rustc_hir_typeck/pat.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
use std::cmp;
use std::collections::hash_map::Entry::{Occupied, Vacant};
use rustc_abi::FieldIdx;
use rustc_ast as ast;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::codes::*;
use rustc_errors::{
Applicability, Diag, ErrorGuaranteed, MultiSpan, pluralize, struct_span_code_err,
};
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::pat_util::EnumerateAndAdjustIterator;
use rustc_hir::{self as hir, BindingMode, ByRef, HirId, LangItem, Mutability, Pat, PatKind};
use rustc_infer::infer;
use rustc_middle::ty::{self, Ty, TypeVisitableExt};
use rustc_middle::{bug, span_bug};
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_session::parse::feature_err;
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{Ident, kw, sym};
use rustc_span::{BytePos, DUMMY_SP, Span};
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode};
use tracing::{debug, instrument, trace};
use ty::VariantDef;
use super::report_unexpected_variant_res;
use crate::gather_locals::DeclOrigin;
use crate::{FnCtxt, LoweredTy, errors};
const CANNOT_IMPLICITLY_DEREF_POINTER_TRAIT_OBJ: &str = "\
This error indicates that a pointer to a trait type cannot be implicitly dereferenced by a \
pattern. Every trait defines a type, but because the size of trait implementors isn't fixed, \
this type has no compile-time size. Therefore, all accesses to trait types must be through \
pointers. If you encounter this error you should try to avoid dereferencing the pointer.
You can read more about trait objects in the Trait Objects section of the Reference: \
https://doc.rust-lang.org/reference/types.html#trait-objects";
fn is_number(text: &str) -> bool {
text.chars().all(|c: char| c.is_digit(10))
}
/// Information about the expected type at the top level of type checking a pattern.
///
/// **NOTE:** This is only for use by diagnostics. Do NOT use for type checking logic!
#[derive(Copy, Clone)]
struct TopInfo<'tcx> {
/// The `expected` type at the top level of type checking a pattern.
expected: Ty<'tcx>,
/// Was the origin of the `span` from a scrutinee expression?
///
/// Otherwise there is no scrutinee and it could be e.g. from the type of a formal parameter.
origin_expr: Option<&'tcx hir::Expr<'tcx>>,
/// The span giving rise to the `expected` type, if one could be provided.
///
/// If `origin_expr` is `true`, then this is the span of the scrutinee as in:
///
/// - `match scrutinee { ... }`
/// - `let _ = scrutinee;`
///
/// This is used to point to add context in type errors.
/// In the following example, `span` corresponds to the `a + b` expression:
///
/// ```text
/// error[E0308]: mismatched types
/// --> src/main.rs:L:C
/// |
/// L | let temp: usize = match a + b {
/// | ----- this expression has type `usize`
/// L | Ok(num) => num,
/// | ^^^^^^^ expected `usize`, found enum `std::result::Result`
/// |
/// = note: expected type `usize`
/// found type `std::result::Result<_, _>`
/// ```
span: Option<Span>,
/// The [`HirId`] of the top-level pattern.
hir_id: HirId,
}
#[derive(Copy, Clone)]
struct PatInfo<'a, 'tcx> {
binding_mode: ByRef,
max_ref_mutbl: MutblCap,
top_info: &'a TopInfo<'tcx>,
decl_origin: Option<DeclOrigin<'tcx>>,
/// The depth of current pattern
current_depth: u32,
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn pattern_cause(&self, ti: &TopInfo<'tcx>, cause_span: Span) -> ObligationCause<'tcx> {
let code = ObligationCauseCode::Pattern {
span: ti.span,
root_ty: ti.expected,
origin_expr: ti.origin_expr.is_some(),
};
self.cause(cause_span, code)
}
fn demand_eqtype_pat_diag(
&'a self,
cause_span: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
ti: &TopInfo<'tcx>,
) -> Result<(), Diag<'a>> {
self.demand_eqtype_with_origin(&self.pattern_cause(ti, cause_span), expected, actual)
.map_err(|mut diag| {
if let Some(expr) = ti.origin_expr {
self.suggest_fn_call(&mut diag, expr, expected, |output| {
self.can_eq(self.param_env, output, actual)
});
}
diag
})
}
fn demand_eqtype_pat(
&self,
cause_span: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
ti: &TopInfo<'tcx>,
) -> Result<(), ErrorGuaranteed> {
self.demand_eqtype_pat_diag(cause_span, expected, actual, ti).map_err(|err| err.emit())
}
}
/// Mode for adjusting the expected type and binding mode.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum AdjustMode {
/// Peel off all immediate reference types.
Peel,
/// Reset binding mode to the initial mode.
/// Used for destructuring assignment, where we don't want any match ergonomics.
Reset,
/// Pass on the input binding mode and expected type.
Pass,
}
/// `ref mut` patterns (explicit or match-ergonomics)
/// are not allowed behind an `&` reference.
///
/// This includes explicit `ref mut` behind `&` patterns
/// that match against `&mut` references,
/// where the code would have compiled
/// had the pattern been written as `&mut`.
/// However, the borrow checker will not catch
/// this last case, so we need to throw an error ourselves.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum MutblCap {
/// Mutability restricted to immutable.
Not,
/// Mutability restricted to immutable, but only because of the pattern
/// (not the scrutinee type).
///
/// The contained span, if present, points to an `&` pattern
/// that is the reason for the restriction,
/// and which will be reported in a diagnostic.
WeaklyNot(Option<Span>),
/// No restriction on mutability
Mut,
}
impl MutblCap {
#[must_use]
fn cap_to_weakly_not(self, span: Option<Span>) -> Self {
match self {
MutblCap::Not => MutblCap::Not,
_ => MutblCap::WeaklyNot(span),
}
}
#[must_use]
fn as_mutbl(self) -> Mutability {
match self {
MutblCap::Not | MutblCap::WeaklyNot(_) => Mutability::Not,
MutblCap::Mut => Mutability::Mut,
}
}
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// Type check the given top level pattern against the `expected` type.
///
/// If a `Some(span)` is provided and `origin_expr` holds,
/// then the `span` represents the scrutinee's span.
/// The scrutinee is found in e.g. `match scrutinee { ... }` and `let pat = scrutinee;`.
///
/// Otherwise, `Some(span)` represents the span of a type expression
/// which originated the `expected` type.
pub(crate) fn check_pat_top(
&self,
pat: &'tcx Pat<'tcx>,
expected: Ty<'tcx>,
span: Option<Span>,
origin_expr: Option<&'tcx hir::Expr<'tcx>>,
decl_origin: Option<DeclOrigin<'tcx>>,
) {
let info = TopInfo { expected, origin_expr, span, hir_id: pat.hir_id };
let pat_info = PatInfo {
binding_mode: ByRef::No,
max_ref_mutbl: MutblCap::Mut,
top_info: &info,
decl_origin,
current_depth: 0,
};
self.check_pat(pat, expected, pat_info);
}
/// Type check the given `pat` against the `expected` type
/// with the provided `binding_mode` (default binding mode).
///
/// Outside of this module, `check_pat_top` should always be used.
/// Conversely, inside this module, `check_pat_top` should never be used.
#[instrument(level = "debug", skip(self, pat_info))]
fn check_pat(&self, pat: &'tcx Pat<'tcx>, expected: Ty<'tcx>, pat_info: PatInfo<'_, 'tcx>) {
let PatInfo { binding_mode, max_ref_mutbl, top_info: ti, current_depth, .. } = pat_info;
let path_res = match &pat.kind {
PatKind::Path(qpath) => {
Some(self.resolve_ty_and_res_fully_qualified_call(qpath, pat.hir_id, pat.span))
}
_ => None,
};
let adjust_mode = self.calc_adjust_mode(pat, path_res.map(|(res, ..)| res));
let (expected, binding_mode, max_ref_mutbl) =
self.calc_default_binding_mode(pat, expected, binding_mode, adjust_mode, max_ref_mutbl);
let pat_info = PatInfo {
binding_mode,
max_ref_mutbl,
top_info: ti,
decl_origin: pat_info.decl_origin,
current_depth: current_depth + 1,
};
let ty = match pat.kind {
PatKind::Wild | PatKind::Err(_) => expected,
// We allow any type here; we ensure that the type is uninhabited during match checking.
PatKind::Never => expected,
PatKind::Lit(lt) => self.check_pat_lit(pat.span, lt, expected, ti),
PatKind::Range(lhs, rhs, _) => self.check_pat_range(pat.span, lhs, rhs, expected, ti),
PatKind::Binding(ba, var_id, ident, sub) => {
self.check_pat_ident(pat, ba, var_id, ident, sub, expected, pat_info)
}
PatKind::TupleStruct(ref qpath, subpats, ddpos) => {
self.check_pat_tuple_struct(pat, qpath, subpats, ddpos, expected, pat_info)
}
PatKind::Path(ref qpath) => {
self.check_pat_path(pat, qpath, path_res.unwrap(), expected, ti)
}
PatKind::Struct(ref qpath, fields, has_rest_pat) => {
self.check_pat_struct(pat, qpath, fields, has_rest_pat, expected, pat_info)
}
PatKind::Or(pats) => {
for pat in pats {
self.check_pat(pat, expected, pat_info);
}
expected
}
PatKind::Tuple(elements, ddpos) => {
self.check_pat_tuple(pat.span, elements, ddpos, expected, pat_info)
}
PatKind::Box(inner) => self.check_pat_box(pat.span, inner, expected, pat_info),
PatKind::Deref(inner) => self.check_pat_deref(pat.span, inner, expected, pat_info),
PatKind::Ref(inner, mutbl) => self.check_pat_ref(pat, inner, mutbl, expected, pat_info),
PatKind::Slice(before, slice, after) => {
self.check_pat_slice(pat.span, before, slice, after, expected, pat_info)
}
};
self.write_ty(pat.hir_id, ty);
// (note_1): In most of the cases where (note_1) is referenced
// (literals and constants being the exception), we relate types
// using strict equality, even though subtyping would be sufficient.
// There are a few reasons for this, some of which are fairly subtle
// and which cost me (nmatsakis) an hour or two debugging to remember,
// so I thought I'd write them down this time.
//
// 1. There is no loss of expressiveness here, though it does
// cause some inconvenience. What we are saying is that the type
// of `x` becomes *exactly* what is expected. This can cause unnecessary
// errors in some cases, such as this one:
//
// ```
// fn foo<'x>(x: &'x i32) {
// let a = 1;
// let mut z = x;
// z = &a;
// }
// ```
//
// The reason we might get an error is that `z` might be
// assigned a type like `&'x i32`, and then we would have
// a problem when we try to assign `&a` to `z`, because
// the lifetime of `&a` (i.e., the enclosing block) is
// shorter than `'x`.
//
// HOWEVER, this code works fine. The reason is that the
// expected type here is whatever type the user wrote, not
// the initializer's type. In this case the user wrote
// nothing, so we are going to create a type variable `Z`.
