1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
use std::cell::{Cell, RefCell};
use std::fmt;
pub use at::DefineOpaqueTypes;
use free_regions::RegionRelations;
pub use freshen::TypeFreshener;
use lexical_region_resolve::LexicalRegionResolutions;
pub use lexical_region_resolve::RegionResolutionError;
use opaque_types::OpaqueTypeStorage;
use region_constraints::{
GenericKind, RegionConstraintCollector, RegionConstraintStorage, VarInfos, VerifyBound,
};
pub use relate::combine::{CombineFields, PredicateEmittingRelation};
pub use relate::StructurallyRelateAliases;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::undo_log::Rollback;
use rustc_data_structures::unify as ut;
use rustc_errors::{DiagCtxtHandle, ErrorGuaranteed};
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_macros::extension;
pub use rustc_macros::{TypeFoldable, TypeVisitable};
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
use rustc_middle::infer::unify_key::{
ConstVariableOrigin, ConstVariableValue, ConstVidKey, EffectVarValue, EffectVidKey,
};
use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::traits::select;
use rustc_middle::traits::solve::{Goal, NoSolution};
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::{
BoundVarReplacerDelegate, TypeFoldable, TypeFolder, TypeSuperFoldable,
};
use rustc_middle::ty::visit::TypeVisitableExt;
pub use rustc_middle::ty::IntVarValue;
use rustc_middle::ty::{
self, ConstVid, EffectVid, FloatVid, GenericArg, GenericArgKind, GenericArgs, GenericArgsRef,
GenericParamDefKind, InferConst, IntVid, Ty, TyCtxt, TyVid,
};
use rustc_middle::{bug, span_bug};
use rustc_span::symbol::Symbol;
use rustc_span::Span;
use snapshot::undo_log::InferCtxtUndoLogs;
use tracing::{debug, instrument};
use type_variable::TypeVariableOrigin;
pub use BoundRegionConversionTime::*;
pub use RegionVariableOrigin::*;
pub use SubregionOrigin::*;
use crate::infer::relate::RelateResult;
use crate::traits::{self, ObligationCause, ObligationInspector, PredicateObligation, TraitEngine};
pub mod at;
pub mod canonical;
mod context;
pub mod free_regions;
mod freshen;
mod lexical_region_resolve;
pub mod opaque_types;
pub mod outlives;
mod projection;
pub mod region_constraints;
pub mod relate;
pub mod resolve;
pub(crate) mod snapshot;
pub mod type_variable;
#[must_use]
#[derive(Debug)]
pub struct InferOk<'tcx, T> {
pub value: T,
pub obligations: Vec<PredicateObligation<'tcx>>,
}
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
pub type FixupResult<T> = Result<T, FixupError>; // "fixup result"
pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
>;
/// This type contains all the things within `InferCtxt` that sit within a
/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
/// operations are hot enough that we want only one call to `borrow_mut` per
/// call to `start_snapshot` and `rollback_to`.
#[derive(Clone)]
pub struct InferCtxtInner<'tcx> {
undo_log: InferCtxtUndoLogs<'tcx>,
/// Cache for projections.
///
/// This cache is snapshotted along with the infcx.
projection_cache: traits::ProjectionCacheStorage<'tcx>,
/// We instantiate `UnificationTable` with `bounds<Ty>` because the types
/// that might instantiate a general type variable have an order,
/// represented by its upper and lower bounds.
type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
/// Map from const parameter variable to the kind of const it represents.
const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>,
/// Map from integral variable to the kind of integer it represents.
int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
/// Map from floating variable to the kind of float it represents.
float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
/// Map from effect variable to the effect param it represents.
effect_unification_storage: ut::UnificationTableStorage<EffectVidKey<'tcx>>,
/// Tracks the set of region variables and the constraints between them.
///
/// This is initially `Some(_)` but when
/// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
/// -- further attempts to perform unification, etc., may fail if new
/// region constraints would've been added.
region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
/// A set of constraints that regionck must validate.
///
/// Each constraint has the form `T:'a`, meaning "some type `T` must
/// outlive the lifetime 'a". These constraints derive from
/// instantiated type parameters. So if you had a struct defined
/// like the following:
/// ```ignore (illustrative)
/// struct Foo<T: 'static> { ... }
/// ```
/// In some expression `let x = Foo { ... }`, it will
/// instantiate the type parameter `T` with a fresh type `$0`. At
/// the same time, it will record a region obligation of
/// `$0: 'static`. This will get checked later by regionck. (We
/// can't generally check these things right away because we have
/// to wait until types are resolved.)
///
/// These are stored in a map keyed to the id of the innermost
/// enclosing fn body / static initializer expression. This is
/// because the location where the obligation was incurred can be
/// relevant with respect to which sublifetime assumptions are in
/// place. The reason that we store under the fn-id, and not
/// something more fine-grained, is so that it is easier for
/// regionck to be sure that it has found *all* the region
/// obligations (otherwise, it's easy to fail to walk to a
/// particular node-id).
