind,
        goal_region,
        args.tupled_upvars_ty(),
        args.coroutine_captures_by_ref_ty(),
    )
}

/// Given a coroutine-closure, project to its returned coroutine when we are *not certain*
/// that the closure's kind is compatible with the goal, and therefore also don't know
/// yet what the closure's upvars are.
///
/// Note that we do not also push a `AsyncFnKindHelper` goal here.
fn coroutine_closure_to_ambiguous_coroutine<I: Interner>(
    cx: I,
    goal_kind: ty::ClosureKind,
    goal_region: I::Region,
    def_id: I::DefId,
    args: ty::CoroutineClosureArgs<I>,
    sig: ty::CoroutineClosureSignature<I>,
) -> I::Ty {
    let upvars_projection_def_id = cx.require_lang_item(TraitSolverLangItem::AsyncFnKindUpvars);
    let tupled_upvars_ty = Ty::new_projection(cx, upvars_projection_def_id, [
        I::GenericArg::from(args.kind_ty()),
        Ty::from_closure_kind(cx, goal_kind).into(),
        goal_region.into(),
        sig.tupled_inputs_ty.into(),
        args.tupled_upvars_ty().into(),
        args.coroutine_captures_by_ref_ty().into(),
    ]);
    sig.to_coroutine(
        cx,
        args.parent_args(),
        Ty::from_closure_kind(cx, goal_kind),
        cx.coroutine_for_closure(def_id),
        tupled_upvars_ty,
    )
}

/// This duplicates `extract_tupled_inputs_and_output_from_callable` but needs
/// to return different information (namely, the def id and args) so that we can
/// create const conditions.
///
/// Doing so on all calls to `extract_tupled_inputs_and_output_from_callable`
/// would be wasteful.
pub(in crate::solve) fn extract_fn_def_from_const_callable<I: Interner>(
    cx: I,
    self_ty: I::Ty,
) -> Result<(ty::Binder<I, (I::FnInputTys, I::Ty)>, I::DefId, I::GenericArgs), NoSolution> {
    match self_ty.kind() {
        ty::FnDef(def_id, args) => {
            let sig = cx.fn_sig(def_id);
            if sig.skip_binder().is_fn_trait_compatible()
                && !cx.has_target_features(def_id)
                && cx.fn_is_const(def_id)
            {
                Ok((
                    sig.instantiate(cx, args).map_bound(|sig| (sig.inputs(), sig.output())),
                    def_id,
                    args,
                ))
            } else {
                return Err(NoSolution);
            }
        }
        // `FnPtr`s are not const for now.
        ty::FnPtr(..) => {
            return Err(NoSolution);
        }
        // `Closure`s are not const for now.
        ty::Closure(..) => {
            return Err(NoSolution);
        }
        // `CoroutineClosure`s are not const for now.
        ty::CoroutineClosure(..) => {
            return Err(NoSolution);
        }

        ty::Bool
        | ty::Char
        | ty::Int(_)
        | ty::Uint(_)
        | ty::Float(_)
        | ty::Adt(_, _)
        | ty::Foreign(_)
        | ty::Str
        | ty::Array(_, _)
        | ty::Slice(_)
        | ty::RawPtr(_, _)
        | ty::Ref(_, _, _)
        | ty::Dynamic(_, _, _)
        | ty::Coroutine(_, _)
        | ty::CoroutineWitness(..)
        | ty::Never
        | ty::Tuple(_)
        | ty::Pat(_, _)
        | ty::Alias(_, _)
        | ty::Param(_)
        | ty::Placeholder(..)
        | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
        | ty::Error(_) => return Err(NoSolution),

        ty::Bound(..)
        | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
            panic!("unexpected type `{self_ty:?}`")
        }
    }
}

pub(in crate::solve) fn const_conditions_for_destruct<I: Interner>(
    cx: I,
    self_ty: I::Ty,
) -> Result<Vec<ty::TraitRef<I>>, NoSolution> {
    let destruct_def_id = cx.require_lang_item(TraitSolverLangItem::Destruct);