// Then we will assign the type of the initializer (`&'x i32`)
// as a subtype of `Z`: `&'x i32 <: Z`. And hence we
// will instantiate `Z` as a type `&'0 i32` where `'0` is
// a fresh region variable, with the constraint that `'x : '0`.
// So basically we're all set.
//
// Note that there are two tests to check that this remains true
// (`regions-reassign-{match,let}-bound-pointer.rs`).
//
// 2. An outdated issue related to the old HIR borrowck. See the test
// `regions-relate-bound-regions-on-closures-to-inference-variables.rs`,
}
/// Compute the new expected type and default binding mode from the old ones
/// as well as the pattern form we are currently checking.
fn calc_default_binding_mode(
&self,
pat: &'tcx Pat<'tcx>,
expected: Ty<'tcx>,
def_br: ByRef,
adjust_mode: AdjustMode,
max_ref_mutbl: MutblCap,
) -> (Ty<'tcx>, ByRef, MutblCap) {
#[cfg(debug_assertions)]
if def_br == ByRef::Yes(Mutability::Mut) && max_ref_mutbl != MutblCap::Mut {
span_bug!(pat.span, "Pattern mutability cap violated!");
}
match adjust_mode {
AdjustMode::Pass => (expected, def_br, max_ref_mutbl),
AdjustMode::Reset => (expected, ByRef::No, MutblCap::Mut),
AdjustMode::Peel => self.peel_off_references(pat, expected, def_br, max_ref_mutbl),
}
}
/// How should the binding mode and expected type be adjusted?
///
/// When the pattern is a path pattern, `opt_path_res` must be `Some(res)`.
fn calc_adjust_mode(&self, pat: &'tcx Pat<'tcx>, opt_path_res: Option<Res>) -> AdjustMode {
// When we perform destructuring assignment, we disable default match bindings, which are
// unintuitive in this context.
if !pat.default_binding_modes {
return AdjustMode::Reset;
}
match &pat.kind {
// Type checking these product-like types successfully always require
// that the expected type be of those types and not reference types.
PatKind::Struct(..)
| PatKind::TupleStruct(..)
| PatKind::Tuple(..)
| PatKind::Box(_)
| PatKind::Deref(_)
| PatKind::Range(..)
| PatKind::Slice(..) => AdjustMode::Peel,
// A never pattern behaves somewhat like a literal or unit variant.
PatKind::Never => AdjustMode::Peel,
// String and byte-string literals result in types `&str` and `&[u8]` respectively.
// All other literals result in non-reference types.
// As a result, we allow `if let 0 = &&0 {}` but not `if let "foo" = &&"foo" {}`.
//
// Call `resolve_vars_if_possible` here for inline const blocks.
PatKind::Lit(lt) => match self.resolve_vars_if_possible(self.check_expr(lt)).kind() {
ty::Ref(..) => AdjustMode::Pass,
_ => AdjustMode::Peel,
},
PatKind::Path(_) => match opt_path_res.unwrap() {
// These constants can be of a reference type, e.g. `const X: &u8 = &0;`.
// Peeling the reference types too early will cause type checking failures.
// Although it would be possible to *also* peel the types of the constants too.
Res::Def(DefKind::Const | DefKind::AssocConst, _) => AdjustMode::Pass,
// In the `ValueNS`, we have `SelfCtor(..) | Ctor(_, Const), _)` remaining which
// could successfully compile. The former being `Self` requires a unit struct.
// In either case, and unlike constants, the pattern itself cannot be
// a reference type wherefore peeling doesn't give up any expressiveness.
_ => AdjustMode::Peel,
},
// Ref patterns are complicated, we handle them in `check_pat_ref`.
PatKind::Ref(..) => AdjustMode::Pass,
// A `_` pattern works with any expected type, so there's no need to do anything.
PatKind::Wild
// A malformed pattern doesn't have an expected type, so let's just accept any type.
| PatKind::Err(_)
// Bindings also work with whatever the expected type is,
// and moreover if we peel references off, that will give us the wrong binding type.
// Also, we can have a subpattern `binding @ pat`.
// Each side of the `@` should be treated independently (like with OR-patterns).
| PatKind::Binding(..)
// An OR-pattern just propagates to each individual alternative.
// This is maximally flexible, allowing e.g., `Some(mut x) | &Some(mut x)`.
// In that example, `Some(mut x)` results in `Peel` whereas `&Some(mut x)` in `Reset`.
| PatKind::Or(_) => AdjustMode::Pass,
}
}
/// Peel off as many immediately nested `& mut?` from the expected type as possible
/// and return the new expected type and binding default binding mode.
/// The adjustments vector, if non-empty is stored in a table.
fn peel_off_references(
&self,
pat: &'tcx Pat<'tcx>,
expected: Ty<'tcx>,
mut def_br: ByRef,
mut max_ref_mutbl: MutblCap,
) -> (Ty<'tcx>, ByRef, MutblCap) {
let mut expected = self.try_structurally_resolve_type(pat.span, expected);
// Peel off as many `&` or `&mut` from the scrutinee type as possible. For example,
// for `match &&&mut Some(5)` the loop runs three times, aborting when it reaches
// the `Some(5)` which is not of type Ref.
//
// For each ampersand peeled off, update the binding mode and push the original
// type into the adjustments vector.
//
// See the examples in `ui/match-defbm*.rs`.
let mut pat_adjustments = vec![];
while let ty::Ref(_, inner_ty, inner_mutability) = *expected.kind() {
debug!("inspecting {:?}", expected);
debug!("current discriminant is Ref, inserting implicit deref");
// Preserve the reference type. We'll need it later during THIR lowering.
pat_adjustments.push(expected);
expected = self.try_structurally_resolve_type(pat.span, inner_ty);
def_br = ByRef::Yes(match def_br {
// If default binding mode is by value, make it `ref` or `ref mut`
// (depending on whether we observe `&` or `&mut`).
ByRef::No |
// When `ref mut`, stay a `ref mut` (on `&mut`) or downgrade to `ref` (on `&`).
ByRef::Yes(Mutability::Mut) => inner_mutability,
// Once a `ref`, always a `ref`.
// This is because a `& &mut` cannot mutate the underlying value.
ByRef::Yes(Mutability::Not) => Mutability::Not,
});
}
let features = self.tcx.features();
if features.ref_pat_eat_one_layer_2024() || features.ref_pat_eat_one_layer_2024_structural()
{
def_br = def_br.cap_ref_mutability(max_ref_mutbl.as_mutbl());
if def_br == ByRef::Yes(Mutability::Not) {
max_ref_mutbl = MutblCap::Not;
}
}
if !pat_adjustments.is_empty() {
debug!("default binding mode is now {:?}", def_br);
self.typeck_results
.borrow_mut()
.pat_adjustments_mut()
.insert(pat.hir_id, pat_adjustments);
}
(expected, def_br, max_ref_mutbl)
}
fn check_pat_lit(
&self,
span: Span,
lt: &hir::Expr<'tcx>,
expected: Ty<'tcx>,
ti: &TopInfo<'tcx>,
) -> Ty<'tcx> {
// We've already computed the type above (when checking for a non-ref pat),
// so avoid computing it again.
let ty = self.node_ty(lt.hir_id);
// Byte string patterns behave the same way as array patterns
// They can denote both statically and dynamically-sized byte arrays.
let mut pat_ty = ty;
if let hir::ExprKind::Lit(Spanned { node: ast::LitKind::ByteStr(..), .. }) = lt.kind {
let expected = self.structurally_resolve_type(span, expected);
if let ty::Ref(_, inner_ty, _) = *expected.kind()
&& self.try_structurally_resolve_type(span, inner_ty).is_slice()
{
let tcx = self.tcx;
trace!(?lt.hir_id.local_id, "polymorphic byte string lit");
self.typeck_results
.borrow_mut()
.treat_byte_string_as_slice
.insert(lt.hir_id.local_id);
pat_ty =
Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, Ty::new_slice(tcx, tcx.types.u8));
}
}
if self.tcx.features().string_deref_patterns()
&& let hir::ExprKind::Lit(Spanned { node: ast::LitKind::Str(..), .. }) = lt.kind
{
let tcx = self.tcx;
let expected = self.resolve_vars_if_possible(expected);
pat_ty = match expected.kind() {
ty::Adt(def, _) if tcx.is_lang_item(def.did(), LangItem::String) => expected,
ty::Str => Ty::new_static_str(tcx),
_ => pat_ty,
};
}
// Somewhat surprising: in this case, the subtyping relation goes the
// opposite way as the other cases. Actually what we really want is not
// a subtyping relation at all but rather that there exists a LUB
// (so that they can be compared). However, in practice, constants are
// always scalars or strings. For scalars subtyping is irrelevant,
// and for strings `ty` is type is `&'static str`, so if we say that
//
// &'static str <: expected
//
// then that's equivalent to there existing a LUB.
let cause = self.pattern_cause(ti, span);
if let Err(err) = self.demand_suptype_with_origin(&cause, expected, pat_ty) {
err.emit_unless(
ti.span
.filter(|&s| {
// In the case of `if`- and `while`-expressions we've already checked
// that `scrutinee: bool`. We know that the pattern is `true`,
// so an error here would be a duplicate and from the wrong POV.
s.is_desugaring(DesugaringKind::CondTemporary)
})
.is_some(),
);
}
pat_ty
}
fn check_pat_range(
&self,
span: Span,
lhs: Option<&'tcx hir::Expr<'tcx>>,
rhs: Option<&'tcx hir::Expr<'tcx>>,
expected: Ty<'tcx>,
ti: &TopInfo<'tcx>,
) -> Ty<'tcx> {
let calc_side = |opt_expr: Option<&'tcx hir::Expr<'tcx>>| match opt_expr {
None => None,
Some(expr) => {
let ty = self.check_expr(expr);
// Check that the end-point is possibly of numeric or char type.
// The early check here is not for correctness, but rather better
// diagnostics (e.g. when `&str` is being matched, `expected` will
// be peeled to `str` while ty here is still `&str`, if we don't
// err early here, a rather confusing unification error will be
// emitted instead).
let fail =
!(ty.is_numeric() || ty.is_char() || ty.is_ty_var() || ty.references_error());
Some((fail, ty, expr.span))
}
};
let mut lhs = calc_side(lhs);
let mut rhs = calc_side(rhs);
if let (Some((true, ..)), _) | (_, Some((true, ..))) = (lhs, rhs) {
// There exists a side that didn't meet our criteria that the end-point
// be of a numeric or char type, as checked in `calc_side` above.
let guar = self.emit_err_pat_range(span, lhs, rhs);
return Ty::new_error(self.tcx, guar);
}
// Unify each side with `expected`.