///
/// Before running `resolve_regions_and_report_errors`, the creator
/// of the inference context is expected to invoke
/// [`InferCtxt::process_registered_region_obligations`]
/// for each body-id in this map, which will process the
/// obligations within. This is expected to be done 'late enough'
/// that all type inference variables have been bound and so forth.
region_obligations: Vec<RegionObligation<'tcx>>,
/// Caches for opaque type inference.
opaque_type_storage: OpaqueTypeStorage<'tcx>,
}
impl<'tcx> InferCtxtInner<'tcx> {
fn new() -> InferCtxtInner<'tcx> {
InferCtxtInner {
undo_log: InferCtxtUndoLogs::default(),
projection_cache: Default::default(),
type_variable_storage: type_variable::TypeVariableStorage::new(),
const_unification_storage: ut::UnificationTableStorage::new(),
int_unification_storage: ut::UnificationTableStorage::new(),
float_unification_storage: ut::UnificationTableStorage::new(),
effect_unification_storage: ut::UnificationTableStorage::new(),
region_constraint_storage: Some(RegionConstraintStorage::new()),
region_obligations: vec![],
opaque_type_storage: Default::default(),
}
}
#[inline]
pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
&self.region_obligations
}
#[inline]
pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
self.projection_cache.with_log(&mut self.undo_log)
}
#[inline]
fn try_type_variables_probe_ref(
&self,
vid: ty::TyVid,
) -> Option<&type_variable::TypeVariableValue<'tcx>> {
// Uses a read-only view of the unification table, this way we don't
// need an undo log.
self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
}
#[inline]
fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
self.type_variable_storage.with_log(&mut self.undo_log)
}
#[inline]
pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
self.opaque_type_storage.with_log(&mut self.undo_log)
}
#[inline]
fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
self.int_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
self.float_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> {
self.const_unification_storage.with_log(&mut self.undo_log)
}
fn effect_unification_table(&mut self) -> UnificationTable<'_, 'tcx, EffectVidKey<'tcx>> {
self.effect_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
self.region_constraint_storage
.as_mut()
.expect("region constraints already solved")
.with_log(&mut self.undo_log)
}
// Iterates through the opaque type definitions without taking them; this holds the
// `InferCtxtInner` lock, so make sure to not do anything with `InferCtxt` side-effects
// while looping through this.
pub fn iter_opaque_types(
&self,
) -> impl Iterator<Item = (ty::OpaqueTypeKey<'tcx>, ty::OpaqueHiddenType<'tcx>)> + '_ {
self.opaque_type_storage.opaque_types.iter().map(|(&k, v)| (k, v.hidden_type))
}
}
pub struct InferCtxt<'tcx> {
pub tcx: TyCtxt<'tcx>,
/// The `DefIds` of the opaque types that may have their hidden types constrained.
defining_opaque_types: &'tcx ty::List<LocalDefId>,
/// Whether this inference context should care about region obligations in
/// the root universe. Most notably, this is used during hir typeck as region
/// solving is left to borrowck instead.
pub considering_regions: bool,
/// If set, this flag causes us to skip the 'leak check' during
/// higher-ranked subtyping operations. This flag is a temporary one used
/// to manage the removal of the leak-check: for the time being, we still run the
/// leak-check, but we issue warnings.
skip_leak_check: bool,
pub inner: RefCell<InferCtxtInner<'tcx>>,
/// Once region inference is done, the values for each variable.
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
/// Caches the results of trait selection. This cache is used
/// for things that have to do with the parameters in scope.
pub selection_cache: select::SelectionCache<'tcx>,
/// Caches the results of trait evaluation.
pub evaluation_cache: select::EvaluationCache<'tcx>,
/// The set of predicates on which errors have been reported, to
/// avoid reporting the same error twice.
pub reported_trait_errors:
RefCell<FxIndexMap<Span, (Vec<ty::Predicate<'tcx>>, ErrorGuaranteed)>>,
pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
/// When an error occurs, we want to avoid reporting "derived"
/// errors that are due to this original failure. Normally, we
/// handle this with the `err_count_on_creation` count, which
/// basically just tracks how many errors were reported when we
/// started type-checking a fn and checks to see if any new errors
/// have been reported since then. Not great, but it works.
///
/// However, when errors originated in other passes -- notably
/// resolve -- this heuristic breaks down. Therefore, we have this
/// auxiliary flag that one can set whenever one creates a
/// type-error that is due to an error in a prior pass.
///
/// Don't read this flag directly, call `is_tainted_by_errors()`
/// and `set_tainted_by_errors()`.
tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
/// Track how many errors were reported when this infcx is created.
/// If the number of errors increases, that's also a sign (like
/// `tainted_by_errors`) to avoid reporting certain kinds of errors.
// FIXME(matthewjasper) Merge into `tainted_by_errors`
err_count_on_creation: usize,
/// What is the innermost universe we have created? Starts out as
/// `UniverseIndex::root()` but grows from there as we enter
/// universal quantifiers.