    match self_ty.kind() {
        // An ADT is `~const Destruct` only if all of the fields are,
        // *and* if there is a `Drop` impl, that `Drop` impl is also `~const`.
        ty::Adt(adt_def, args) => {
            let mut const_conditions: Vec<_> = adt_def
                .all_field_tys(cx)
                .iter_instantiated(cx, args)
                .map(|field_ty| ty::TraitRef::new(cx, destruct_def_id, [field_ty]))
                .collect();
            match adt_def.destructor(cx) {
                // `Drop` impl exists, but it's not const. Type cannot be `~const Destruct`.
                Some(AdtDestructorKind::NotConst) => return Err(NoSolution),
                // `Drop` impl exists, and it's const. Require `Ty: ~const Drop` to hold.
                Some(AdtDestructorKind::Const) => {
                    let drop_def_id = cx.require_lang_item(TraitSolverLangItem::Drop);
                    let drop_trait_ref = ty::TraitRef::new(cx, drop_def_id, [self_ty]);
                    const_conditions.push(drop_trait_ref);
                }
                // No `Drop` impl, no need to require anything else.
                None => {}
            }
            Ok(const_conditions)
        }

        ty::Array(ty, _) | ty::Pat(ty, _) | ty::Slice(ty) => {
            Ok(vec![ty::TraitRef::new(cx, destruct_def_id, [ty])])
        }

        ty::Tuple(tys) => Ok(tys
            .iter()
            .map(|field_ty| ty::TraitRef::new(cx, destruct_def_id, [field_ty]))
            .collect()),

        // Trivially implement `~const Destruct`
        ty::Bool
        | ty::Char
        | ty::Int(..)
        | ty::Uint(..)
        | ty::Float(..)
        | ty::Str
        | ty::RawPtr(..)
        | ty::Ref(..)
        | ty::FnDef(..)
        | ty::FnPtr(..)
        | ty::Never
        | ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
        | ty::Error(_) => Ok(vec![]),

        // Coroutines and closures could implement `~const Drop`,
        // but they don't really need to right now.
        ty::Closure(_, _)
        | ty::CoroutineClosure(_, _)
        | ty::Coroutine(_, _)
        | ty::CoroutineWitness(_, _) => Err(NoSolution),

        ty::Dynamic(..) | ty::Param(_) | ty::Alias(..) | ty::Placeholder(_) | ty::Foreign(_) => {
            Err(NoSolution)
        }

        ty::Bound(..)
        | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
            panic!("unexpected type `{self_ty:?}`")
        }
    }
}

/// Assemble a list of predicates that would be present on a theoretical
/// user impl for an object type. These predicates must be checked any time
/// we assemble a built-in object candidate for an object type, since they
/// are not implied by the well-formedness of the type.
///
/// For example, given the following traits:
///
/// ```rust,ignore (theoretical code)
/// trait Foo: Baz {
///     type Bar: Copy;
/// }
///
/// trait Baz {}
/// ```
///
/// For the dyn type `dyn Foo<Item = Ty>`, we can imagine there being a
/// pair of theoretical impls:
///
/// ```rust,ignore (theoretical code)
/// impl Foo for dyn Foo<Item = Ty>
/// where
///     Self: Baz,
///     <Self as Foo>::Bar: Copy,
/// {
///     type Bar = Ty;
/// }
///
/// impl Baz for dyn Foo<Item = Ty> {}
/// ```
///
/// However, in order to make such impls well-formed, we need to do an
/// additional step of eagerly folding the associated types in the where
/// clauses of the impl. In this example, that means replacing
/// `<Self as Foo>::Bar` with `Ty` in the first impl.
///
// FIXME: This is only necessary as `<Self as Trait>::Assoc: ItemBound`
// bounds in impls are trivially proven using the item bound candidates.
// This is unsound in general and once that is fixed, we don't need to
// normalize eagerly here. See https://github.com/lcnr/solver-woes/issues/9
// for more details.
pub(in crate::solve) fn predicates_for_object_candidate<D, I>(
    ecx: &EvalCtxt<'_, D>,
    param_env: I::ParamEnv,
    trait_ref: ty::TraitRef<I>,
    object_bounds: I::BoundExistentialPredicates,
) -> Vec<Goal<I, I::Predicate>>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    let cx = ecx.cx();
    let mut requirements = vec![];
    // Elaborating all supertrait outlives obligations here is not soundness critical,
    // since if we just used the unelaborated set, then the transitive supertraits would
    // be reachable when proving the former. However, since we elaborate all supertrait
    // outlives obligations when confirming impls, we would end up with a different set
    // of outlives obligations here if we didn't do the same, leading to ambiguity.
    // FIXME(-Znext-solver=coinductive): Adding supertraits here can be removed once we
    // make impls coinductive always, since they'll always need to prove their supertraits.
    requirements.extend(elaborate::elaborate(
        cx,
        cx.explicit_super_predicates_of(trait_ref.def_id)
            .iter_instantiated(cx, trait_ref.args)
            .map(|(pred, _)| pred),
    ));

