rustc_query_system/dep_graph/graph.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
use std::assert_matches::assert_matches;
use std::collections::hash_map::Entry;
use std::fmt::Debug;
use std::hash::Hash;
use std::marker::PhantomData;
use std::sync::Arc;
use std::sync::atomic::Ordering;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::profiling::{QueryInvocationId, SelfProfilerRef};
use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, Lrc};
use rustc_data_structures::unord::UnordMap;
use rustc_index::IndexVec;
use rustc_macros::{Decodable, Encodable};
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
use tracing::{debug, instrument};
#[cfg(debug_assertions)]
use {super::debug::EdgeFilter, std::env};
use super::query::DepGraphQuery;
use super::serialized::{GraphEncoder, SerializedDepGraph, SerializedDepNodeIndex};
use super::{DepContext, DepKind, DepNode, Deps, HasDepContext, WorkProductId};
use crate::dep_graph::edges::EdgesVec;
use crate::ich::StableHashingContext;
use crate::query::{QueryContext, QuerySideEffects};
#[derive(Clone)]
pub struct DepGraph<D: Deps> {
data: Option<Lrc<DepGraphData<D>>>,
/// This field is used for assigning DepNodeIndices when running in
/// non-incremental mode. Even in non-incremental mode we make sure that
/// each task has a `DepNodeIndex` that uniquely identifies it. This unique
/// ID is used for self-profiling.
virtual_dep_node_index: Lrc<AtomicU32>,
}
rustc_index::newtype_index! {
pub struct DepNodeIndex {}
}
// We store a large collection of these in `prev_index_to_index` during
// non-full incremental builds, and want to ensure that the element size
// doesn't inadvertently increase.
rustc_data_structures::static_assert_size!(Option<DepNodeIndex>, 4);
impl DepNodeIndex {
const SINGLETON_DEPENDENCYLESS_ANON_NODE: DepNodeIndex = DepNodeIndex::ZERO;
pub const FOREVER_RED_NODE: DepNodeIndex = DepNodeIndex::from_u32(1);
}
impl From<DepNodeIndex> for QueryInvocationId {
#[inline(always)]
fn from(dep_node_index: DepNodeIndex) -> Self {
QueryInvocationId(dep_node_index.as_u32())
}
}
pub struct MarkFrame<'a> {
index: SerializedDepNodeIndex,
parent: Option<&'a MarkFrame<'a>>,
}
enum DepNodeColor {
Red,
Green(DepNodeIndex),
}
impl DepNodeColor {
#[inline]
fn is_green(self) -> bool {
match self {
DepNodeColor::Red => false,
DepNodeColor::Green(_) => true,
}
}
}
pub(crate) struct DepGraphData<D: Deps> {
/// The new encoding of the dependency graph, optimized for red/green
/// tracking. The `current` field is the dependency graph of only the
/// current compilation session: We don't merge the previous dep-graph into
/// current one anymore, but we do reference shared data to save space.
current: CurrentDepGraph<D>,
/// The dep-graph from the previous compilation session. It contains all
/// nodes and edges as well as all fingerprints of nodes that have them.
previous: Arc<SerializedDepGraph>,
colors: DepNodeColorMap,
processed_side_effects: Lock<FxHashSet<DepNodeIndex>>,
/// When we load, there may be `.o` files, cached MIR, or other such
/// things available to us. If we find that they are not dirty, we
/// load the path to the file storing those work-products here into
/// this map. We can later look for and extract that data.
previous_work_products: WorkProductMap,
dep_node_debug: Lock<FxHashMap<DepNode, String>>,
/// Used by incremental compilation tests to assert that
/// a particular query result was decoded from disk
/// (not just marked green)
debug_loaded_from_disk: Lock<FxHashSet<DepNode>>,
}
pub fn hash_result<R>(hcx: &mut StableHashingContext<'_>, result: &R) -> Fingerprint
where
R: for<'a> HashStable<StableHashingContext<'a>>,
{
let mut stable_hasher = StableHasher::new();
result.hash_stable(hcx, &mut stable_hasher);
stable_hasher.finish()
}
impl<D: Deps> DepGraph<D> {
pub fn new(
profiler: &SelfProfilerRef,
prev_graph: Arc<SerializedDepGraph>,
prev_work_products: WorkProductMap,
encoder: FileEncoder,
record_graph: bool,
record_stats: bool,
) -> DepGraph<D> {
let prev_graph_node_count = prev_graph.node_count();
let current = CurrentDepGraph::new(
profiler,
prev_graph_node_count,
encoder,
record_graph,
record_stats,
Arc::clone(&prev_graph),
);
let colors = DepNodeColorMap::new(prev_graph_node_count);
// Instantiate a dependy-less node only once for anonymous queries.
let _green_node_index = current.intern_new_node(
DepNode { kind: D::DEP_KIND_NULL, hash: current.anon_id_seed.into() },
EdgesVec::new(),
Fingerprint::ZERO,
);
assert_eq!(_green_node_index, DepNodeIndex::SINGLETON_DEPENDENCYLESS_ANON_NODE);
// Instantiate a dependy-less red node only once for anonymous queries.
let (red_node_index, red_node_prev_index_and_color) = current.intern_node(
&prev_graph,
DepNode { kind: D::DEP_KIND_RED, hash: Fingerprint::ZERO.into() },
EdgesVec::new(),
None,
);
assert_eq!(red_node_index, DepNodeIndex::FOREVER_RED_NODE);
match red_node_prev_index_and_color {
None => {
// This is expected when we have no previous compilation session.
assert!(prev_graph_node_count == 0);
}
Some((prev_red_node_index, DepNodeColor::Red)) => {
assert_eq!(prev_red_node_index.as_usize(), red_node_index.as_usize());
colors.insert(prev_red_node_index, DepNodeColor::Red);
}
Some((_, DepNodeColor::Green(_))) => {
// There must be a logic error somewhere if we hit this branch.