///
/// N.B., at present, we exclude the universal quantifiers on the
/// item we are type-checking, and just consider those names as
/// part of the root universe. So this would only get incremented
/// when we enter into a higher-ranked (`for<..>`) type or trait
/// bound.
universe: Cell<ty::UniverseIndex>,
/// During coherence we have to assume that other crates may add
/// additional impls which we currently don't know about.
///
/// To deal with this evaluation, we should be conservative
/// and consider the possibility of impls from outside this crate.
/// This comes up primarily when resolving ambiguity. Imagine
/// there is some trait reference `$0: Bar` where `$0` is an
/// inference variable. If `intercrate` is true, then we can never
/// say for sure that this reference is not implemented, even if
/// there are *no impls at all for `Bar`*, because `$0` could be
/// bound to some type that in a downstream crate that implements
/// `Bar`.
///
/// Outside of coherence, we set this to false because we are only
/// interested in types that the user could actually have written.
/// In other words, we consider `$0: Bar` to be unimplemented if
/// there is no type that the user could *actually name* that
/// would satisfy it. This avoids crippling inference, basically.
pub intercrate: bool,
next_trait_solver: bool,
pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>,
}
/// See the `error_reporting` module for more details.
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
pub enum ValuePairs<'tcx> {
Regions(ExpectedFound<ty::Region<'tcx>>),
Terms(ExpectedFound<ty::Term<'tcx>>),
Aliases(ExpectedFound<ty::AliasTerm<'tcx>>),
TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>),
ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>),
ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>),
Dummy,
}
impl<'tcx> ValuePairs<'tcx> {
pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
&& let Some(expected) = expected.as_type()
&& let Some(found) = found.as_type()
{
Some((expected, found))
} else {
None
}
}
}
/// The trace designates the path through inference that we took to
/// encounter an error or subtyping constraint.
///
/// See the `error_reporting` module for more details.
#[derive(Clone, Debug)]
pub struct TypeTrace<'tcx> {
pub cause: ObligationCause<'tcx>,
pub values: ValuePairs<'tcx>,
}
/// The origin of a `r1 <= r2` constraint.
///
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum SubregionOrigin<'tcx> {
/// Arose from a subtyping relation
Subtype(Box<TypeTrace<'tcx>>),
/// When casting `&'a T` to an `&'b Trait` object,
/// relating `'a` to `'b`.
RelateObjectBound(Span),
/// Some type parameter was instantiated with the given type,
/// and that type must outlive some region.
RelateParamBound(Span, Ty<'tcx>, Option<Span>),
/// The given region parameter was instantiated with a region
/// that must outlive some other region.
RelateRegionParamBound(Span, Option<Ty<'tcx>>),
/// Creating a pointer `b` to contents of another reference.
Reborrow(Span),
/// (&'a &'b T) where a >= b
ReferenceOutlivesReferent(Ty<'tcx>, Span),
/// Comparing the signature and requirements of an impl method against
/// the containing trait.
CompareImplItemObligation {
span: Span,
impl_item_def_id: LocalDefId,
trait_item_def_id: DefId,
},
/// Checking that the bounds of a trait's associated type hold for a given impl.
CheckAssociatedTypeBounds {
parent: Box<SubregionOrigin<'tcx>>,
impl_item_def_id: LocalDefId,
trait_item_def_id: DefId,
},
AscribeUserTypeProvePredicate(Span),
}
// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(SubregionOrigin<'_>, 32);
impl<'tcx> SubregionOrigin<'tcx> {
pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
match self {
Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
_ => ConstraintCategory::BoringNoLocation,
}
}
}
/// Times when we replace bound regions with existentials:
#[derive(Clone, Copy, Debug)]
pub enum BoundRegionConversionTime {
/// when a fn is called
FnCall,
/// when two higher-ranked types are compared
HigherRankedType,
/// when projecting an associated type
AssocTypeProjection(DefId),
}
/// Reasons to create a region inference variable.
///
/// See `error_reporting` module for more details.
#[derive(Copy, Clone, Debug)]
pub enum RegionVariableOrigin {
/// Region variables created for ill-categorized reasons.
///
/// They mostly indicate places in need of refactoring.
MiscVariable(Span),
/// Regions created by a `&P` or `[...]` pattern.
PatternRegion(Span),
/// Regions created by `&` operator.
BorrowRegion(Span),
/// Regions created as part of an autoref of a method receiver.
Autoref(Span),
/// Regions created as part of an automatic coercion.
Coercion(Span),
/// Region variables created as the values for early-bound regions.
///
/// FIXME(@lcnr): This should also store a `DefId`, similar to
/// `TypeVariableOrigin`.
RegionParameterDefinition(Span, Symbol),
/// Region variables created when instantiating a binder with
/// existential variables, e.g. when calling a function or method.
BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime),
UpvarRegion(ty::UpvarId, Span),
/// This origin is used for the inference variables that we create
/// during NLL region processing.