// Subtyping doesn't matter here, as the value is some kind of scalar.
let demand_eqtype = |x: &mut _, y| {
if let Some((ref mut fail, x_ty, x_span)) = *x
&& let Err(mut err) = self.demand_eqtype_pat_diag(x_span, expected, x_ty, ti)
{
if let Some((_, y_ty, y_span)) = y {
self.endpoint_has_type(&mut err, y_span, y_ty);
}
err.emit();
*fail = true;
}
};
demand_eqtype(&mut lhs, rhs);
demand_eqtype(&mut rhs, lhs);
if let (Some((true, ..)), _) | (_, Some((true, ..))) = (lhs, rhs) {
return Ty::new_misc_error(self.tcx);
}
// Find the unified type and check if it's of numeric or char type again.
// This check is needed if both sides are inference variables.
// We require types to be resolved here so that we emit inference failure
// rather than "_ is not a char or numeric".
let ty = self.structurally_resolve_type(span, expected);
if !(ty.is_numeric() || ty.is_char() || ty.references_error()) {
if let Some((ref mut fail, _, _)) = lhs {
*fail = true;
}
if let Some((ref mut fail, _, _)) = rhs {
*fail = true;
}
let guar = self.emit_err_pat_range(span, lhs, rhs);
return Ty::new_error(self.tcx, guar);
}
ty
}
fn endpoint_has_type(&self, err: &mut Diag<'_>, span: Span, ty: Ty<'_>) {
if !ty.references_error() {
err.span_label(span, format!("this is of type `{ty}`"));
}
}
fn emit_err_pat_range(
&self,
span: Span,
lhs: Option<(bool, Ty<'tcx>, Span)>,
rhs: Option<(bool, Ty<'tcx>, Span)>,
) -> ErrorGuaranteed {
let span = match (lhs, rhs) {
(Some((true, ..)), Some((true, ..))) => span,
(Some((true, _, sp)), _) => sp,
(_, Some((true, _, sp))) => sp,
_ => span_bug!(span, "emit_err_pat_range: no side failed or exists but still error?"),
};
let mut err = struct_span_code_err!(
self.dcx(),
span,
E0029,
"only `char` and numeric types are allowed in range patterns"
);
let msg = |ty| {
let ty = self.resolve_vars_if_possible(ty);
format!("this is of type `{ty}` but it should be `char` or numeric")
};
let mut one_side_err = |first_span, first_ty, second: Option<(bool, Ty<'tcx>, Span)>| {
err.span_label(first_span, msg(first_ty));
if let Some((_, ty, sp)) = second {
let ty = self.resolve_vars_if_possible(ty);
self.endpoint_has_type(&mut err, sp, ty);
}
};
match (lhs, rhs) {
(Some((true, lhs_ty, lhs_sp)), Some((true, rhs_ty, rhs_sp))) => {
err.span_label(lhs_sp, msg(lhs_ty));
err.span_label(rhs_sp, msg(rhs_ty));
}
(Some((true, lhs_ty, lhs_sp)), rhs) => one_side_err(lhs_sp, lhs_ty, rhs),
(lhs, Some((true, rhs_ty, rhs_sp))) => one_side_err(rhs_sp, rhs_ty, lhs),
_ => span_bug!(span, "Impossible, verified above."),
}
if (lhs, rhs).references_error() {
err.downgrade_to_delayed_bug();
}
if self.tcx.sess.teach(err.code.unwrap()) {
err.note(
"In a match expression, only numbers and characters can be matched \
against a range. This is because the compiler checks that the range \
is non-empty at compile-time, and is unable to evaluate arbitrary \
comparison functions. If you want to capture values of an orderable \
type between two end-points, you can use a guard.",
);
}
err.emit()
}
fn check_pat_ident(
&self,
pat: &'tcx Pat<'tcx>,
user_bind_annot: BindingMode,
var_id: HirId,
ident: Ident,
sub: Option<&'tcx Pat<'tcx>>,
expected: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
let PatInfo { binding_mode: def_br, top_info: ti, .. } = pat_info;
// Determine the binding mode...
let bm = match user_bind_annot {
BindingMode(ByRef::No, Mutability::Mut) if matches!(def_br, ByRef::Yes(_)) => {
if pat.span.at_least_rust_2024()
&& (self.tcx.features().ref_pat_eat_one_layer_2024()
|| self.tcx.features().ref_pat_eat_one_layer_2024_structural())
{
if !self.tcx.features().mut_ref() {
feature_err(
&self.tcx.sess,
sym::mut_ref,
pat.span.until(ident.span),
"binding cannot be both mutable and by-reference",
)
.emit();
}
BindingMode(def_br, Mutability::Mut)
} else {
// `mut` resets the binding mode on edition <= 2021
*self
.typeck_results
.borrow_mut()
.rust_2024_migration_desugared_pats_mut()
.entry(pat_info.top_info.hir_id)
.or_default() |= pat.span.at_least_rust_2024();
BindingMode(ByRef::No, Mutability::Mut)
}
}
BindingMode(ByRef::No, mutbl) => BindingMode(def_br, mutbl),
BindingMode(ByRef::Yes(_), _) => {
if matches!(def_br, ByRef::Yes(_)) {
// `ref`/`ref mut` overrides the binding mode on edition <= 2021
*self
.typeck_results
.borrow_mut()
.rust_2024_migration_desugared_pats_mut()
.entry(pat_info.top_info.hir_id)
.or_default() |= pat.span.at_least_rust_2024();
}
user_bind_annot
}
};
if bm.0 == ByRef::Yes(Mutability::Mut)
&& let MutblCap::WeaklyNot(and_pat_span) = pat_info.max_ref_mutbl
{
let mut err = struct_span_code_err!(
self.dcx(),
ident.span,
E0596,
"cannot borrow as mutable inside an `&` pattern"
);
if let Some(span) = and_pat_span {
err.span_suggestion(
span,
"replace this `&` with `&mut`",
"&mut ",
Applicability::MachineApplicable,
);
}
err.emit();
}
// ...and store it in a side table:
self.typeck_results.borrow_mut().pat_binding_modes_mut().insert(pat.hir_id, bm);
debug!("check_pat_ident: pat.hir_id={:?} bm={:?}", pat.hir_id, bm);
let local_ty = self.local_ty(pat.span, pat.hir_id);
let eq_ty = match bm.0 {
ByRef::Yes(mutbl) => {
// If the binding is like `ref x | ref mut x`,
// then `x` is assigned a value of type `&M T` where M is the
// mutability and T is the expected type.
//
// `x` is assigned a value of type `&M T`, hence `&M T <: typeof(x)`
// is required. However, we use equality, which is stronger.
// See (note_1) for an explanation.
self.new_ref_ty(pat.span, mutbl, expected)
}
// Otherwise, the type of x is the expected type `T`.
ByRef::No => expected, // As above, `T <: typeof(x)` is required, but we use equality, see (note_1).
};
// We have a concrete type for the local, so we do not need to taint it and hide follow up errors *using* the local.
let _ = self.demand_eqtype_pat(pat.span, eq_ty, local_ty, ti);
// If there are multiple arms, make sure they all agree on
// what the type of the binding `x` ought to be.
if var_id != pat.hir_id {
self.check_binding_alt_eq_ty(user_bind_annot, pat.span, var_id, local_ty, ti);
}
if let Some(p) = sub {
self.check_pat(p, expected, pat_info);
}
local_ty
}
/// When a variable is bound several times in a `PatKind::Or`, it'll resolve all of the
/// subsequent bindings of the same name to the first usage. Verify that all of these
/// bindings have the same type by comparing them all against the type of that first pat.
fn check_binding_alt_eq_ty(
&self,
ba: BindingMode,
span: Span,
var_id: HirId,
ty: Ty<'tcx>,
ti: &TopInfo<'tcx>,
) {
let var_ty = self.local_ty(span, var_id);
if let Err(mut err) = self.demand_eqtype_pat_diag(span, var_ty, ty, ti) {
let hir = self.tcx.hir();
let var_ty = self.resolve_vars_if_possible(var_ty);
let msg = format!("first introduced with type `{var_ty}` here");
err.span_label(hir.span(var_id), msg);
let in_match = hir.parent_iter(var_id).any(|(_, n)| {
matches!(
n,
hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Match(.., hir::MatchSource::Normal),
..
})
)
});
let pre = if in_match { "in the same arm, " } else { "" };
err.note(format!("{pre}a binding must have the same type in all alternatives"));
self.suggest_adding_missing_ref_or_removing_ref(
&mut err,
span,
var_ty,
self.resolve_vars_if_possible(ty),
ba,
);
err.emit();
}
}
fn suggest_adding_missing_ref_or_removing_ref(
&self,
err: &mut Diag<'_>,
span: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
ba: BindingMode,
) {
match (expected.kind(), actual.kind(), ba) {
(ty::Ref(_, inner_ty, _), _, BindingMode::NONE)
if self.can_eq(self.param_env, *inner_ty, actual) =>
{
err.span_suggestion_verbose(
span.shrink_to_lo(),
"consider adding `ref`",
"ref ",
Applicability::MaybeIncorrect,
);
}
(_, ty::Ref(_, inner_ty, _), BindingMode::REF)
if self.can_eq(self.param_env, expected, *inner_ty) =>
{
err.span_suggestion_verbose(
span.with_hi(span.lo() + BytePos(4)),
"consider removing `ref`",
"",
Applicability::MaybeIncorrect,
);
}
_ => (),
}
}
/// Precondition: pat is a `Ref(_)` pattern
fn borrow_pat_suggestion(&self, err: &mut Diag<'_>, pat: &Pat<'_>) {
let tcx = self.tcx;
if let PatKind::Ref(inner, mutbl) = pat.kind
&& let PatKind::Binding(_, _, binding, ..) = inner.kind
{
let binding_parent = tcx.parent_hir_node(pat.hir_id);
debug!(?inner, ?pat, ?binding_parent);
let mutability = match mutbl {
ast::Mutability::Mut => "mut",
ast::Mutability::Not => "",
};
let mut_var_suggestion = 'block: {
if mutbl.is_not() {
break 'block None;
}
let ident_kind = match binding_parent {
hir::Node::Param(_) => "parameter",
hir::Node::LetStmt(_) => "variable",
hir::Node::Arm(_) => "binding",
// Provide diagnostics only if the parent pattern is struct-like,
// i.e. where `mut binding` makes sense
hir::Node::Pat(Pat { kind, .. }) => match kind {
PatKind::Struct(..)
| PatKind::TupleStruct(..)
| PatKind::Or(..)
| PatKind::Tuple(..)
| PatKind::Slice(..) => "binding",
PatKind::Wild
| PatKind::Never
| PatKind::Binding(..)
| PatKind::Path(..)
| PatKind::Box(..)
| PatKind::Deref(_)
| PatKind::Ref(..)
| PatKind::Lit(..)
| PatKind::Range(..)