panic!("DepNodeIndex::FOREVER_RED_NODE evaluated to DepNodeColor::Green")
}
}
DepGraph {
data: Some(Lrc::new(DepGraphData {
previous_work_products: prev_work_products,
dep_node_debug: Default::default(),
current,
processed_side_effects: Default::default(),
previous: prev_graph,
colors,
debug_loaded_from_disk: Default::default(),
})),
virtual_dep_node_index: Lrc::new(AtomicU32::new(0)),
}
}
pub fn new_disabled() -> DepGraph<D> {
DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) }
}
#[inline]
pub(crate) fn data(&self) -> Option<&DepGraphData<D>> {
self.data.as_deref()
}
/// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
#[inline]
pub fn is_fully_enabled(&self) -> bool {
self.data.is_some()
}
pub fn with_query(&self, f: impl Fn(&DepGraphQuery)) {
if let Some(data) = &self.data {
data.current.encoder.with_query(f)
}
}
pub fn assert_ignored(&self) {
if let Some(..) = self.data {
D::read_deps(|task_deps| {
assert_matches!(
task_deps,
TaskDepsRef::Ignore,
"expected no task dependency tracking"
);
})
}
}
pub fn with_ignore<OP, R>(&self, op: OP) -> R
where
OP: FnOnce() -> R,
{
D::with_deps(TaskDepsRef::Ignore, op)
}
/// Used to wrap the deserialization of a query result from disk,
/// This method enforces that no new `DepNodes` are created during
/// query result deserialization.
///
/// Enforcing this makes the query dep graph simpler - all nodes
/// must be created during the query execution, and should be
/// created from inside the 'body' of a query (the implementation
/// provided by a particular compiler crate).
///
/// Consider the case of three queries `A`, `B`, and `C`, where
/// `A` invokes `B` and `B` invokes `C`:
///
/// `A -> B -> C`
///
/// Suppose that decoding the result of query `B` required re-computing
/// the query `C`. If we did not create a fresh `TaskDeps` when
/// decoding `B`, we would still be using the `TaskDeps` for query `A`
/// (if we needed to re-execute `A`). This would cause us to create
/// a new edge `A -> C`. If this edge did not previously
/// exist in the `DepGraph`, then we could end up with a different
/// `DepGraph` at the end of compilation, even if there were no
/// meaningful changes to the overall program (e.g. a newline was added).
/// In addition, this edge might cause a subsequent compilation run
/// to try to force `C` before marking other necessary nodes green. If
/// `C` did not exist in the new compilation session, then we could
/// get an ICE. Normally, we would have tried (and failed) to mark
/// some other query green (e.g. `item_children`) which was used
/// to obtain `C`, which would prevent us from ever trying to force
/// a nonexistent `D`.
///
/// It might be possible to enforce that all `DepNode`s read during
/// deserialization already exist in the previous `DepGraph`. In
/// the above example, we would invoke `D` during the deserialization
/// of `B`. Since we correctly create a new `TaskDeps` from the decoding
/// of `B`, this would result in an edge `B -> D`. If that edge already
/// existed (with the same `DepPathHash`es), then it should be correct
/// to allow the invocation of the query to proceed during deserialization
/// of a query result. We would merely assert that the dep-graph fragment
/// that would have been added by invoking `C` while decoding `B`
/// is equivalent to the dep-graph fragment that we already instantiated for B
/// (at the point where we successfully marked B as green).
///
/// However, this would require additional complexity
/// in the query infrastructure, and is not currently needed by the
/// decoding of any query results. Should the need arise in the future,
/// we should consider extending the query system with this functionality.
pub fn with_query_deserialization<OP, R>(&self, op: OP) -> R
where
OP: FnOnce() -> R,
{
D::with_deps(TaskDepsRef::Forbid, op)
}
#[inline(always)]
pub fn with_task<Ctxt: HasDepContext<Deps = D>, A: Debug, R>(
&self,
key: DepNode,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
) -> (R, DepNodeIndex) {
match self.data() {
Some(data) => data.with_task(key, cx, arg, task, hash_result),
None => (task(cx, arg), self.next_virtual_depnode_index()),
}
}
pub fn with_anon_task<Tcx: DepContext<Deps = D>, OP, R>(
&self,
cx: Tcx,
dep_kind: DepKind,
op: OP,
) -> (R, DepNodeIndex)
where
OP: FnOnce() -> R,
{
match self.data() {
Some(data) => {
let (result, index) = data.with_anon_task_inner(cx, dep_kind, op);
self.read_index(index);
(result, index)
}
None => (op(), self.next_virtual_depnode_index()),
}
}
}
impl<D: Deps> DepGraphData<D> {
/// Starts a new dep-graph task. Dep-graph tasks are specified
/// using a free function (`task`) and **not** a closure -- this
/// is intentional because we want to exercise tight control over
/// what state they have access to. In particular, we want to
/// prevent implicit 'leaks' of tracked state into the task (which
/// could then be read without generating correct edges in the
/// dep-graph -- see the [rustc dev guide] for more details on
/// the dep-graph). To this end, the task function gets exactly two
/// pieces of state: the context `cx` and an argument `arg`. Both
/// of these bits of state must be of some type that implements
/// `DepGraphSafe` and hence does not leak.
///
/// The choice of two arguments is not fundamental. One argument
/// would work just as well, since multiple values can be
/// collected using tuples. However, using two arguments works out
/// to be quite convenient, since it is common to need a context
/// (`cx`) and some argument (e.g., a `DefId` identifying what
/// item to process).
///
/// For cases where you need some other number of arguments:
///
/// - If you only need one argument, just use `()` for the `arg`
/// parameter.
/// - If you need 3+ arguments, use a tuple for the
/// `arg` parameter.
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html
#[inline(always)]
pub(crate) fn with_task<Ctxt: HasDepContext<Deps = D>, A: Debug, R>(
&self,
key: DepNode,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
) -> (R, DepNodeIndex) {
// If the following assertion triggers, it can have two reasons:
// 1. Something is wrong with DepNode creation, either here or
// in `DepGraph::try_mark_green()`.