Nll(NllRegionVariableOrigin),
}
#[derive(Copy, Clone, Debug)]
pub enum NllRegionVariableOrigin {
/// During NLL region processing, we create variables for free
/// regions that we encounter in the function signature and
/// elsewhere. This origin indices we've got one of those.
FreeRegion,
/// "Universal" instantiation of a higher-ranked region (e.g.,
/// from a `for<'a> T` binder). Meant to represent "any region".
Placeholder(ty::PlaceholderRegion),
Existential {
/// If this is true, then this variable was created to represent a lifetime
/// bound in a `for` binder. For example, it might have been created to
/// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
/// Such variables are created when we are trying to figure out if there
/// is any valid instantiation of `'a` that could fit into some scenario.
///
/// This is used to inform error reporting: in the case that we are trying to
/// determine whether there is any valid instantiation of a `'a` variable that meets
/// some constraint C, we want to blame the "source" of that `for` type,
/// rather than blaming the source of the constraint C.
from_forall: bool,
},
}
// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
#[derive(Copy, Clone, Debug)]
pub enum FixupError {
UnresolvedIntTy(IntVid),
UnresolvedFloatTy(FloatVid),
UnresolvedTy(TyVid),
UnresolvedConst(ConstVid),
UnresolvedEffect(EffectVid),
}
/// See the `region_obligations` field for more information.
#[derive(Clone, Debug)]
pub struct RegionObligation<'tcx> {
pub sub_region: ty::Region<'tcx>,
pub sup_type: Ty<'tcx>,
pub origin: SubregionOrigin<'tcx>,
}
impl fmt::Display for FixupError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::FixupError::*;
match *self {
UnresolvedIntTy(_) => write!(
f,
"cannot determine the type of this integer; \
add a suffix to specify the type explicitly"
),
UnresolvedFloatTy(_) => write!(
f,
"cannot determine the type of this number; \
add a suffix to specify the type explicitly"
),
UnresolvedTy(_) => write!(f, "unconstrained type"),
UnresolvedConst(_) => write!(f, "unconstrained const value"),
UnresolvedEffect(_) => write!(f, "unconstrained effect value"),
}
}
}
/// Used to configure inference contexts before their creation.
pub struct InferCtxtBuilder<'tcx> {
tcx: TyCtxt<'tcx>,
defining_opaque_types: &'tcx ty::List<LocalDefId>,
considering_regions: bool,
skip_leak_check: bool,
/// Whether we are in coherence mode.
intercrate: bool,
/// Whether we should use the new trait solver in the local inference context,
/// which affects things like which solver is used in `predicate_may_hold`.
next_trait_solver: bool,
}
#[extension(pub trait TyCtxtInferExt<'tcx>)]
impl<'tcx> TyCtxt<'tcx> {
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
InferCtxtBuilder {
tcx: self,
defining_opaque_types: ty::List::empty(),
considering_regions: true,
skip_leak_check: false,
intercrate: false,
next_trait_solver: self.next_trait_solver_globally(),
}
}
}
impl<'tcx> InferCtxtBuilder<'tcx> {
/// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
/// you need to call this function. Otherwise the opaque type will be treated opaquely.
///
/// It is only meant to be called in two places, for typeck
/// (via `Inherited::build`) and for the inference context used
/// in mir borrowck.
pub fn with_opaque_type_inference(mut self, defining_anchor: LocalDefId) -> Self {
self.defining_opaque_types = self.tcx.opaque_types_defined_by(defining_anchor);
self
}
pub fn with_defining_opaque_types(
mut self,
defining_opaque_types: &'tcx ty::List<LocalDefId>,
) -> Self {
self.defining_opaque_types = defining_opaque_types;
self
}
pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self {
self.next_trait_solver = next_trait_solver;
self
}
pub fn intercrate(mut self, intercrate: bool) -> Self {
self.intercrate = intercrate;
self
}
pub fn ignoring_regions(mut self) -> Self {
self.considering_regions = false;
self
}
pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self {
self.skip_leak_check = skip_leak_check;
self
}
/// Given a canonical value `C` as a starting point, create an
/// inference context that contains each of the bound values
/// within instantiated as a fresh variable. The `f` closure is
/// invoked with the new infcx, along with the instantiated value
/// `V` and a instantiation `S`. This instantiation `S` maps from
/// the bound values in `C` to their instantiated values in `V`
/// (in other words, `S(C) = V`).
pub fn build_with_canonical<T>(
self,
span: Span,
canonical: &Canonical<'tcx, T>,
) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
let infcx = self.with_defining_opaque_types(canonical.defining_opaque_types).build();
let (value, args) = infcx.instantiate_canonical(span, canonical);
(infcx, value, args)
}
pub fn build(&mut self) -> InferCtxt<'tcx> {
let InferCtxtBuilder {
tcx,
defining_opaque_types,
considering_regions,
skip_leak_check,
intercrate,
next_trait_solver,
} = *self;
InferCtxt {
tcx,
defining_opaque_types,
considering_regions,
skip_leak_check,
inner: RefCell::new(InferCtxtInner::new()),
lexical_region_resolutions: RefCell::new(None),
selection_cache: Default::default(),
evaluation_cache: Default::default(),
reported_trait_errors: Default::default(),
reported_signature_mismatch: Default::default(),
tainted_by_errors: Cell::new(None),
err_count_on_creation: tcx.dcx().err_count_excluding_lint_errs(),
universe: Cell::new(ty::UniverseIndex::ROOT),
intercrate,
next_trait_solver,
obligation_inspector: Cell::new(None),
}
}
}
impl<'tcx, T> InferOk<'tcx, T> {
/// Extracts `value`, registering any obligations into `fulfill_cx`.