| PatKind::Err(_) => break 'block None,
},
// Don't provide suggestions in other cases
_ => break 'block None,
};
Some((
pat.span,
format!("to declare a mutable {ident_kind} use"),
format!("mut {binding}"),
))
};
match binding_parent {
// Check that there is explicit type (ie this is not a closure param with inferred type)
// so we don't suggest moving something to the type that does not exist
hir::Node::Param(hir::Param { ty_span, pat, .. }) if pat.span != *ty_span => {
err.multipart_suggestion_verbose(
format!("to take parameter `{binding}` by reference, move `&{mutability}` to the type"),
vec![
(pat.span.until(inner.span), "".to_owned()),
(ty_span.shrink_to_lo(), mutbl.ref_prefix_str().to_owned()),
],
Applicability::MachineApplicable
);
if let Some((sp, msg, sugg)) = mut_var_suggestion {
err.span_note(sp, format!("{msg}: `{sugg}`"));
}
}
hir::Node::Pat(pt) if let PatKind::TupleStruct(_, pat_arr, _) = pt.kind => {
for i in pat_arr.iter() {
if let PatKind::Ref(the_ref, _) = i.kind
&& let PatKind::Binding(mt, _, ident, _) = the_ref.kind
{
let BindingMode(_, mtblty) = mt;
err.span_suggestion_verbose(
i.span,
format!("consider removing `&{mutability}` from the pattern"),
mtblty.prefix_str().to_string() + &ident.name.to_string(),
Applicability::MaybeIncorrect,
);
}
}
if let Some((sp, msg, sugg)) = mut_var_suggestion {
err.span_note(sp, format!("{msg}: `{sugg}`"));
}
}
hir::Node::Param(_) | hir::Node::Arm(_) | hir::Node::Pat(_) => {
// rely on match ergonomics or it might be nested `&&pat`
err.span_suggestion_verbose(
pat.span.until(inner.span),
format!("consider removing `&{mutability}` from the pattern"),
"",
Applicability::MaybeIncorrect,
);
if let Some((sp, msg, sugg)) = mut_var_suggestion {
err.span_note(sp, format!("{msg}: `{sugg}`"));
}
}
_ if let Some((sp, msg, sugg)) = mut_var_suggestion => {
err.span_suggestion(sp, msg, sugg, Applicability::MachineApplicable);
}
_ => {} // don't provide suggestions in other cases #55175
}
}
}
fn check_dereferenceable(
&self,
span: Span,
expected: Ty<'tcx>,
inner: &Pat<'_>,
) -> Result<(), ErrorGuaranteed> {
if let PatKind::Binding(..) = inner.kind
&& let Some(pointee_ty) = self.shallow_resolve(expected).builtin_deref(true)
&& let ty::Dynamic(..) = pointee_ty.kind()
{
// This is "x = dyn SomeTrait" being reduced from
// "let &x = &dyn SomeTrait" or "let box x = Box<dyn SomeTrait>", an error.
let type_str = self.ty_to_string(expected);
let mut err = struct_span_code_err!(
self.dcx(),
span,
E0033,
"type `{}` cannot be dereferenced",
type_str
);
err.span_label(span, format!("type `{type_str}` cannot be dereferenced"));
if self.tcx.sess.teach(err.code.unwrap()) {
err.note(CANNOT_IMPLICITLY_DEREF_POINTER_TRAIT_OBJ);
}
return Err(err.emit());
}
Ok(())
}
fn check_pat_struct(
&self,
pat: &'tcx Pat<'tcx>,
qpath: &hir::QPath<'tcx>,
fields: &'tcx [hir::PatField<'tcx>],
has_rest_pat: bool,
expected: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
// Resolve the path and check the definition for errors.
let (variant, pat_ty) = match self.check_struct_path(qpath, pat.hir_id) {
Ok(data) => data,
Err(guar) => {
let err = Ty::new_error(self.tcx, guar);
for field in fields {
self.check_pat(field.pat, err, pat_info);
}
return err;
}
};
// Type-check the path.
let _ = self.demand_eqtype_pat(pat.span, expected, pat_ty, pat_info.top_info);
// Type-check subpatterns.
match self.check_struct_pat_fields(pat_ty, pat, variant, fields, has_rest_pat, pat_info) {
Ok(()) => pat_ty,
Err(guar) => Ty::new_error(self.tcx, guar),
}
}
fn check_pat_path(
&self,
pat: &Pat<'tcx>,
qpath: &hir::QPath<'_>,
path_resolution: (Res, Option<LoweredTy<'tcx>>, &'tcx [hir::PathSegment<'tcx>]),
expected: Ty<'tcx>,
ti: &TopInfo<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
// We have already resolved the path.
let (res, opt_ty, segments) = path_resolution;
match res {
Res::Err => {
let e =
self.dcx().span_delayed_bug(qpath.span(), "`Res::Err` but no error emitted");
self.set_tainted_by_errors(e);
return Ty::new_error(tcx, e);
}
Res::Def(DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Variant, _) => {
let expected = "unit struct, unit variant or constant";
let e =
report_unexpected_variant_res(tcx, res, None, qpath, pat.span, E0533, expected);
return Ty::new_error(tcx, e);
}
Res::SelfCtor(def_id) => {
if let ty::Adt(adt_def, _) = *tcx.type_of(def_id).skip_binder().kind()
&& adt_def.is_struct()
&& let Some((CtorKind::Const, _)) = adt_def.non_enum_variant().ctor
{
// Ok, we allow unit struct ctors in patterns only.
} else {
let e = report_unexpected_variant_res(
tcx,
res,
None,
qpath,
pat.span,
E0533,
"unit struct",
);
return Ty::new_error(tcx, e);
}
}
Res::Def(
DefKind::Ctor(_, CtorKind::Const)
| DefKind::Const
| DefKind::AssocConst
| DefKind::ConstParam,
_,
) => {} // OK
_ => bug!("unexpected pattern resolution: {:?}", res),
}
// Type-check the path.
let (pat_ty, pat_res) =
self.instantiate_value_path(segments, opt_ty, res, pat.span, pat.span, pat.hir_id);
if let Err(err) =
self.demand_suptype_with_origin(&self.pattern_cause(ti, pat.span), expected, pat_ty)
{
self.emit_bad_pat_path(err, pat, res, pat_res, pat_ty, segments);
}
pat_ty
}
fn maybe_suggest_range_literal(
&self,
e: &mut Diag<'_>,
opt_def_id: Option<hir::def_id::DefId>,
ident: Ident,
) -> bool {
match opt_def_id {
Some(def_id) => match self.tcx.hir().get_if_local(def_id) {
Some(hir::Node::Item(hir::Item {
kind: hir::ItemKind::Const(_, _, body_id),
..
})) => match self.tcx.hir_node(body_id.hir_id) {
hir::Node::Expr(expr) => {
if hir::is_range_literal(expr) {
let span = self.tcx.hir().span(body_id.hir_id);
if let Ok(snip) = self.tcx.sess.source_map().span_to_snippet(span) {
e.span_suggestion_verbose(
ident.span,
"you may want to move the range into the match block",
snip,
Applicability::MachineApplicable,
);
return true;
}
}
}
_ => (),
},
_ => (),
},
_ => (),
}
false
}
fn emit_bad_pat_path(
&self,
mut e: Diag<'_>,
pat: &hir::Pat<'tcx>,
res: Res,
pat_res: Res,
pat_ty: Ty<'tcx>,
segments: &'tcx [hir::PathSegment<'tcx>],
) {
let pat_span = pat.span;
if let Some(span) = self.tcx.hir().res_span(pat_res) {
e.span_label(span, format!("{} defined here", res.descr()));
if let [hir::PathSegment { ident, .. }] = &*segments {
e.span_label(
pat_span,
format!(
"`{}` is interpreted as {} {}, not a new binding",
ident,
res.article(),
res.descr(),
),
);
match self.tcx.parent_hir_node(pat.hir_id) {
hir::Node::PatField(..) => {
e.span_suggestion_verbose(
ident.span.shrink_to_hi(),
"bind the struct field to a different name instead",
format!(": other_{}", ident.as_str().to_lowercase()),
Applicability::HasPlaceholders,
);
}
_ => {
let (type_def_id, item_def_id) = match pat_ty.kind() {
ty::Adt(def, _) => match res {
Res::Def(DefKind::Const, def_id) => (Some(def.did()), Some(def_id)),
_ => (None, None),
},
_ => (None, None),
};
let ranges = &[
self.tcx.lang_items().range_struct(),
self.tcx.lang_items().range_from_struct(),
self.tcx.lang_items().range_to_struct(),
self.tcx.lang_items().range_full_struct(),
self.tcx.lang_items().range_inclusive_struct(),
self.tcx.lang_items().range_to_inclusive_struct(),
];
if type_def_id != None && ranges.contains(&type_def_id) {
if !self.maybe_suggest_range_literal(&mut e, item_def_id, *ident) {
let msg = "constants only support matching by type, \
if you meant to match against a range of values, \
consider using a range pattern like `min ..= max` in the match block";
e.note(msg);
}
} else {
let msg = "introduce a new binding instead";
let sugg = format!("other_{}", ident.as_str().to_lowercase());
e.span_suggestion(
ident.span,
msg,
sugg,
Applicability::HasPlaceholders,
);
}
}
};
}
}
e.emit();
}
fn check_pat_tuple_struct(
&self,
pat: &'tcx Pat<'tcx>,
qpath: &'tcx hir::QPath<'tcx>,
subpats: &'tcx [Pat<'tcx>],
ddpos: hir::DotDotPos,
expected: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let on_error = |e| {
for pat in subpats {
self.check_pat(pat, Ty::new_error(tcx, e), pat_info);
}
};
let report_unexpected_res = |res: Res| {
let expected = "tuple struct or tuple variant";
let e = report_unexpected_variant_res(tcx, res, None, qpath, pat.span, E0164, expected);
on_error(e);
e
};
// Resolve the path and check the definition for errors.
let (res, opt_ty, segments) =
self.resolve_ty_and_res_fully_qualified_call(qpath, pat.hir_id, pat.span);
if res == Res::Err {
let e = self.dcx().span_delayed_bug(pat.span, "`Res::Err` but no error emitted");
self.set_tainted_by_errors(e);
on_error(e);
return Ty::new_error(tcx, e);
}
// Type-check the path.
let (pat_ty, res) =
self.instantiate_value_path(segments, opt_ty, res, pat.span, pat.span, pat.hir_id);
if !pat_ty.is_fn() {
let e = report_unexpected_res(res);
return Ty::new_error(tcx, e);
}
let variant = match res {
Res::Err => {
self.dcx().span_bug(pat.span, "`Res::Err` but no error emitted");
}
Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) => {
let e = report_unexpected_res(res);
return Ty::new_error(tcx, e);
}
Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) => tcx.expect_variant_res(res),
_ => bug!("unexpected pattern resolution: {:?}", res),
};
// Replace constructor type with constructed type for tuple struct patterns.
let pat_ty = pat_ty.fn_sig(tcx).output();
let pat_ty = pat_ty.no_bound_vars().expect("expected fn type");
// Type-check the tuple struct pattern against the expected type.
let diag = self.demand_eqtype_pat_diag(pat.span, expected, pat_ty, pat_info.top_info);
let had_err = diag.map_err(|diag| diag.emit());
// Type-check subpatterns.