// 2. Two distinct query keys get mapped to the same `DepNode`
// (see for example #48923).
assert!(
!self.dep_node_exists(&key),
"forcing query with already existing `DepNode`\n\
- query-key: {arg:?}\n\
- dep-node: {key:?}"
);
let with_deps = |task_deps| D::with_deps(task_deps, || task(cx, arg));
let (result, edges) = if cx.dep_context().is_eval_always(key.kind) {
(with_deps(TaskDepsRef::EvalAlways), EdgesVec::new())
} else {
let task_deps = Lock::new(TaskDeps {
#[cfg(debug_assertions)]
node: Some(key),
reads: EdgesVec::new(),
read_set: Default::default(),
phantom_data: PhantomData,
});
(with_deps(TaskDepsRef::Allow(&task_deps)), task_deps.into_inner().reads)
};
let dcx = cx.dep_context();
let hashing_timer = dcx.profiler().incr_result_hashing();
let current_fingerprint =
hash_result.map(|f| dcx.with_stable_hashing_context(|mut hcx| f(&mut hcx, &result)));
// Intern the new `DepNode`.
let (dep_node_index, prev_and_color) =
self.current.intern_node(&self.previous, key, edges, current_fingerprint);
hashing_timer.finish_with_query_invocation_id(dep_node_index.into());
if let Some((prev_index, color)) = prev_and_color {
debug_assert!(
self.colors.get(prev_index).is_none(),
"DepGraph::with_task() - Duplicate DepNodeColor \
insertion for {key:?}"
);
self.colors.insert(prev_index, color);
}
(result, dep_node_index)
}
/// Executes something within an "anonymous" task, that is, a task the
/// `DepNode` of which is determined by the list of inputs it read from.
///
/// NOTE: this does not actually count as a read of the DepNode here.
/// Using the result of this task without reading the DepNode will result
/// in untracked dependencies which may lead to ICEs as nodes are
/// incorrectly marked green.
///
/// FIXME: This could perhaps return a `WithDepNode` to ensure that the
/// user of this function actually performs the read; we'll have to see
/// how to make that work with `anon` in `execute_job_incr`, though.
pub(crate) fn with_anon_task_inner<Tcx: DepContext<Deps = D>, OP, R>(
&self,
cx: Tcx,
dep_kind: DepKind,
op: OP,
) -> (R, DepNodeIndex)
where
OP: FnOnce() -> R,
{
debug_assert!(!cx.is_eval_always(dep_kind));
let task_deps = Lock::new(TaskDeps::default());
let result = D::with_deps(TaskDepsRef::Allow(&task_deps), op);
let task_deps = task_deps.into_inner();
let task_deps = task_deps.reads;
let dep_node_index = match task_deps.len() {
0 => {
// Because the dep-node id of anon nodes is computed from the sets of its
// dependencies we already know what the ID of this dependency-less node is
// going to be (i.e. equal to the precomputed
// `SINGLETON_DEPENDENCYLESS_ANON_NODE`). As a consequence we can skip creating
// a `StableHasher` and sending the node through interning.
DepNodeIndex::SINGLETON_DEPENDENCYLESS_ANON_NODE
}
1 => {
// When there is only one dependency, don't bother creating a node.
task_deps[0]
}
_ => {
// The dep node indices are hashed here instead of hashing the dep nodes of the
// dependencies. These indices may refer to different nodes per session, but this isn't
// a problem here because we that ensure the final dep node hash is per session only by
// combining it with the per session random number `anon_id_seed`. This hash only need
// to map the dependencies to a single value on a per session basis.
let mut hasher = StableHasher::new();
task_deps.hash(&mut hasher);
let target_dep_node = DepNode {
kind: dep_kind,
// Fingerprint::combine() is faster than sending Fingerprint
// through the StableHasher (at least as long as StableHasher
// is so slow).
hash: self.current.anon_id_seed.combine(hasher.finish()).into(),
};
self.current.intern_new_node(target_dep_node, task_deps, Fingerprint::ZERO)
}
};
(result, dep_node_index)
}
}
impl<D: Deps> DepGraph<D> {
#[inline]
pub fn read_index(&self, dep_node_index: DepNodeIndex) {
if let Some(ref data) = self.data {
D::read_deps(|task_deps| {
let mut task_deps = match task_deps {
TaskDepsRef::Allow(deps) => deps.lock(),
TaskDepsRef::EvalAlways => {
// We don't need to record dependencies of eval_always
// queries. They are re-evaluated unconditionally anyway.
return;
}
TaskDepsRef::Ignore => return,
TaskDepsRef::Forbid => {
// Reading is forbidden in this context. ICE with a useful error message.
panic_on_forbidden_read(data, dep_node_index)
}
};
let task_deps = &mut *task_deps;
if cfg!(debug_assertions) {
data.current.total_read_count.fetch_add(1, Ordering::Relaxed);
}
// As long as we only have a low number of reads we can avoid doing a hash
// insert and potentially allocating/reallocating the hashmap
let new_read = if task_deps.reads.len() < EdgesVec::INLINE_CAPACITY {
task_deps.reads.iter().all(|other| *other != dep_node_index)
} else {
task_deps.read_set.insert(dep_node_index)
};
if new_read {
task_deps.reads.push(dep_node_index);
if task_deps.reads.len() == EdgesVec::INLINE_CAPACITY {
// Fill `read_set` with what we have so far so we can use the hashset
// next time
task_deps.read_set.extend(task_deps.reads.iter().copied());
}
#[cfg(debug_assertions)]
{
if let Some(target) = task_deps.node {
if let Some(ref forbidden_edge) = data.current.forbidden_edge {
let src = forbidden_edge.index_to_node.lock()[&dep_node_index];
if forbidden_edge.test(&src, &target) {
panic!("forbidden edge {:?} -> {:?} created", src, target)
}
}
}
}
} else if cfg!(debug_assertions) {
data.current.total_duplicate_read_count.fetch_add(1, Ordering::Relaxed);
}
})
}
}
/// Create a node when we force-feed a value into the query cache.