pub fn into_value_registering_obligations<E: 'tcx>(
self,
infcx: &InferCtxt<'tcx>,
fulfill_cx: &mut dyn TraitEngine<'tcx, E>,
) -> T {
let InferOk { value, obligations } = self;
fulfill_cx.register_predicate_obligations(infcx, obligations);
value
}
}
impl<'tcx> InferOk<'tcx, ()> {
pub fn into_obligations(self) -> Vec<PredicateObligation<'tcx>> {
self.obligations
}
}
impl<'tcx> InferCtxt<'tcx> {
pub fn dcx(&self) -> DiagCtxtHandle<'_> {
self.tcx.dcx().taintable_handle(&self.tainted_by_errors)
}
pub fn defining_opaque_types(&self) -> &'tcx ty::List<LocalDefId> {
self.defining_opaque_types
}
pub fn next_trait_solver(&self) -> bool {
self.next_trait_solver
}
pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
t.fold_with(&mut self.freshener())
}
/// Returns the origin of the type variable identified by `vid`.
///
/// No attempt is made to resolve `vid` to its root variable.
pub fn type_var_origin(&self, vid: TyVid) -> TypeVariableOrigin {
self.inner.borrow_mut().type_variables().var_origin(vid)
}
/// Returns the origin of the const variable identified by `vid`
// FIXME: We should store origins separately from the unification table
// so this doesn't need to be optional.
pub fn const_var_origin(&self, vid: ConstVid) -> Option<ConstVariableOrigin> {
match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
ConstVariableValue::Known { .. } => None,
ConstVariableValue::Unknown { origin, .. } => Some(origin),
}
}
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
freshen::TypeFreshener::new(self)
}
pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> {
let mut inner = self.inner.borrow_mut();
let mut vars: Vec<Ty<'_>> = inner
.type_variables()
.unresolved_variables()
.into_iter()
.map(|t| Ty::new_var(self.tcx, t))
.collect();
vars.extend(
(0..inner.int_unification_table().len())
.map(|i| ty::IntVid::from_usize(i))
.filter(|&vid| inner.int_unification_table().probe_value(vid).is_unknown())
.map(|v| Ty::new_int_var(self.tcx, v)),
);
vars.extend(
(0..inner.float_unification_table().len())
.map(|i| ty::FloatVid::from_usize(i))
.filter(|&vid| inner.float_unification_table().probe_value(vid).is_unknown())
.map(|v| Ty::new_float_var(self.tcx, v)),
);
vars
}
pub fn unsolved_effects(&self) -> Vec<ty::Const<'tcx>> {
let mut inner = self.inner.borrow_mut();
let mut table = inner.effect_unification_table();
(0..table.len())
.map(|i| ty::EffectVid::from_usize(i))
.filter(|&vid| table.probe_value(vid).is_unknown())
.map(|v| ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(v)))
.collect()
}
#[instrument(skip(self), level = "debug")]
pub fn sub_regions(
&self,
origin: SubregionOrigin<'tcx>,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) {
self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
}
/// Require that the region `r` be equal to one of the regions in
/// the set `regions`.
#[instrument(skip(self), level = "debug")]
pub fn member_constraint(
&self,
key: ty::OpaqueTypeKey<'tcx>,
definition_span: Span,
hidden_ty: Ty<'tcx>,
region: ty::Region<'tcx>,
in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
) {
self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
key,
definition_span,
hidden_ty,
region,
in_regions,
);
}
/// Processes a `Coerce` predicate from the fulfillment context.
/// This is NOT the preferred way to handle coercion, which is to
/// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
///
/// This method here is actually a fallback that winds up being
/// invoked when `FnCtxt::coerce` encounters unresolved type variables
/// and records a coercion predicate. Presently, this method is equivalent
/// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
/// actually requiring `a <: b`. This is of course a valid coercion,
/// but it's not as flexible as `FnCtxt::coerce` would be.
///
/// (We may refactor this in the future, but there are a number of
/// practical obstacles. Among other things, `FnCtxt::coerce` presently
/// records adjustments that are required on the HIR in order to perform
/// the coercion, and we don't currently have a way to manage that.)
pub fn coerce_predicate(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: ty::PolyCoercePredicate<'tcx>,
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
a: p.a,
b: p.b,
});
self.subtype_predicate(cause, param_env, subtype_predicate)
}
pub fn subtype_predicate(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: ty::PolySubtypePredicate<'tcx>,
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
// Check for two unresolved inference variables, in which case we can
// make no progress. This is partly a micro-optimization, but it's
// also an opportunity to "sub-unify" the variables. This isn't
// *necessary* to prevent cycles, because they would eventually be sub-unified
// anyhow during generalization, but it helps with diagnostics (we can detect
// earlier that they are sub-unified).