    // FIXME(associated_const_equality): Also add associated consts to
    // the requirements here.
    for associated_type_def_id in cx.associated_type_def_ids(trait_ref.def_id) {
        // associated types that require `Self: Sized` do not show up in the built-in
        // implementation of `Trait for dyn Trait`, and can be dropped here.
        if cx.generics_require_sized_self(associated_type_def_id) {
            continue;
        }

        requirements
            .extend(cx.item_bounds(associated_type_def_id).iter_instantiated(cx, trait_ref.args));
    }

    let mut replace_projection_with = HashMap::default();
    for bound in object_bounds.iter() {
        if let ty::ExistentialPredicate::Projection(proj) = bound.skip_binder() {
            let proj = proj.with_self_ty(cx, trait_ref.self_ty());
            let old_ty = replace_projection_with.insert(proj.def_id(), bound.rebind(proj));
            assert_eq!(
                old_ty,
                None,
                "{:?} has two generic parameters: {:?} and {:?}",
                proj.projection_term,
                proj.term,
                old_ty.unwrap()
            );
        }
    }

    let mut folder =
        ReplaceProjectionWith { ecx, param_env, mapping: replace_projection_with, nested: vec![] };
    let folded_requirements = requirements.fold_with(&mut folder);

    folder
        .nested
        .into_iter()
        .chain(folded_requirements.into_iter().map(|clause| Goal::new(cx, param_env, clause)))
        .collect()
}

struct ReplaceProjectionWith<'a, D: SolverDelegate<Interner = I>, I: Interner> {
    ecx: &'a EvalCtxt<'a, D>,
    param_env: I::ParamEnv,
    mapping: HashMap<I::DefId, ty::Binder<I, ty::ProjectionPredicate<I>>>,
    nested: Vec<Goal<I, I::Predicate>>,
}

impl<D: SolverDelegate<Interner = I>, I: Interner> TypeFolder<I>
    for ReplaceProjectionWith<'_, D, I>
{
    fn cx(&self) -> I {
        self.ecx.cx()
    }

    fn fold_ty(&mut self, ty: I::Ty) -> I::Ty {
        if let ty::Alias(ty::Projection, alias_ty) = ty.kind() {
            if let Some(replacement) = self.mapping.get(&alias_ty.def_id) {
                // We may have a case where our object type's projection bound is higher-ranked,
                // but the where clauses we instantiated are not. We can solve this by instantiating
                // the binder at the usage site.
                let proj = self.ecx.instantiate_binder_with_infer(*replacement);
                // FIXME: Technically this equate could be fallible...
                self.nested.extend(
                    self.ecx
                        .eq_and_get_goals(
                            self.param_env,
                            alias_ty,
                            proj.projection_term.expect_ty(self.ecx.cx()),
                        )
                        .expect(
                            "expected to be able to unify goal projection with dyn's projection",
                        ),
                );
                proj.term.expect_ty()
            } else {
                ty.super_fold_with(self)
            }
        } else {
            ty.super_fold_with(self)
        }
    }
}