/// This is used to remove cycles during type-checking const generic parameters.
///
/// As usual in the query system, we consider the current state of the calling query
/// only depends on the list of dependencies up to now. As a consequence, the value
/// that this query gives us can only depend on those dependencies too. Therefore,
/// it is sound to use the current dependency set for the created node.
///
/// During replay, the order of the nodes is relevant in the dependency graph.
/// So the unchanged replay will mark the caller query before trying to mark this one.
/// If there is a change to report, the caller query will be re-executed before this one.
///
/// FIXME: If the code is changed enough for this node to be marked before requiring the
/// caller's node, we suppose that those changes will be enough to mark this node red and
/// force a recomputation using the "normal" way.
pub fn with_feed_task<Ctxt: DepContext<Deps = D>, A: Debug, R: Debug>(
&self,
node: DepNode,
cx: Ctxt,
key: A,
result: &R,
hash_result: Option<fn(&mut StableHashingContext<'_>, &R) -> Fingerprint>,
) -> DepNodeIndex {
if let Some(data) = self.data.as_ref() {
// The caller query has more dependencies than the node we are creating. We may
// encounter a case where this created node is marked as green, but the caller query is
// subsequently marked as red or recomputed. In this case, we will end up feeding a
// value to an existing node.
//
// For sanity, we still check that the loaded stable hash and the new one match.
if let Some(prev_index) = data.previous.node_to_index_opt(&node) {
let dep_node_index = data.current.prev_index_to_index.lock()[prev_index];
if let Some(dep_node_index) = dep_node_index {
crate::query::incremental_verify_ich(
cx,
data,
result,
prev_index,
hash_result,
|value| format!("{value:?}"),
);
#[cfg(debug_assertions)]
if hash_result.is_some() {
data.current.record_edge(
dep_node_index,
node,
data.prev_fingerprint_of(prev_index),
);
}
return dep_node_index;
}
}
let mut edges = EdgesVec::new();
D::read_deps(|task_deps| match task_deps {
TaskDepsRef::Allow(deps) => edges.extend(deps.lock().reads.iter().copied()),
TaskDepsRef::EvalAlways => {
edges.push(DepNodeIndex::FOREVER_RED_NODE);
}
TaskDepsRef::Ignore => {}
TaskDepsRef::Forbid => {
panic!("Cannot summarize when dependencies are not recorded.")
}
});
let hashing_timer = cx.profiler().incr_result_hashing();
let current_fingerprint = hash_result.map(|hash_result| {
cx.with_stable_hashing_context(|mut hcx| hash_result(&mut hcx, result))
});
// Intern the new `DepNode` with the dependencies up-to-now.
let (dep_node_index, prev_and_color) =
data.current.intern_node(&data.previous, node, edges, current_fingerprint);
hashing_timer.finish_with_query_invocation_id(dep_node_index.into());
if let Some((prev_index, color)) = prev_and_color {
debug_assert!(
data.colors.get(prev_index).is_none(),
"DepGraph::with_task() - Duplicate DepNodeColor insertion for {key:?}",
);
data.colors.insert(prev_index, color);
}
dep_node_index
} else {
// Incremental compilation is turned off. We just execute the task
// without tracking. We still provide a dep-node index that uniquely
// identifies the task so that we have a cheap way of referring to
// the query for self-profiling.
self.next_virtual_depnode_index()
}
}
}
impl<D: Deps> DepGraphData<D> {
#[inline]
fn dep_node_index_of_opt(&self, dep_node: &DepNode) -> Option<DepNodeIndex> {
if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) {
self.current.prev_index_to_index.lock()[prev_index]
} else {
self.current.new_node_to_index.lock_shard_by_value(dep_node).get(dep_node).copied()
}
}
#[inline]
fn dep_node_exists(&self, dep_node: &DepNode) -> bool {
self.dep_node_index_of_opt(dep_node).is_some()
}
fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
if let Some(prev_index) = self.previous.node_to_index_opt(dep_node) {
self.colors.get(prev_index)
} else {
// This is a node that did not exist in the previous compilation session.
None
}
}
/// Returns true if the given node has been marked as green during the
/// current compilation session. Used in various assertions
#[inline]
pub(crate) fn is_index_green(&self, prev_index: SerializedDepNodeIndex) -> bool {
self.colors.get(prev_index).is_some_and(|c| c.is_green())
}
#[inline]
pub(crate) fn prev_fingerprint_of(&self, prev_index: SerializedDepNodeIndex) -> Fingerprint {
self.previous.fingerprint_by_index(prev_index)
}
#[inline]
pub(crate) fn prev_node_of(&self, prev_index: SerializedDepNodeIndex) -> DepNode {
self.previous.index_to_node(prev_index)
}
pub(crate) fn mark_debug_loaded_from_disk(&self, dep_node: DepNode) {
self.debug_loaded_from_disk.lock().insert(dep_node);
}
}
impl<D: Deps> DepGraph<D> {
#[inline]
pub fn dep_node_exists(&self, dep_node: &DepNode) -> bool {
self.data.as_ref().is_some_and(|data| data.dep_node_exists(dep_node))
}
/// Checks whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned())
}
/// Access the map of work-products created during the cached run. Only
/// used during saving of the dep-graph.
pub fn previous_work_products(&self) -> &WorkProductMap {
&self.data.as_ref().unwrap().previous_work_products
}
pub fn debug_was_loaded_from_disk(&self, dep_node: DepNode) -> bool {
self.data.as_ref().unwrap().debug_loaded_from_disk.lock().contains(&dep_node)
}
#[cfg(debug_assertions)]
#[inline(always)]
pub(crate) fn register_dep_node_debug_str<F>(&self, dep_node: DepNode, debug_str_gen: F)
where
F: FnOnce() -> String,
{
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
if dep_node_debug.borrow().contains_key(&dep_node) {
return;
}
let debug_str = self.with_ignore(debug_str_gen);
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
}
pub fn dep_node_debug_str(&self, dep_node: DepNode) -> Option<String> {
self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
}
fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
if let Some(ref data) = self.data {
return data.node_color(dep_node);
}
None
}
pub fn try_mark_green<Qcx: QueryContext<Deps = D>>(
&self,
qcx: Qcx,
dep_node: &DepNode,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
self.data().and_then(|data| data.try_mark_green(qcx, dep_node))
}
}
impl<D: Deps> DepGraphData<D> {
/// Try to mark a node index for the node dep_node.