//
// Note that we can just skip the binders here because
// type variables can't (at present, at
// least) capture any of the things bound by this binder.
//
// Note that this sub here is not just for diagnostics - it has semantic
// effects as well.
let r_a = self.shallow_resolve(predicate.skip_binder().a);
let r_b = self.shallow_resolve(predicate.skip_binder().b);
match (r_a.kind(), r_b.kind()) {
(&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
return Err((a_vid, b_vid));
}
_ => {}
}
self.enter_forall(predicate, |ty::SubtypePredicate { a_is_expected, a, b }| {
if a_is_expected {
Ok(self.at(cause, param_env).sub(DefineOpaqueTypes::Yes, a, b))
} else {
Ok(self.at(cause, param_env).sup(DefineOpaqueTypes::Yes, b, a))
}
})
}
pub fn region_outlives_predicate(
&self,
cause: &traits::ObligationCause<'tcx>,
predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
) {
self.enter_forall(predicate, |ty::OutlivesPredicate(r_a, r_b)| {
let origin = SubregionOrigin::from_obligation_cause(cause, || {
RelateRegionParamBound(cause.span, None)
});
self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
})
}
/// Number of type variables created so far.
pub fn num_ty_vars(&self) -> usize {
self.inner.borrow_mut().type_variables().num_vars()
}
pub fn next_ty_var(&self, span: Span) -> Ty<'tcx> {
self.next_ty_var_with_origin(TypeVariableOrigin { span, param_def_id: None })
}
pub fn next_ty_var_with_origin(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
let vid = self.inner.borrow_mut().type_variables().new_var(self.universe(), origin);
Ty::new_var(self.tcx, vid)
}
pub fn next_ty_var_id_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> TyVid {
let origin = TypeVariableOrigin { span, param_def_id: None };
self.inner.borrow_mut().type_variables().new_var(universe, origin)
}
pub fn next_ty_var_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> Ty<'tcx> {
let vid = self.next_ty_var_id_in_universe(span, universe);
Ty::new_var(self.tcx, vid)
}
pub fn next_const_var(&self, span: Span) -> ty::Const<'tcx> {
self.next_const_var_with_origin(ConstVariableOrigin { span, param_def_id: None })
}
pub fn next_const_var_with_origin(&self, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
let vid = self
.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
.vid;
ty::Const::new_var(self.tcx, vid)
}
pub fn next_const_var_in_universe(
&self,
span: Span,
universe: ty::UniverseIndex,
) -> ty::Const<'tcx> {
let origin = ConstVariableOrigin { span, param_def_id: None };
let vid = self
.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVariableValue::Unknown { origin, universe })
.vid;
ty::Const::new_var(self.tcx, vid)
}
pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid {
self.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
.vid
}
fn next_int_var_id(&self) -> IntVid {
self.inner.borrow_mut().int_unification_table().new_key(ty::IntVarValue::Unknown)
}
pub fn next_int_var(&self) -> Ty<'tcx> {
Ty::new_int_var(self.tcx, self.next_int_var_id())
}
fn next_float_var_id(&self) -> FloatVid {
self.inner.borrow_mut().float_unification_table().new_key(ty::FloatVarValue::Unknown)
}
pub fn next_float_var(&self) -> Ty<'tcx> {
Ty::new_float_var(self.tcx, self.next_float_var_id())
}
/// Creates a fresh region variable with the next available index.
/// The variable will be created in the maximum universe created
/// thus far, allowing it to name any region created thus far.
pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var_in_universe(origin, self.universe())
}
/// Creates a fresh region variable with the next available index
/// in the given universe; typically, you can use
/// `next_region_var` and just use the maximal universe.
pub fn next_region_var_in_universe(
&self,
origin: RegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
let region_var =
self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
ty::Region::new_var(self.tcx, region_var)
}
/// Return the universe that the region `r` was created in. For
/// most regions (e.g., `'static`, named regions from the user,
/// etc) this is the root universe U0. For inference variables or
/// placeholders, however, it will return the universe which they
/// are associated.
pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
self.inner.borrow_mut().unwrap_region_constraints().universe(r)
}
/// Number of region variables created so far.
pub fn num_region_vars(&self) -> usize {
self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
#[instrument(skip(self), level = "debug")]
pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var(RegionVariableOrigin::Nll(origin))
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
#[instrument(skip(self), level = "debug")]
pub fn next_nll_region_var_in_universe(
&self,
origin: NllRegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
}
pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
match param.kind {
GenericParamDefKind::Lifetime => {
// Create a region inference variable for the given
// region parameter definition.
self.next_region_var(RegionParameterDefinition(span, param.name)).into()
}
GenericParamDefKind::Type { .. } => {
// Create a type inference variable for the given
// type parameter definition. The generic parameters are
// for actual parameters that may be referred to by
// the default of this type parameter, if it exists.