if subpats.len() == variant.fields.len()
|| subpats.len() < variant.fields.len() && ddpos.as_opt_usize().is_some()
{
let ty::Adt(_, args) = pat_ty.kind() else {
bug!("unexpected pattern type {:?}", pat_ty);
};
for (i, subpat) in subpats.iter().enumerate_and_adjust(variant.fields.len(), ddpos) {
let field = &variant.fields[FieldIdx::from_usize(i)];
let field_ty = self.field_ty(subpat.span, field, args);
self.check_pat(subpat, field_ty, pat_info);
self.tcx.check_stability(
variant.fields[FieldIdx::from_usize(i)].did,
Some(pat.hir_id),
subpat.span,
None,
);
}
if let Err(e) = had_err {
on_error(e);
return Ty::new_error(tcx, e);
}
} else {
let e = self.emit_err_pat_wrong_number_of_fields(
pat.span,
res,
qpath,
subpats,
&variant.fields.raw,
expected,
had_err,
);
on_error(e);
return Ty::new_error(tcx, e);
}
pat_ty
}
fn emit_err_pat_wrong_number_of_fields(
&self,
pat_span: Span,
res: Res,
qpath: &hir::QPath<'_>,
subpats: &'tcx [Pat<'tcx>],
fields: &'tcx [ty::FieldDef],
expected: Ty<'tcx>,
had_err: Result<(), ErrorGuaranteed>,
) -> ErrorGuaranteed {
let subpats_ending = pluralize!(subpats.len());
let fields_ending = pluralize!(fields.len());
let subpat_spans = if subpats.is_empty() {
vec![pat_span]
} else {
subpats.iter().map(|p| p.span).collect()
};
let last_subpat_span = *subpat_spans.last().unwrap();
let res_span = self.tcx.def_span(res.def_id());
let def_ident_span = self.tcx.def_ident_span(res.def_id()).unwrap_or(res_span);
let field_def_spans = if fields.is_empty() {
vec![res_span]
} else {
fields.iter().map(|f| f.ident(self.tcx).span).collect()
};
let last_field_def_span = *field_def_spans.last().unwrap();
let mut err = struct_span_code_err!(
self.dcx(),
MultiSpan::from_spans(subpat_spans),
E0023,
"this pattern has {} field{}, but the corresponding {} has {} field{}",
subpats.len(),
subpats_ending,
res.descr(),
fields.len(),
fields_ending,
);
err.span_label(
last_subpat_span,
format!("expected {} field{}, found {}", fields.len(), fields_ending, subpats.len()),
);
if self.tcx.sess.source_map().is_multiline(qpath.span().between(last_subpat_span)) {
err.span_label(qpath.span(), "");
}
if self.tcx.sess.source_map().is_multiline(def_ident_span.between(last_field_def_span)) {
err.span_label(def_ident_span, format!("{} defined here", res.descr()));
}
for span in &field_def_spans[..field_def_spans.len() - 1] {
err.span_label(*span, "");
}
err.span_label(
last_field_def_span,
format!("{} has {} field{}", res.descr(), fields.len(), fields_ending),
);
// Identify the case `Some(x, y)` where the expected type is e.g. `Option<(T, U)>`.
// More generally, the expected type wants a tuple variant with one field of an
// N-arity-tuple, e.g., `V_i((p_0, .., p_N))`. Meanwhile, the user supplied a pattern
// with the subpatterns directly in the tuple variant pattern, e.g., `V_i(p_0, .., p_N)`.
let missing_parentheses = match (expected.kind(), fields, had_err) {
// #67037: only do this if we could successfully type-check the expected type against
// the tuple struct pattern. Otherwise the args could get out of range on e.g.,
// `let P() = U;` where `P != U` with `struct P<T>(T);`.
(ty::Adt(_, args), [field], Ok(())) => {
let field_ty = self.field_ty(pat_span, field, args);
match field_ty.kind() {
ty::Tuple(fields) => fields.len() == subpats.len(),
_ => false,
}
}
_ => false,
};
if missing_parentheses {
let (left, right) = match subpats {
// This is the zero case; we aim to get the "hi" part of the `QPath`'s
// span as the "lo" and then the "hi" part of the pattern's span as the "hi".
// This looks like:
//
// help: missing parentheses
// |
// L | let A(()) = A(());
// | ^ ^
[] => (qpath.span().shrink_to_hi(), pat_span),
// Easy case. Just take the "lo" of the first sub-pattern and the "hi" of the
// last sub-pattern. In the case of `A(x)` the first and last may coincide.
// This looks like:
//
// help: missing parentheses
// |
// L | let A((x, y)) = A((1, 2));
// | ^ ^
[first, ..] => (first.span.shrink_to_lo(), subpats.last().unwrap().span),
};
err.multipart_suggestion(
"missing parentheses",
vec![(left, "(".to_string()), (right.shrink_to_hi(), ")".to_string())],
Applicability::MachineApplicable,
);
} else if fields.len() > subpats.len() && pat_span != DUMMY_SP {
let after_fields_span = pat_span.with_hi(pat_span.hi() - BytePos(1)).shrink_to_hi();
let all_fields_span = match subpats {
[] => after_fields_span,
[field] => field.span,
[first, .., last] => first.span.to(last.span),
};
// Check if all the fields in the pattern are wildcards.
let all_wildcards = subpats.iter().all(|pat| matches!(pat.kind, PatKind::Wild));
let first_tail_wildcard =
subpats.iter().enumerate().fold(None, |acc, (pos, pat)| match (acc, &pat.kind) {
(None, PatKind::Wild) => Some(pos),
(Some(_), PatKind::Wild) => acc,
_ => None,
});
let tail_span = match first_tail_wildcard {
None => after_fields_span,
Some(0) => subpats[0].span.to(after_fields_span),
Some(pos) => subpats[pos - 1].span.shrink_to_hi().to(after_fields_span),
};
// FIXME: heuristic-based suggestion to check current types for where to add `_`.
let mut wildcard_sugg = vec!["_"; fields.len() - subpats.len()].join(", ");
if !subpats.is_empty() {
wildcard_sugg = String::from(", ") + &wildcard_sugg;
}
err.span_suggestion_verbose(
after_fields_span,
"use `_` to explicitly ignore each field",
wildcard_sugg,
Applicability::MaybeIncorrect,
);
// Only suggest `..` if more than one field is missing
// or the pattern consists of all wildcards.
if fields.len() - subpats.len() > 1 || all_wildcards {
if subpats.is_empty() || all_wildcards {
err.span_suggestion_verbose(
all_fields_span,
"use `..` to ignore all fields",
"..",
Applicability::MaybeIncorrect,
);
} else {
err.span_suggestion_verbose(
tail_span,
"use `..` to ignore the rest of the fields",
", ..",
Applicability::MaybeIncorrect,
);
}
}
}
err.emit()
}
fn check_pat_tuple(
&self,
span: Span,
elements: &'tcx [Pat<'tcx>],
ddpos: hir::DotDotPos,
expected: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let mut expected_len = elements.len();
if ddpos.as_opt_usize().is_some() {
// Require known type only when `..` is present.
if let ty::Tuple(tys) = self.structurally_resolve_type(span, expected).kind() {
expected_len = tys.len();
}
}
let max_len = cmp::max(expected_len, elements.len());
let element_tys_iter = (0..max_len).map(|_| self.next_ty_var(span));
let element_tys = tcx.mk_type_list_from_iter(element_tys_iter);
let pat_ty = Ty::new_tup(tcx, element_tys);
if let Err(reported) = self.demand_eqtype_pat(span, expected, pat_ty, pat_info.top_info) {
// Walk subpatterns with an expected type of `err` in this case to silence
// further errors being emitted when using the bindings. #50333
let element_tys_iter = (0..max_len).map(|_| Ty::new_error(tcx, reported));
for (_, elem) in elements.iter().enumerate_and_adjust(max_len, ddpos) {
self.check_pat(elem, Ty::new_error(tcx, reported), pat_info);
}
Ty::new_tup_from_iter(tcx, element_tys_iter)
} else {
for (i, elem) in elements.iter().enumerate_and_adjust(max_len, ddpos) {
self.check_pat(elem, element_tys[i], pat_info);
}
pat_ty
}
}
fn check_struct_pat_fields(
&self,
adt_ty: Ty<'tcx>,
pat: &'tcx Pat<'tcx>,
variant: &'tcx ty::VariantDef,
fields: &'tcx [hir::PatField<'tcx>],
has_rest_pat: bool,
pat_info: PatInfo<'_, 'tcx>,
) -> Result<(), ErrorGuaranteed> {
let tcx = self.tcx;
let ty::Adt(adt, args) = adt_ty.kind() else {
span_bug!(pat.span, "struct pattern is not an ADT");
};
// Index the struct fields' types.
let field_map = variant
.fields
.iter_enumerated()
.map(|(i, field)| (field.ident(self.tcx).normalize_to_macros_2_0(), (i, field)))
.collect::<FxHashMap<_, _>>();
// Keep track of which fields have already appeared in the pattern.
let mut used_fields = FxHashMap::default();
let mut result = Ok(());
let mut inexistent_fields = vec![];
// Typecheck each field.
for field in fields {
let span = field.span;
let ident = tcx.adjust_ident(field.ident, variant.def_id);
let field_ty = match used_fields.entry(ident) {
Occupied(occupied) => {
let guar = self.error_field_already_bound(span, field.ident, *occupied.get());
result = Err(guar);
Ty::new_error(tcx, guar)
}
Vacant(vacant) => {
vacant.insert(span);
field_map
.get(&ident)
.map(|(i, f)| {
self.write_field_index(field.hir_id, *i);
self.tcx.check_stability(f.did, Some(pat.hir_id), span, None);
self.field_ty(span, f, args)
})
.unwrap_or_else(|| {
inexistent_fields.push(field);
Ty::new_misc_error(tcx)
})
}
};
self.check_pat(field.pat, field_ty, pat_info);
}
let mut unmentioned_fields = variant
.fields
.iter()
.map(|field| (field, field.ident(self.tcx).normalize_to_macros_2_0()))
.filter(|(_, ident)| !used_fields.contains_key(ident))
.collect::<Vec<_>>();
let inexistent_fields_err = if !inexistent_fields.is_empty()
&& !inexistent_fields.iter().any(|field| field.ident.name == kw::Underscore)
{
// we don't care to report errors for a struct if the struct itself is tainted
variant.has_errors()?;
Some(self.error_inexistent_fields(
adt.variant_descr(),
&inexistent_fields,
&mut unmentioned_fields,
pat,
variant,
args,
))
} else {
None
};
// Require `..` if struct has non_exhaustive attribute.
let non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
if non_exhaustive && !has_rest_pat {
self.error_foreign_non_exhaustive_spat(pat, adt.variant_descr(), fields.is_empty());
}
let mut unmentioned_err = None;
// Report an error if an incorrect number of fields was specified.