///
/// A node will have an index, when it's already been marked green, or when we can mark it
/// green. This function will mark the current task as a reader of the specified node, when
/// a node index can be found for that node.
pub(crate) fn try_mark_green<Qcx: QueryContext<Deps = D>>(
&self,
qcx: Qcx,
dep_node: &DepNode,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
debug_assert!(!qcx.dep_context().is_eval_always(dep_node.kind));
// Return None if the dep node didn't exist in the previous session
let prev_index = self.previous.node_to_index_opt(dep_node)?;
match self.colors.get(prev_index) {
Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)),
Some(DepNodeColor::Red) => None,
None => {
// This DepNode and the corresponding query invocation existed
// in the previous compilation session too, so we can try to
// mark it as green by recursively marking all of its
// dependencies green.
self.try_mark_previous_green(qcx, prev_index, dep_node, None)
.map(|dep_node_index| (prev_index, dep_node_index))
}
}
}
#[instrument(skip(self, qcx, parent_dep_node_index, frame), level = "debug")]
fn try_mark_parent_green<Qcx: QueryContext<Deps = D>>(
&self,
qcx: Qcx,
parent_dep_node_index: SerializedDepNodeIndex,
frame: Option<&MarkFrame<'_>>,
) -> Option<()> {
let dep_dep_node_color = self.colors.get(parent_dep_node_index);
let dep_dep_node = &self.previous.index_to_node(parent_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(_)) => {
// This dependency has been marked as green before, we are
// still fine and can continue with checking the other
// dependencies.
debug!("dependency {dep_dep_node:?} was immediately green");
return Some(());
}
Some(DepNodeColor::Red) => {
// We found a dependency the value of which has changed
// compared to the previous compilation session. We cannot
// mark the DepNode as green and also don't need to bother
// with checking any of the other dependencies.
debug!("dependency {dep_dep_node:?} was immediately red");
return None;
}
None => {}
}
// We don't know the state of this dependency. If it isn't
// an eval_always node, let's try to mark it green recursively.
if !qcx.dep_context().is_eval_always(dep_dep_node.kind) {
debug!(
"state of dependency {:?} ({}) is unknown, trying to mark it green",
dep_dep_node, dep_dep_node.hash,
);
let node_index =
self.try_mark_previous_green(qcx, parent_dep_node_index, dep_dep_node, frame);
if node_index.is_some() {
debug!("managed to MARK dependency {dep_dep_node:?} as green",);
return Some(());
}
}
// We failed to mark it green, so we try to force the query.
debug!("trying to force dependency {dep_dep_node:?}");
if !qcx.dep_context().try_force_from_dep_node(*dep_dep_node, frame) {
// The DepNode could not be forced.
debug!("dependency {dep_dep_node:?} could not be forced");
return None;
}
let dep_dep_node_color = self.colors.get(parent_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(_)) => {
debug!("managed to FORCE dependency {dep_dep_node:?} to green");
return Some(());
}
Some(DepNodeColor::Red) => {
debug!("dependency {dep_dep_node:?} was red after forcing",);
return None;
}
None => {}
}
if let None = qcx.dep_context().sess().dcx().has_errors_or_delayed_bugs() {
panic!("try_mark_previous_green() - Forcing the DepNode should have set its color")
}
// If the query we just forced has resulted in
// some kind of compilation error, we cannot rely on
// the dep-node color having been properly updated.
// This means that the query system has reached an
// invalid state. We let the compiler continue (by
// returning `None`) so it can emit error messages
// and wind down, but rely on the fact that this
// invalid state will not be persisted to the
// incremental compilation cache because of
// compilation errors being present.
debug!("dependency {dep_dep_node:?} resulted in compilation error",);
return None;
}
/// Try to mark a dep-node which existed in the previous compilation session as green.
#[instrument(skip(self, qcx, prev_dep_node_index, frame), level = "debug")]
fn try_mark_previous_green<Qcx: QueryContext<Deps = D>>(
&self,
qcx: Qcx,
prev_dep_node_index: SerializedDepNodeIndex,
dep_node: &DepNode,
frame: Option<&MarkFrame<'_>>,
) -> Option<DepNodeIndex> {
let frame = MarkFrame { index: prev_dep_node_index, parent: frame };
// We never try to mark eval_always nodes as green
debug_assert!(!qcx.dep_context().is_eval_always(dep_node.kind));
debug_assert_eq!(self.previous.index_to_node(prev_dep_node_index), *dep_node);
let prev_deps = self.previous.edge_targets_from(prev_dep_node_index);
for dep_dep_node_index in prev_deps {
self.try_mark_parent_green(qcx, dep_dep_node_index, Some(&frame))?;
}
// If we got here without hitting a `return` that means that all
// dependencies of this DepNode could be marked as green. Therefore we
// can also mark this DepNode as green.
// There may be multiple threads trying to mark the same dep node green concurrently
// We allocating an entry for the node in the current dependency graph and
// adding all the appropriate edges imported from the previous graph
let dep_node_index =
self.current.promote_node_and_deps_to_current(&self.previous, prev_dep_node_index);
// ... emitting any stored diagnostic ...