// e.g., `struct Foo<A, B, C = (A, B)>(...);` when
// used in a path such as `Foo::<T, U>::new()` will
// use an inference variable for `C` with `[T, U]`
// as the generic parameters for the default, `(T, U)`.
let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
self.universe(),
TypeVariableOrigin { param_def_id: Some(param.def_id), span },
);
Ty::new_var(self.tcx, ty_var_id).into()
}
GenericParamDefKind::Const { is_host_effect, .. } => {
if is_host_effect {
return self.var_for_effect(param);
}
let origin = ConstVariableOrigin { param_def_id: Some(param.def_id), span };
let const_var_id = self
.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
.vid;
ty::Const::new_var(self.tcx, const_var_id).into()
}
}
}
pub fn var_for_effect(&self, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
let effect_vid =
self.inner.borrow_mut().effect_unification_table().new_key(EffectVarValue::Unknown).vid;
let ty = self
.tcx
.type_of(param.def_id)
.no_bound_vars()
.expect("const parameter types cannot be generic");
debug_assert_eq!(self.tcx.types.bool, ty);
ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(effect_vid)).into()
}
/// Given a set of generics defined on a type or impl, returns the generic parameters mapping each
/// type/region parameter to a fresh inference variable.
pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> {
GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
}
/// Returns `true` if errors have been reported since this infcx was
/// created. This is sometimes used as a heuristic to skip
/// reporting errors that often occur as a result of earlier
/// errors, but where it's hard to be 100% sure (e.g., unresolved
/// inference variables, regionck errors).
#[must_use = "this method does not have any side effects"]
pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
self.tainted_by_errors.get()
}
/// Set the "tainted by errors" flag to true. We call this when we
/// observe an error from a prior pass.
pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
debug!("set_tainted_by_errors(ErrorGuaranteed)");
self.tainted_by_errors.set(Some(e));
}
pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
let mut inner = self.inner.borrow_mut();
let inner = &mut *inner;
inner.unwrap_region_constraints().var_origin(vid)
}
/// Clone the list of variable regions. This is used only during NLL processing
/// to put the set of region variables into the NLL region context.
pub fn get_region_var_origins(&self) -> VarInfos {
let mut inner = self.inner.borrow_mut();
let (var_infos, data) = inner
.region_constraint_storage
// We clone instead of taking because borrowck still wants to use
// the inference context after calling this for diagnostics
// and the new trait solver.
.clone()
.expect("regions already resolved")
.with_log(&mut inner.undo_log)
.into_infos_and_data();
assert!(data.is_empty());
var_infos
}
#[instrument(level = "debug", skip(self), ret)]
pub fn take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
std::mem::take(&mut self.inner.borrow_mut().opaque_type_storage.opaque_types)
}
#[instrument(level = "debug", skip(self), ret)]
pub fn clone_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
self.inner.borrow().opaque_type_storage.opaque_types.clone()
}
#[inline(always)]
pub fn can_define_opaque_ty(&self, id: impl Into<DefId>) -> bool {
let Some(id) = id.into().as_local() else { return false };
self.defining_opaque_types.contains(&id)
}
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
self.resolve_vars_if_possible(t).to_string()
}
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
/// universe index of `TyVar(vid)`.
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
use self::type_variable::TypeVariableValue;
match self.inner.borrow_mut().type_variables().probe(vid) {
TypeVariableValue::Known { value } => Ok(value),
TypeVariableValue::Unknown { universe } => Err(universe),
}
}
pub fn shallow_resolve(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Infer(v) = *ty.kind() {
match v {
ty::TyVar(v) => {
// Not entirely obvious: if `typ` is a type variable,
// it can be resolved to an int/float variable, which
// can then be recursively resolved, hence the
// recursion. Note though that we prevent type
// variables from unifying to other type variables
// directly (though they may be embedded
// structurally), and we prevent cycles in any case,
// so this recursion should always be of very limited
// depth.
//
// Note: if these two lines are combined into one we get
// dynamic borrow errors on `self.inner`.