if adt.is_union() {
if fields.len() != 1 {
self.dcx().emit_err(errors::UnionPatMultipleFields { span: pat.span });
}
if has_rest_pat {
self.dcx().emit_err(errors::UnionPatDotDot { span: pat.span });
}
} else if !unmentioned_fields.is_empty() {
let accessible_unmentioned_fields: Vec<_> = unmentioned_fields
.iter()
.copied()
.filter(|(field, _)| self.is_field_suggestable(field, pat.hir_id, pat.span))
.collect();
if !has_rest_pat {
if accessible_unmentioned_fields.is_empty() {
unmentioned_err = Some(self.error_no_accessible_fields(pat, fields));
} else {
unmentioned_err = Some(self.error_unmentioned_fields(
pat,
&accessible_unmentioned_fields,
accessible_unmentioned_fields.len() != unmentioned_fields.len(),
fields,
));
}
} else if non_exhaustive && !accessible_unmentioned_fields.is_empty() {
self.lint_non_exhaustive_omitted_patterns(
pat,
&accessible_unmentioned_fields,
adt_ty,
)
}
}
match (inexistent_fields_err, unmentioned_err) {
(Some(i), Some(u)) => {
if let Err(e) = self.error_tuple_variant_as_struct_pat(pat, fields, variant) {
// We don't want to show the nonexistent fields error when this was
// `Foo { a, b }` when it should have been `Foo(a, b)`.
i.delay_as_bug();
u.delay_as_bug();
Err(e)
} else {
i.emit();
Err(u.emit())
}
}
(None, Some(u)) => {
if let Err(e) = self.error_tuple_variant_as_struct_pat(pat, fields, variant) {
u.delay_as_bug();
Err(e)
} else {
Err(u.emit())
}
}
(Some(err), None) => Err(err.emit()),
(None, None) => {
self.error_tuple_variant_index_shorthand(variant, pat, fields)?;
result
}
}
}
fn error_tuple_variant_index_shorthand(
&self,
variant: &VariantDef,
pat: &'_ Pat<'_>,
fields: &[hir::PatField<'_>],
) -> Result<(), ErrorGuaranteed> {
// if this is a tuple struct, then all field names will be numbers
// so if any fields in a struct pattern use shorthand syntax, they will
// be invalid identifiers (for example, Foo { 0, 1 }).
if let (Some(CtorKind::Fn), PatKind::Struct(qpath, field_patterns, ..)) =
(variant.ctor_kind(), &pat.kind)
{
let has_shorthand_field_name = field_patterns.iter().any(|field| field.is_shorthand);
if has_shorthand_field_name {
let path = rustc_hir_pretty::qpath_to_string(&self.tcx, qpath);
let mut err = struct_span_code_err!(
self.dcx(),
pat.span,
E0769,
"tuple variant `{path}` written as struct variant",
);
err.span_suggestion_verbose(
qpath.span().shrink_to_hi().to(pat.span.shrink_to_hi()),
"use the tuple variant pattern syntax instead",
format!("({})", self.get_suggested_tuple_struct_pattern(fields, variant)),
Applicability::MaybeIncorrect,
);
return Err(err.emit());
}
}
Ok(())
}
fn error_foreign_non_exhaustive_spat(&self, pat: &Pat<'_>, descr: &str, no_fields: bool) {
let sess = self.tcx.sess;
let sm = sess.source_map();
let sp_brace = sm.end_point(pat.span);
let sp_comma = sm.end_point(pat.span.with_hi(sp_brace.hi()));
let sugg = if no_fields || sp_brace != sp_comma { ".. }" } else { ", .. }" };
struct_span_code_err!(
self.dcx(),
pat.span,
E0638,
"`..` required with {descr} marked as non-exhaustive",
)
.with_span_suggestion_verbose(
sp_comma,
"add `..` at the end of the field list to ignore all other fields",
sugg,
Applicability::MachineApplicable,
)
.emit();
}
fn error_field_already_bound(
&self,
span: Span,
ident: Ident,
other_field: Span,
) -> ErrorGuaranteed {
struct_span_code_err!(
self.dcx(),
span,
E0025,
"field `{}` bound multiple times in the pattern",
ident
)
.with_span_label(span, format!("multiple uses of `{ident}` in pattern"))
.with_span_label(other_field, format!("first use of `{ident}`"))
.emit()
}
fn error_inexistent_fields(
&self,
kind_name: &str,
inexistent_fields: &[&hir::PatField<'tcx>],
unmentioned_fields: &mut Vec<(&'tcx ty::FieldDef, Ident)>,
pat: &'tcx Pat<'tcx>,
variant: &ty::VariantDef,
args: ty::GenericArgsRef<'tcx>,
) -> Diag<'a> {
let tcx = self.tcx;
let (field_names, t, plural) = if let [field] = inexistent_fields {
(format!("a field named `{}`", field.ident), "this", "")
} else {
(
format!(
"fields named {}",
inexistent_fields
.iter()
.map(|field| format!("`{}`", field.ident))
.collect::<Vec<String>>()
.join(", ")
),
"these",
"s",
)
};
let spans = inexistent_fields.iter().map(|field| field.ident.span).collect::<Vec<_>>();
let mut err = struct_span_code_err!(
self.dcx(),
spans,
E0026,
"{} `{}` does not have {}",
kind_name,
tcx.def_path_str(variant.def_id),
field_names
);
if let Some(pat_field) = inexistent_fields.last() {
err.span_label(
pat_field.ident.span,
format!(
"{} `{}` does not have {} field{}",
kind_name,
tcx.def_path_str(variant.def_id),
t,
plural
),
);
if let [(field_def, field)] = unmentioned_fields.as_slice()
&& self.is_field_suggestable(field_def, pat.hir_id, pat.span)
{
let suggested_name =
find_best_match_for_name(&[field.name], pat_field.ident.name, None);
if let Some(suggested_name) = suggested_name {
err.span_suggestion(
pat_field.ident.span,
"a field with a similar name exists",
suggested_name,
Applicability::MaybeIncorrect,
);
// When we have a tuple struct used with struct we don't want to suggest using
// the (valid) struct syntax with numeric field names. Instead we want to
// suggest the expected syntax. We infer that this is the case by parsing the
// `Ident` into an unsized integer. The suggestion will be emitted elsewhere in
// `smart_resolve_context_dependent_help`.
if suggested_name.to_ident_string().parse::<usize>().is_err() {
// We don't want to throw `E0027` in case we have thrown `E0026` for them.
unmentioned_fields.retain(|&(_, x)| x.name != suggested_name);
}
} else if inexistent_fields.len() == 1 {
match pat_field.pat.kind {
PatKind::Lit(expr)
if !self.may_coerce(
self.typeck_results.borrow().expr_ty(expr),
self.field_ty(field.span, field_def, args),
) => {}
_ => {
err.span_suggestion_short(
pat_field.ident.span,
format!(
"`{}` has a field named `{}`",
tcx.def_path_str(variant.def_id),
field.name,
),
field.name,
Applicability::MaybeIncorrect,
);
}
}
}
}
}
if tcx.sess.teach(err.code.unwrap()) {
err.note(
"This error indicates that a struct pattern attempted to \
extract a nonexistent field from a struct. Struct fields \
are identified by the name used before the colon : so struct \
patterns should resemble the declaration of the struct type \
being matched.\n\n\
If you are using shorthand field patterns but want to refer \
to the struct field by a different name, you should rename \
it explicitly.",
);
}
err
}
fn error_tuple_variant_as_struct_pat(
&self,
pat: &Pat<'_>,
fields: &'tcx [hir::PatField<'tcx>],
variant: &ty::VariantDef,
) -> Result<(), ErrorGuaranteed> {
if let (Some(CtorKind::Fn), PatKind::Struct(qpath, pattern_fields, ..)) =
(variant.ctor_kind(), &pat.kind)
{
let is_tuple_struct_match = !pattern_fields.is_empty()
&& pattern_fields.iter().map(|field| field.ident.name.as_str()).all(is_number);
if is_tuple_struct_match {
return Ok(());
}
// we don't care to report errors for a struct if the struct itself is tainted
variant.has_errors()?;
let path = rustc_hir_pretty::qpath_to_string(&self.tcx, qpath);
let mut err = struct_span_code_err!(
self.dcx(),
pat.span,
E0769,
"tuple variant `{}` written as struct variant",
path
);
let (sugg, appl) = if fields.len() == variant.fields.len() {
(
self.get_suggested_tuple_struct_pattern(fields, variant),
Applicability::MachineApplicable,
)
} else {
(
variant.fields.iter().map(|_| "_").collect::<Vec<&str>>().join(", "),
Applicability::MaybeIncorrect,
)
};
err.span_suggestion_verbose(
qpath.span().shrink_to_hi().to(pat.span.shrink_to_hi()),
"use the tuple variant pattern syntax instead",
format!("({sugg})"),
appl,
);
return Err(err.emit());
}
Ok(())
}
fn get_suggested_tuple_struct_pattern(
&self,
fields: &[hir::PatField<'_>],
variant: &VariantDef,
) -> String {
let variant_field_idents =
variant.fields.iter().map(|f| f.ident(self.tcx)).collect::<Vec<Ident>>();
fields
.iter()
.map(|field| {
match self.tcx.sess.source_map().span_to_snippet(field.pat.span) {
Ok(f) => {
// Field names are numbers, but numbers
// are not valid identifiers
if variant_field_idents.contains(&field.ident) {
String::from("_")
} else {
f
}
}
Err(_) => rustc_hir_pretty::pat_to_string(&self.tcx, field.pat),
}
})
.collect::<Vec<String>>()
.join(", ")
}
/// Returns a diagnostic reporting a struct pattern which is missing an `..` due to
/// inaccessible fields.
///
/// ```text
/// error: pattern requires `..` due to inaccessible fields
/// --> src/main.rs:10:9
/// |
/// LL | let foo::Foo {} = foo::Foo::default();
/// | ^^^^^^^^^^^
/// |
/// help: add a `..`
/// |
/// LL | let foo::Foo { .. } = foo::Foo::default();
/// | ^^^^^^
/// ```
fn error_no_accessible_fields(
&self,
pat: &Pat<'_>,
fields: &'tcx [hir::PatField<'tcx>],
) -> Diag<'a> {
let mut err = self
.dcx()
.struct_span_err(pat.span, "pattern requires `..` due to inaccessible fields");
if let Some(field) = fields.last() {
err.span_suggestion_verbose(
field.span.shrink_to_hi(),
"ignore the inaccessible and unused fields",
", ..",
Applicability::MachineApplicable,
);
} else {
let qpath_span = if let PatKind::Struct(qpath, ..) = &pat.kind {
qpath.span()
} else {
bug!("`error_no_accessible_fields` called on non-struct pattern");
};
// Shrink the span to exclude the `foo:Foo` in `foo::Foo { }`.
let span = pat.span.with_lo(qpath_span.shrink_to_hi().hi());
err.span_suggestion_verbose(
span,
"ignore the inaccessible and unused fields",
" { .. }",
Applicability::MachineApplicable,
);
}
err
}
/// Report that a pattern for a `#[non_exhaustive]` struct marked with `non_exhaustive_omitted_patterns`
/// is not exhaustive enough.