// FIXME: Store the fact that a node has diagnostics in a bit in the dep graph somewhere
// Maybe store a list on disk and encode this fact in the DepNodeState
let side_effects = qcx.load_side_effects(prev_dep_node_index);
if side_effects.maybe_any() {
qcx.dep_context().dep_graph().with_query_deserialization(|| {
self.emit_side_effects(qcx, dep_node_index, side_effects)
});
}
// ... and finally storing a "Green" entry in the color map.
// Multiple threads can all write the same color here
self.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
debug!("successfully marked {dep_node:?} as green");
Some(dep_node_index)
}
/// Atomically emits some loaded diagnostics.
/// This may be called concurrently on multiple threads for the same dep node.
#[cold]
#[inline(never)]
fn emit_side_effects<Qcx: QueryContext<Deps = D>>(
&self,
qcx: Qcx,
dep_node_index: DepNodeIndex,
side_effects: QuerySideEffects,
) {
let mut processed = self.processed_side_effects.lock();
if processed.insert(dep_node_index) {
// We were the first to insert the node in the set so this thread
// must process side effects
// Promote the previous diagnostics to the current session.
qcx.store_side_effects(dep_node_index, side_effects.clone());
let dcx = qcx.dep_context().sess().dcx();
for diagnostic in side_effects.diagnostics {
dcx.emit_diagnostic(diagnostic);
}
}
}
}
impl<D: Deps> DepGraph<D> {
/// Returns true if the given node has been marked as red during the
/// current compilation session. Used in various assertions
pub fn is_red(&self, dep_node: &DepNode) -> bool {
matches!(self.node_color(dep_node), Some(DepNodeColor::Red))
}
/// Returns true if the given node has been marked as green during the
/// current compilation session. Used in various assertions
pub fn is_green(&self, dep_node: &DepNode) -> bool {
self.node_color(dep_node).is_some_and(|c| c.is_green())
}
/// This method loads all on-disk cacheable query results into memory, so
/// they can be written out to the new cache file again. Most query results
/// will already be in memory but in the case where we marked something as
/// green but then did not need the value, that value will never have been
/// loaded from disk.
///
/// This method will only load queries that will end up in the disk cache.
/// Other queries will not be executed.
pub fn exec_cache_promotions<Tcx: DepContext>(&self, tcx: Tcx) {
let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion");
let data = self.data.as_ref().unwrap();
for prev_index in data.colors.values.indices() {
match data.colors.get(prev_index) {
Some(DepNodeColor::Green(_)) => {
let dep_node = data.previous.index_to_node(prev_index);
tcx.try_load_from_on_disk_cache(dep_node);
}
None | Some(DepNodeColor::Red) => {
// We can skip red nodes because a node can only be marked
// as red if the query result was recomputed and thus is
// already in memory.
}
}
}
}
pub fn print_incremental_info(&self) {
if let Some(data) = &self.data {
data.current.encoder.print_incremental_info(
data.current.total_read_count.load(Ordering::Relaxed),
data.current.total_duplicate_read_count.load(Ordering::Relaxed),
)
}
}
pub fn finish_encoding(&self) -> FileEncodeResult {
if let Some(data) = &self.data { data.current.encoder.finish() } else { Ok(0) }
}
pub(crate) fn next_virtual_depnode_index(&self) -> DepNodeIndex {
debug_assert!(self.data.is_none());
let index = self.virtual_dep_node_index.fetch_add(1, Ordering::Relaxed);
DepNodeIndex::from_u32(index)
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, Encodable, Decodable)]
pub struct WorkProduct {
pub cgu_name: String,
/// Saved files associated with this CGU. In each key/value pair, the value is the path to the
/// saved file and the key is some identifier for the type of file being saved.
///
/// By convention, file extensions are currently used as identifiers, i.e. the key "o" maps to
/// the object file's path, and "dwo" to the dwarf object file's path.
pub saved_files: UnordMap<String, String>,
}
pub type WorkProductMap = UnordMap<WorkProductId, WorkProduct>;
// Index type for `DepNodeData`'s edges.
rustc_index::newtype_index! {
struct EdgeIndex {}
}
/// `CurrentDepGraph` stores the dependency graph for the current session. It
/// will be populated as we run queries or tasks. We never remove nodes from the
/// graph: they are only added.
///
/// The nodes in it are identified by a `DepNodeIndex`. We avoid keeping the nodes
/// in memory. This is important, because these graph structures are some of the
/// largest in the compiler.
///
/// For this reason, we avoid storing `DepNode`s more than once as map
/// keys. The `new_node_to_index` map only contains nodes not in the previous
/// graph, and we map nodes in the previous graph to indices via a two-step
/// mapping. `SerializedDepGraph` maps from `DepNode` to `SerializedDepNodeIndex`,
/// and the `prev_index_to_index` vector (which is more compact and faster than
/// using a map) maps from `SerializedDepNodeIndex` to `DepNodeIndex`.
///
/// This struct uses three locks internally. The `data`, `new_node_to_index`,
/// and `prev_index_to_index` fields are locked separately. Operations that take
/// a `DepNodeIndex` typically just access the `data` field.
///
/// We only need to manipulate at most two locks simultaneously:
/// `new_node_to_index` and `data`, or `prev_index_to_index` and `data`. When
/// manipulating both, we acquire `new_node_to_index` or `prev_index_to_index`
/// first, and `data` second.
pub(super) struct CurrentDepGraph<D: Deps> {
encoder: GraphEncoder<D>,
new_node_to_index: Sharded<FxHashMap<DepNode, DepNodeIndex>>,
prev_index_to_index: Lock<IndexVec<SerializedDepNodeIndex, Option<DepNodeIndex>>>,
/// This is used to verify that fingerprints do not change between the creation of a node
/// and its recomputation.
#[cfg(debug_assertions)]
fingerprints: Lock<IndexVec<DepNodeIndex, Option<Fingerprint>>>,
/// Used to trap when a specific edge is added to the graph.
/// This is used for debug purposes and is only active with `debug_assertions`.
#[cfg(debug_assertions)]
forbidden_edge: Option<EdgeFilter>,
/// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
/// their edges. This has the beneficial side-effect that multiple anonymous
/// nodes can be coalesced into one without changing the semantics of the
/// dependency graph. However, the merging of nodes can lead to a subtle
/// problem during red-green marking: The color of an anonymous node from
/// the current session might "shadow" the color of the node with the same
/// ID from the previous session. In order to side-step this problem, we make
/// sure that anonymous `NodeId`s allocated in different sessions don't overlap.
/// This is implemented by mixing a session-key into the ID fingerprint of
/// each anon node. The session-key is just a random number generated when
/// the `DepGraph` is created.
anon_id_seed: Fingerprint,
/// These are simple counters that are for profiling and
/// debugging and only active with `debug_assertions`.
total_read_count: AtomicU64,
total_duplicate_read_count: AtomicU64,
}
impl<D: Deps> CurrentDepGraph<D> {
fn new(
profiler: &SelfProfilerRef,
prev_graph_node_count: usize,
encoder: FileEncoder,
record_graph: bool,
record_stats: bool,
previous: Arc<SerializedDepGraph>,
) -> Self {
use std::time::{SystemTime, UNIX_EPOCH};
let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let nanos = duration.as_nanos();
let mut stable_hasher = StableHasher::new();
nanos.hash(&mut stable_hasher);
let anon_id_seed = stable_hasher.finish();
#[cfg(debug_assertions)]
let forbidden_edge = match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
Ok(s) => match EdgeFilter::new(&s) {
Ok(f) => Some(f),
Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
},
Err(_) => None,
};
let new_node_count_estimate = 102 * prev_graph_node_count / 100 + 200;
CurrentDepGraph {
encoder: GraphEncoder::new(
encoder,
prev_graph_node_count,
record_graph,
record_stats,
profiler,
previous,
),
new_node_to_index: Sharded::new(|| {
FxHashMap::with_capacity_and_hasher(
new_node_count_estimate / sharded::shards(),
Default::default(),
)
}),
prev_index_to_index: Lock::new(IndexVec::from_elem_n(None, prev_graph_node_count)),
anon_id_seed,
#[cfg(debug_assertions)]
forbidden_edge,
#[cfg(debug_assertions)]
fingerprints: Lock::new(IndexVec::from_elem_n(None, new_node_count_estimate)),
total_read_count: AtomicU64::new(0),
total_duplicate_read_count: AtomicU64::new(0),
}
}
#[cfg(debug_assertions)]
fn record_edge(&self, dep_node_index: DepNodeIndex, key: DepNode, fingerprint: Fingerprint) {
if let Some(forbidden_edge) = &self.forbidden_edge {
forbidden_edge.index_to_node.lock().insert(dep_node_index, key);
}
let previous = *self.fingerprints.lock().get_or_insert_with(dep_node_index, || fingerprint);
assert_eq!(previous, fingerprint, "Unstable fingerprints for {:?}", key);
}
/// Writes the node to the current dep-graph and allocates a `DepNodeIndex` for it.
/// Assumes that this is a node that has no equivalent in the previous dep-graph.
#[inline(always)]
fn intern_new_node(
&self,
key: DepNode,
edges: EdgesVec,
current_fingerprint: Fingerprint,
) -> DepNodeIndex {
let dep_node_index = match self.new_node_to_index.lock_shard_by_value(&key).entry(key) {
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
let dep_node_index = self.encoder.send(key, current_fingerprint, edges);
entry.insert(dep_node_index);
dep_node_index
}
};
#[cfg(debug_assertions)]
self.record_edge(dep_node_index, key, current_fingerprint);
dep_node_index
}
fn intern_node(
&self,
prev_graph: &SerializedDepGraph,
key: DepNode,
edges: EdgesVec,
fingerprint: Option<Fingerprint>,
) -> (DepNodeIndex, Option<(SerializedDepNodeIndex, DepNodeColor)>) {
if let Some(prev_index) = prev_graph.node_to_index_opt(&key) {
let get_dep_node_index = |fingerprint| {
let mut prev_index_to_index = self.prev_index_to_index.lock();
let dep_node_index = match prev_index_to_index[prev_index] {
Some(dep_node_index) => dep_node_index,
None => {
let dep_node_index = self.encoder.send(key, fingerprint, edges);
prev_index_to_index[prev_index] = Some(dep_node_index);
dep_node_index
}
};
#[cfg(debug_assertions)]
self.record_edge(dep_node_index, key, fingerprint);
dep_node_index
};
// Determine the color and index of the new `DepNode`.
if let Some(fingerprint) = fingerprint {
if fingerprint == prev_graph.fingerprint_by_index(prev_index) {
// This is a green node: it existed in the previous compilation,
// its query was re-executed, and it has the same result as before.
let dep_node_index = get_dep_node_index(fingerprint);
(dep_node_index, Some((prev_index, DepNodeColor::Green(dep_node_index))))
} else {
// This is a red node: it existed in the previous compilation, its query
// was re-executed, but it has a different result from before.
let dep_node_index = get_dep_node_index(fingerprint);
(dep_node_index, Some((prev_index, DepNodeColor::Red)))
}
} else {
// This is a red node, effectively: it existed in the previous compilation
// session, its query was re-executed, but it doesn't compute a result hash
// (i.e. it represents a `no_hash` query), so we have no way of determining
// whether or not the result was the same as before.
let dep_node_index = get_dep_node_index(Fingerprint::ZERO);
(dep_node_index, Some((prev_index, DepNodeColor::Red)))
}
} else {
let fingerprint = fingerprint.unwrap_or(Fingerprint::ZERO);
// This is a new node: it didn't exist in the previous compilation session.