///
/// Nb: the partner lint for enums lives in `compiler/rustc_mir_build/src/thir/pattern/usefulness.rs`.
fn lint_non_exhaustive_omitted_patterns(
&self,
pat: &Pat<'_>,
unmentioned_fields: &[(&ty::FieldDef, Ident)],
ty: Ty<'tcx>,
) {
fn joined_uncovered_patterns(witnesses: &[&Ident]) -> String {
const LIMIT: usize = 3;
match witnesses {
[] => {
unreachable!(
"expected an uncovered pattern, otherwise why are we emitting an error?"
)
}
[witness] => format!("`{witness}`"),
[head @ .., tail] if head.len() < LIMIT => {
let head: Vec<_> = head.iter().map(<_>::to_string).collect();
format!("`{}` and `{}`", head.join("`, `"), tail)
}
_ => {
let (head, tail) = witnesses.split_at(LIMIT);
let head: Vec<_> = head.iter().map(<_>::to_string).collect();
format!("`{}` and {} more", head.join("`, `"), tail.len())
}
}
}
let joined_patterns = joined_uncovered_patterns(
&unmentioned_fields.iter().map(|(_, i)| i).collect::<Vec<_>>(),
);
self.tcx.node_span_lint(NON_EXHAUSTIVE_OMITTED_PATTERNS, pat.hir_id, pat.span, |lint| {
lint.primary_message("some fields are not explicitly listed");
lint.span_label(pat.span, format!("field{} {} not listed", rustc_errors::pluralize!(unmentioned_fields.len()), joined_patterns));
lint.help(
"ensure that all fields are mentioned explicitly by adding the suggested fields",
);
lint.note(format!(
"the pattern is of type `{ty}` and the `non_exhaustive_omitted_patterns` attribute was found",
));
});
}
/// Returns a diagnostic reporting a struct pattern which does not mention some fields.
///
/// ```text
/// error[E0027]: pattern does not mention field `bar`
/// --> src/main.rs:15:9
/// |
/// LL | let foo::Foo {} = foo::Foo::new();
/// | ^^^^^^^^^^^ missing field `bar`
/// ```
fn error_unmentioned_fields(
&self,
pat: &Pat<'_>,
unmentioned_fields: &[(&ty::FieldDef, Ident)],
have_inaccessible_fields: bool,
fields: &'tcx [hir::PatField<'tcx>],
) -> Diag<'a> {
let inaccessible = if have_inaccessible_fields { " and inaccessible fields" } else { "" };
let field_names = if let [(_, field)] = unmentioned_fields {
format!("field `{field}`{inaccessible}")
} else {
let fields = unmentioned_fields
.iter()
.map(|(_, name)| format!("`{name}`"))
.collect::<Vec<String>>()
.join(", ");
format!("fields {fields}{inaccessible}")
};
let mut err = struct_span_code_err!(
self.dcx(),
pat.span,
E0027,
"pattern does not mention {}",
field_names
);
err.span_label(pat.span, format!("missing {field_names}"));
let len = unmentioned_fields.len();
let (prefix, postfix, sp) = match fields {
[] => match &pat.kind {
PatKind::Struct(path, [], false) => {
(" { ", " }", path.span().shrink_to_hi().until(pat.span.shrink_to_hi()))
}
_ => return err,
},
[.., field] => {
// Account for last field having a trailing comma or parse recovery at the tail of
// the pattern to avoid invalid suggestion (#78511).
let tail = field.span.shrink_to_hi().with_hi(pat.span.hi());
match &pat.kind {
PatKind::Struct(..) => (", ", " }", tail),
_ => return err,
}
}
};
err.span_suggestion(
sp,
format!(
"include the missing field{} in the pattern{}",
pluralize!(len),
if have_inaccessible_fields { " and ignore the inaccessible fields" } else { "" }
),
format!(
"{}{}{}{}",
prefix,
unmentioned_fields
.iter()
.map(|(_, name)| {
let field_name = name.to_string();
if is_number(&field_name) { format!("{field_name}: _") } else { field_name }
})
.collect::<Vec<_>>()
.join(", "),
if have_inaccessible_fields { ", .." } else { "" },
postfix,
),
Applicability::MachineApplicable,
);
err.span_suggestion(
sp,
format!(
"if you don't care about {these} missing field{s}, you can explicitly ignore {them}",
these = pluralize!("this", len),
s = pluralize!(len),
them = if len == 1 { "it" } else { "them" },
),
format!(
"{}{}{}{}",
prefix,
unmentioned_fields
.iter()
.map(|(_, name)| {
let field_name = name.to_string();
format!("{field_name}: _")
})
.collect::<Vec<_>>()
.join(", "),
if have_inaccessible_fields { ", .." } else { "" },
postfix,
),
Applicability::MachineApplicable,
);
err.span_suggestion(
sp,
"or always ignore missing fields here",
format!("{prefix}..{postfix}"),
Applicability::MachineApplicable,
);
err
}
fn check_pat_box(
&self,
span: Span,
inner: &'tcx Pat<'tcx>,
expected: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let (box_ty, inner_ty) = self
.check_dereferenceable(span, expected, inner)
.and_then(|()| {
// Here, `demand::subtype` is good enough, but I don't
// think any errors can be introduced by using `demand::eqtype`.
let inner_ty = self.next_ty_var(inner.span);
let box_ty = Ty::new_box(tcx, inner_ty);
self.demand_eqtype_pat(span, expected, box_ty, pat_info.top_info)?;
Ok((box_ty, inner_ty))
})
.unwrap_or_else(|guar| {
let err = Ty::new_error(tcx, guar);
(err, err)
});
self.check_pat(inner, inner_ty, pat_info);
box_ty
}
fn check_pat_deref(
&self,
span: Span,
inner: &'tcx Pat<'tcx>,
expected: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
// Register a `DerefPure` bound, which is required by all `deref!()` pats.
self.register_bound(
expected,
tcx.require_lang_item(hir::LangItem::DerefPure, Some(span)),
self.misc(span),
);
// <expected as Deref>::Target
let ty = Ty::new_projection(
tcx,
tcx.require_lang_item(hir::LangItem::DerefTarget, Some(span)),
[expected],
);
let ty = self.normalize(span, ty);
let ty = self.try_structurally_resolve_type(span, ty);
self.check_pat(inner, ty, pat_info);
// Check if the pattern has any `ref mut` bindings, which would require
// `DerefMut` to be emitted in MIR building instead of just `Deref`.
// We do this *after* checking the inner pattern, since we want to make
// sure to apply any match-ergonomics adjustments.
if self.typeck_results.borrow().pat_has_ref_mut_binding(inner) {
self.register_bound(
expected,
tcx.require_lang_item(hir::LangItem::DerefMut, Some(span)),
self.misc(span),
);
}
expected
}
// Precondition: Pat is Ref(inner)
fn check_pat_ref(
&self,
pat: &'tcx Pat<'tcx>,
inner: &'tcx Pat<'tcx>,
pat_mutbl: Mutability,
mut expected: Ty<'tcx>,
mut pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let features = tcx.features();
let ref_pat_eat_one_layer_2024 = features.ref_pat_eat_one_layer_2024();
let ref_pat_eat_one_layer_2024_structural =
features.ref_pat_eat_one_layer_2024_structural();
let no_ref_mut_behind_and =
ref_pat_eat_one_layer_2024 || ref_pat_eat_one_layer_2024_structural;
let new_match_ergonomics = pat.span.at_least_rust_2024() && no_ref_mut_behind_and;
let pat_prefix_span =
inner.span.find_ancestor_inside(pat.span).map(|end| pat.span.until(end));
if no_ref_mut_behind_and {
if pat_mutbl == Mutability::Not {
// Prevent the inner pattern from binding with `ref mut`.
pat_info.max_ref_mutbl = pat_info.max_ref_mutbl.cap_to_weakly_not(pat_prefix_span);
}
} else {
pat_info.max_ref_mutbl = MutblCap::Mut;
}
expected = self.try_structurally_resolve_type(pat.span, expected);
if new_match_ergonomics {
if let ByRef::Yes(inh_mut) = pat_info.binding_mode {
if !ref_pat_eat_one_layer_2024 && let ty::Ref(_, _, r_mutbl) = *expected.kind() {
// Don't attempt to consume inherited reference
pat_info.binding_mode = pat_info.binding_mode.cap_ref_mutability(r_mutbl);
} else {
// ref pattern attempts to consume inherited reference
if pat_mutbl > inh_mut {
// Tried to match inherited `ref` with `&mut`
if !ref_pat_eat_one_layer_2024_structural {
let err_msg = "mismatched types";
let err = if let Some(span) = pat_prefix_span {
let mut err = self.dcx().struct_span_err(span, err_msg);
err.code(E0308);
err.note("cannot match inherited `&` with `&mut` pattern");
err.span_suggestion_verbose(
span,
"replace this `&mut` pattern with `&`",
"&",
Applicability::MachineApplicable,
);
err
} else {
self.dcx().struct_span_err(pat.span, err_msg)
};
err.emit();
pat_info.binding_mode = ByRef::No;
self.typeck_results
.borrow_mut()
.skipped_ref_pats_mut()
.insert(pat.hir_id);
self.check_pat(inner, expected, pat_info);
return expected;
}
} else {
pat_info.binding_mode = ByRef::No;
self.typeck_results.borrow_mut().skipped_ref_pats_mut().insert(pat.hir_id);
self.check_pat(inner, expected, pat_info);
return expected;
}
}
}
} else {
// Reset binding mode on old editions
if pat_info.binding_mode != ByRef::No {
pat_info.binding_mode = ByRef::No;
*self
.typeck_results
.borrow_mut()
.rust_2024_migration_desugared_pats_mut()
.entry(pat_info.top_info.hir_id)
.or_default() |= pat.span.at_least_rust_2024();
}
}
let (ref_ty, inner_ty) = match self.check_dereferenceable(pat.span, expected, inner) {
Ok(()) => {
// `demand::subtype` would be good enough, but using `eqtype` turns
// out to be equally general. See (note_1) for details.