let dep_node_index = self.intern_new_node(key, edges, fingerprint);
(dep_node_index, None)
}
}
fn promote_node_and_deps_to_current(
&self,
prev_graph: &SerializedDepGraph,
prev_index: SerializedDepNodeIndex,
) -> DepNodeIndex {
self.debug_assert_not_in_new_nodes(prev_graph, prev_index);
let mut prev_index_to_index = self.prev_index_to_index.lock();
match prev_index_to_index[prev_index] {
Some(dep_node_index) => dep_node_index,
None => {
let dep_node_index = self.encoder.send_promoted(prev_index, &*prev_index_to_index);
prev_index_to_index[prev_index] = Some(dep_node_index);
#[cfg(debug_assertions)]
self.record_edge(
dep_node_index,
prev_graph.index_to_node(prev_index),
prev_graph.fingerprint_by_index(prev_index),
);
dep_node_index
}
}
}
#[inline]
fn debug_assert_not_in_new_nodes(
&self,
prev_graph: &SerializedDepGraph,
prev_index: SerializedDepNodeIndex,
) {
let node = &prev_graph.index_to_node(prev_index);
debug_assert!(
!self.new_node_to_index.lock_shard_by_value(node).contains_key(node),
"node from previous graph present in new node collection"
);
}
}
#[derive(Debug, Clone, Copy)]
pub enum TaskDepsRef<'a> {
/// New dependencies can be added to the
/// `TaskDeps`. This is used when executing a 'normal' query
/// (no `eval_always` modifier)
Allow(&'a Lock<TaskDeps>),
/// This is used when executing an `eval_always` query. We don't
/// need to track dependencies for a query that's always
/// re-executed -- but we need to know that this is an `eval_always`
/// query in order to emit dependencies to `DepNodeIndex::FOREVER_RED_NODE`
/// when directly feeding other queries.
EvalAlways,
/// New dependencies are ignored. This is also used for `dep_graph.with_ignore`.
Ignore,
/// Any attempt to add new dependencies will cause a panic.
/// This is used when decoding a query result from disk,
/// to ensure that the decoding process doesn't itself
/// require the execution of any queries.
Forbid,
}
#[derive(Debug)]
pub struct TaskDeps {
#[cfg(debug_assertions)]
node: Option<DepNode>,
reads: EdgesVec,
read_set: FxHashSet<DepNodeIndex>,
phantom_data: PhantomData<DepNode>,
}
impl Default for TaskDeps {
fn default() -> Self {
Self {
#[cfg(debug_assertions)]
node: None,
reads: EdgesVec::new(),
read_set: FxHashSet::default(),
phantom_data: PhantomData,
}
}
}
// A data structure that stores Option<DepNodeColor> values as a contiguous
// array, using one u32 per entry.
struct DepNodeColorMap {
values: IndexVec<SerializedDepNodeIndex, AtomicU32>,
}
const COMPRESSED_NONE: u32 = 0;
const COMPRESSED_RED: u32 = 1;
const COMPRESSED_FIRST_GREEN: u32 = 2;
impl DepNodeColorMap {
fn new(size: usize) -> DepNodeColorMap {
DepNodeColorMap { values: (0..size).map(|_| AtomicU32::new(COMPRESSED_NONE)).collect() }
}
#[inline]
fn get(&self, index: SerializedDepNodeIndex) -> Option<DepNodeColor> {
match self.values[index].load(Ordering::Acquire) {
COMPRESSED_NONE => None,
COMPRESSED_RED => Some(DepNodeColor::Red),
value => {
Some(DepNodeColor::Green(DepNodeIndex::from_u32(value - COMPRESSED_FIRST_GREEN)))
}
}
}
#[inline]
fn insert(&self, index: SerializedDepNodeIndex, color: DepNodeColor) {
self.values[index].store(
match color {
DepNodeColor::Red => COMPRESSED_RED,
DepNodeColor::Green(index) => index.as_u32() + COMPRESSED_FIRST_GREEN,
},
Ordering::Release,
)
}
}
#[inline(never)]
#[cold]
pub(crate) fn print_markframe_trace<D: Deps>(graph: &DepGraph<D>, frame: Option<&MarkFrame<'_>>) {
let data = graph.data.as_ref().unwrap();
eprintln!("there was a panic while trying to force a dep node");
eprintln!("try_mark_green dep node stack:");
let mut i = 0;
let mut current = frame;
while let Some(frame) = current {
let node = data.previous.index_to_node(frame.index);
eprintln!("#{i} {node:?}");
current = frame.parent;
i += 1;
}
eprintln!("end of try_mark_green dep node stack");
}
#[cold]
#[inline(never)]
fn panic_on_forbidden_read<D: Deps>(data: &DepGraphData<D>, dep_node_index: DepNodeIndex) -> ! {
// We have to do an expensive reverse-lookup of the DepNode that
// corresponds to `dep_node_index`, but that's OK since we are about
// to ICE anyway.
let mut dep_node = None;
// First try to find the dep node among those that already existed in the
// previous session
for (prev_index, index) in data.current.prev_index_to_index.lock().iter_enumerated() {
if index == &Some(dep_node_index) {
dep_node = Some(data.previous.index_to_node(prev_index));
break;
}
}
if dep_node.is_none() {
// Try to find it among the new nodes
for shard in data.current.new_node_to_index.lock_shards() {
if let Some((node, _)) = shard.iter().find(|(_, index)| **index == dep_node_index) {
dep_node = Some(*node);
break;
}
}
}
let dep_node = dep_node.map_or_else(
|| format!("with index {:?}", dep_node_index),
|dep_node| format!("`{:?}`", dep_node),
);
panic!(
"Error: trying to record dependency on DepNode {dep_node} in a \
context that does not allow it (e.g. during query deserialization). \
The most common case of recording a dependency on a DepNode `foo` is \
when the corresponding query `foo` is invoked. Invoking queries is not \
allowed as part of loading something from the incremental on-disk cache. \
See <https://github.com/rust-lang/rust/pull/91919>."
)
}