// Take region, inner-type from expected type if we can,
// to avoid creating needless variables. This also helps with
// the bad interactions of the given hack detailed in (note_1).
debug!("check_pat_ref: expected={:?}", expected);
match *expected.kind() {
ty::Ref(_, r_ty, r_mutbl)
if (no_ref_mut_behind_and && r_mutbl >= pat_mutbl)
|| r_mutbl == pat_mutbl =>
{
if no_ref_mut_behind_and && r_mutbl == Mutability::Not {
pat_info.max_ref_mutbl = MutblCap::Not;
}
(expected, r_ty)
}
_ => {
let inner_ty = self.next_ty_var(inner.span);
let ref_ty = self.new_ref_ty(pat.span, pat_mutbl, inner_ty);
debug!("check_pat_ref: demanding {:?} = {:?}", expected, ref_ty);
let err = self.demand_eqtype_pat_diag(
pat.span,
expected,
ref_ty,
pat_info.top_info,
);
// Look for a case like `fn foo(&foo: u32)` and suggest
// `fn foo(foo: &u32)`
if let Err(mut err) = err {
self.borrow_pat_suggestion(&mut err, pat);
err.emit();
}
(ref_ty, inner_ty)
}
}
}
Err(guar) => {
let err = Ty::new_error(tcx, guar);
(err, err)
}
};
self.check_pat(inner, inner_ty, pat_info);
ref_ty
}
/// Create a reference type with a fresh region variable.
fn new_ref_ty(&self, span: Span, mutbl: Mutability, ty: Ty<'tcx>) -> Ty<'tcx> {
let region = self.next_region_var(infer::PatternRegion(span));
Ty::new_ref(self.tcx, region, ty, mutbl)
}
fn try_resolve_slice_ty_to_array_ty(
&self,
before: &'tcx [Pat<'tcx>],
slice: Option<&'tcx Pat<'tcx>>,
span: Span,
) -> Option<Ty<'tcx>> {
if slice.is_some() {
return None;
}
let tcx = self.tcx;
let len = before.len();
let inner_ty = self.next_ty_var(span);
Some(Ty::new_array(tcx, inner_ty, len.try_into().unwrap()))
}
/// Used to determines whether we can infer the expected type in the slice pattern to be of type array.
/// This is only possible if we're in an irrefutable pattern. If we were to allow this in refutable
/// patterns we wouldn't e.g. report ambiguity in the following situation:
///
/// ```ignore(rust)
/// struct Zeroes;
/// const ARR: [usize; 2] = [0; 2];
/// const ARR2: [usize; 2] = [2; 2];
///
/// impl Into<&'static [usize; 2]> for Zeroes {
/// fn into(self) -> &'static [usize; 2] {
/// &ARR
/// }
/// }
///
/// impl Into<&'static [usize]> for Zeroes {
/// fn into(self) -> &'static [usize] {
/// &ARR2
/// }
/// }
///
/// fn main() {
/// let &[a, b]: &[usize] = Zeroes.into() else {
/// ..
/// };
/// }
/// ```
///
/// If we're in an irrefutable pattern we prefer the array impl candidate given that
/// the slice impl candidate would be rejected anyway (if no ambiguity existed).
fn pat_is_irrefutable(&self, decl_origin: Option<DeclOrigin<'_>>) -> bool {
match decl_origin {
Some(DeclOrigin::LocalDecl { els: None }) => true,
Some(DeclOrigin::LocalDecl { els: Some(_) } | DeclOrigin::LetExpr) | None => false,
}
}
/// Type check a slice pattern.
///
/// Syntactically, these look like `[pat_0, ..., pat_n]`.
/// Semantically, we are type checking a pattern with structure:
/// ```ignore (not-rust)
/// [before_0, ..., before_n, (slice, after_0, ... after_n)?]
/// ```
/// The type of `slice`, if it is present, depends on the `expected` type.
/// If `slice` is missing, then so is `after_i`.
/// If `slice` is present, it can still represent 0 elements.
fn check_pat_slice(
&self,
span: Span,
before: &'tcx [Pat<'tcx>],
slice: Option<&'tcx Pat<'tcx>>,
after: &'tcx [Pat<'tcx>],
expected: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> Ty<'tcx> {
let expected = self.try_structurally_resolve_type(span, expected);
// If the pattern is irrefutable and `expected` is an infer ty, we try to equate it
// to an array if the given pattern allows it. See issue #76342
if self.pat_is_irrefutable(pat_info.decl_origin) && expected.is_ty_var() {
if let Some(resolved_arr_ty) =
self.try_resolve_slice_ty_to_array_ty(before, slice, span)
{
debug!(?resolved_arr_ty);
let _ = self.demand_eqtype(span, expected, resolved_arr_ty);
}
}
let expected = self.structurally_resolve_type(span, expected);
debug!(?expected);
let (element_ty, opt_slice_ty, inferred) = match *expected.kind() {
// An array, so we might have something like `let [a, b, c] = [0, 1, 2];`.
ty::Array(element_ty, len) => {
let min = before.len() as u64 + after.len() as u64;
let (opt_slice_ty, expected) =
self.check_array_pat_len(span, element_ty, expected, slice, len, min);
// `opt_slice_ty.is_none()` => `slice.is_none()`.
// Note, though, that opt_slice_ty could be `Some(error_ty)`.
assert!(opt_slice_ty.is_some() || slice.is_none());
(element_ty, opt_slice_ty, expected)
}
ty::Slice(element_ty) => (element_ty, Some(expected), expected),
// The expected type must be an array or slice, but was neither, so error.
_ => {
let guar = expected.error_reported().err().unwrap_or_else(|| {
self.error_expected_array_or_slice(span, expected, pat_info)
});
let err = Ty::new_error(self.tcx, guar);
(err, Some(err), err)
}
};
// Type check all the patterns before `slice`.
for elt in before {
self.check_pat(elt, element_ty, pat_info);
}
// Type check the `slice`, if present, against its expected type.
if let Some(slice) = slice {
self.check_pat(slice, opt_slice_ty.unwrap(), pat_info);
}
// Type check the elements after `slice`, if present.
for elt in after {
self.check_pat(elt, element_ty, pat_info);
}
inferred
}
/// Type check the length of an array pattern.
///
/// Returns both the type of the variable length pattern (or `None`), and the potentially
/// inferred array type. We only return `None` for the slice type if `slice.is_none()`.
fn check_array_pat_len(
&self,
span: Span,
element_ty: Ty<'tcx>,
arr_ty: Ty<'tcx>,
slice: Option<&'tcx Pat<'tcx>>,
len: ty::Const<'tcx>,
min_len: u64,
) -> (Option<Ty<'tcx>>, Ty<'tcx>) {
let len = self.try_structurally_resolve_const(span, len).try_to_target_usize(self.tcx);
let guar = if let Some(len) = len {
// Now we know the length...
if slice.is_none() {
// ...and since there is no variable-length pattern,
// we require an exact match between the number of elements
// in the array pattern and as provided by the matched type.
if min_len == len {
return (None, arr_ty);
}
self.error_scrutinee_inconsistent_length(span, min_len, len)
} else if let Some(pat_len) = len.checked_sub(min_len) {
// The variable-length pattern was there,
// so it has an array type with the remaining elements left as its size...
return (Some(Ty::new_array(self.tcx, element_ty, pat_len)), arr_ty);
} else {
// ...however, in this case, there were no remaining elements.
// That is, the slice pattern requires more than the array type offers.
self.error_scrutinee_with_rest_inconsistent_length(span, min_len, len)
}
} else if slice.is_none() {
// We have a pattern with a fixed length,
// which we can use to infer the length of the array.
let updated_arr_ty = Ty::new_array(self.tcx, element_ty, min_len);
self.demand_eqtype(span, updated_arr_ty, arr_ty);
return (None, updated_arr_ty);
} else {
// We have a variable-length pattern and don't know the array length.
// This happens if we have e.g.,
// `let [a, b, ..] = arr` where `arr: [T; N]` where `const N: usize`.
self.error_scrutinee_unfixed_length(span)
};
// If we get here, we must have emitted an error.
(Some(Ty::new_error(self.tcx, guar)), arr_ty)
}
fn error_scrutinee_inconsistent_length(
&self,
span: Span,
min_len: u64,
size: u64,
) -> ErrorGuaranteed {
struct_span_code_err!(
self.dcx(),
span,
E0527,
"pattern requires {} element{} but array has {}",
min_len,
pluralize!(min_len),
size,
)
.with_span_label(span, format!("expected {} element{}", size, pluralize!(size)))
.emit()
}
fn error_scrutinee_with_rest_inconsistent_length(
&self,
span: Span,
min_len: u64,
size: u64,
) -> ErrorGuaranteed {
struct_span_code_err!(
self.dcx(),
span,
E0528,
"pattern requires at least {} element{} but array has {}",
min_len,
pluralize!(min_len),
size,
)
.with_span_label(
span,
format!("pattern cannot match array of {} element{}", size, pluralize!(size),),
)
.emit()
}
fn error_scrutinee_unfixed_length(&self, span: Span) -> ErrorGuaranteed {
struct_span_code_err!(
self.dcx(),
span,
E0730,
"cannot pattern-match on an array without a fixed length",
)
.emit()
}
fn error_expected_array_or_slice(
&self,
span: Span,
expected_ty: Ty<'tcx>,
pat_info: PatInfo<'_, 'tcx>,
) -> ErrorGuaranteed {
let PatInfo { top_info: ti, current_depth, .. } = pat_info;
let mut err = struct_span_code_err!(
self.dcx(),
span,
E0529,
"expected an array or slice, found `{expected_ty}`"
);
if let ty::Ref(_, ty, _) = expected_ty.kind()
&& let ty::Array(..) | ty::Slice(..) = ty.kind()
{
err.help("the semantics of slice patterns changed recently; see issue #62254");
} else if self
.autoderef(span, expected_ty)
.silence_errors()
.any(|(ty, _)| matches!(ty.kind(), ty::Slice(..) | ty::Array(..)))
&& let Some(span) = ti.span
&& let Some(_) = ti.origin_expr
{
let resolved_ty = self.resolve_vars_if_possible(ti.expected);
let (is_slice_or_array_or_vector, resolved_ty) =
self.is_slice_or_array_or_vector(resolved_ty);
match resolved_ty.kind() {
ty::Adt(adt_def, _)
if self.tcx.is_diagnostic_item(sym::Option, adt_def.did())
|| self.tcx.is_diagnostic_item(sym::Result, adt_def.did()) =>
{
// Slicing won't work here, but `.as_deref()` might (issue #91328).
err.span_suggestion_verbose(
span.shrink_to_hi(),
"consider using `as_deref` here",
".as_deref()",
Applicability::MaybeIncorrect,
);
}
_ => (),
}
let is_top_level = current_depth <= 1;
if is_slice_or_array_or_vector && is_top_level {
err.span_suggestion_verbose(
span.shrink_to_hi(),
"consider slicing here",
"[..]",
Applicability::MachineApplicable,
);
}
}
err.span_label(span, format!("pattern cannot match with input type `{expected_ty}`"));
err.emit()
}
fn is_slice_or_array_or_vector(&self, ty: Ty<'tcx>) -> (bool, Ty<'tcx>) {
match ty.kind() {
ty::Adt(adt_def, _) if self.tcx.is_diagnostic_item(sym::Vec, adt_def.did()) => {
(true, ty)
}
ty::Ref(_, ty, _) => self.is_slice_or_array_or_vector(*ty),
ty::Slice(..) | ty::Array(..) => (true, ty),
_ => (false, ty),
}
}
}