let known = self.inner.borrow_mut().type_variables().probe(v).known();
known.map_or(ty, |t| self.shallow_resolve(t))
}
ty::IntVar(v) => {
match self.inner.borrow_mut().int_unification_table().probe_value(v) {
ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty),
ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty),
ty::IntVarValue::Unknown => ty,
}
}
ty::FloatVar(v) => {
match self.inner.borrow_mut().float_unification_table().probe_value(v) {
ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty),
ty::FloatVarValue::Unknown => ty,
}
}
ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => ty,
}
} else {
ty
}
}
pub fn shallow_resolve_const(&self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
match ct.kind() {
ty::ConstKind::Infer(infer_ct) => match infer_ct {
InferConst::Var(vid) => self
.inner
.borrow_mut()
.const_unification_table()
.probe_value(vid)
.known()
.unwrap_or(ct),
InferConst::EffectVar(vid) => self
.inner
.borrow_mut()
.effect_unification_table()
.probe_value(vid)
.known()
.unwrap_or(ct),
InferConst::Fresh(_) => ct,
},
ty::ConstKind::Param(_)
| ty::ConstKind::Bound(_, _)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Unevaluated(_)
| ty::ConstKind::Value(_, _)
| ty::ConstKind::Error(_)
| ty::ConstKind::Expr(_) => ct,
}
}
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
self.inner.borrow_mut().type_variables().root_var(var)
}
pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
self.inner.borrow_mut().const_unification_table().find(var).vid
}
pub fn root_effect_var(&self, var: ty::EffectVid) -> ty::EffectVid {
self.inner.borrow_mut().effect_unification_table().find(var).vid
}
/// Resolves an int var to a rigid int type, if it was constrained to one,
/// or else the root int var in the unification table.
pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
let mut inner = self.inner.borrow_mut();
let value = inner.int_unification_table().probe_value(vid);
match value {
ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty),
ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty),
ty::IntVarValue::Unknown => {
Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid))
}
}
}
/// Resolves a float var to a rigid int type, if it was constrained to one,
/// or else the root float var in the unification table.
pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
let mut inner = self.inner.borrow_mut();
let value = inner.float_unification_table().probe_value(vid);
match value {
ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty),
ty::FloatVarValue::Unknown => {
Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid))
}
}
}
/// Where possible, replaces type/const variables in
/// `value` with their final value. Note that region variables
/// are unaffected. If a type/const variable has not been unified, it
/// is left as is. This is an idempotent operation that does
/// not affect inference state in any way and so you can do it
/// at will.
pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
if let Err(guar) = value.error_reported() {
self.set_tainted_by_errors(guar);
}
if !value.has_non_region_infer() {
return value;
}
let mut r = resolve::OpportunisticVarResolver::new(self);
value.fold_with(&mut r)
}
pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
if !value.has_infer() {
return value; // Avoid duplicated type-folding.
}
let mut r = InferenceLiteralEraser { tcx: self.tcx };
value.fold_with(&mut r)
}
pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
ConstVariableValue::Known { value } => Ok(value),
ConstVariableValue::Unknown { origin: _, universe } => Err(universe),
}
}
pub fn probe_effect_var(&self, vid: EffectVid) -> Option<ty::Const<'tcx>> {
self.inner.borrow_mut().effect_unification_table().probe_value(vid).known()
}
/// Attempts to resolve all type/region/const variables in
/// `value`. Region inference must have been run already (e.g.,
/// by calling `resolve_regions_and_report_errors`). If some
/// variable was never unified, an `Err` results.
///
/// This method is idempotent, but it not typically not invoked
/// except during the writeback phase.
pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> {
match resolve::fully_resolve(self, value) {
Ok(value) => {
if value.has_non_region_infer() {
bug!("`{value:?}` is not fully resolved");
}
if value.has_infer_regions() {
let guar = self.dcx().delayed_bug(format!("`{value:?}` is not fully resolved"));
Ok(self.tcx.fold_regions(value, |re, _| {
if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re }
}))
} else {
Ok(value)
}
}
Err(e) => Err(e),
}
}
// Instantiates the bound variables in a given binder with fresh inference
// variables in the current universe.
//
// Use this method if you'd like to find some generic parameters of the binder's
// variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`]
// that corresponds to your use case, consider whether or not you should
// use [`InferCtxt::enter_forall`] instead.
pub fn instantiate_binder_with_fresh_vars<T>(
&self,
span: Span,
lbrct: BoundRegionConversionTime,
value: ty::Binder<'tcx, T>,
) -> T
where
T: TypeFoldable<TyCtxt<'tcx>> + Copy,
{
if let Some(inner) = value.no_bound_vars() {
return inner;
}
let bound_vars = value.bound_vars();
let mut args = Vec::with_capacity(bound_vars.len());
for bound_var_kind in bound_vars {
let arg: ty::GenericArg<'_> = match bound_var_kind {
ty::BoundVariableKind::Ty(_) => self.next_ty_var(span).into(),
ty::BoundVariableKind::Region(br) => {
self.next_region_var(BoundRegion(span, br, lbrct)).into()
}
ty::BoundVariableKind::Const => self.next_const_var(span).into(),
};
args.push(arg);
}
struct ToFreshVars<'tcx> {
args: Vec<ty::GenericArg<'tcx>>,
}
impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'tcx> {
fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
self.args[br.var.index()].expect_region()
}
fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
self.args[bt.var.index()].expect_ty()
}
fn replace_const(&mut self, bv: ty::BoundVar) -> ty::Const<'tcx> {
self.args[bv.index()].expect_const()
}
}
let delegate = ToFreshVars { args };
self.tcx.replace_bound_vars_uncached(value, delegate)
}
/// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
pub fn verify_generic_bound(
&self,
origin: SubregionOrigin<'tcx>,
kind: GenericKind<'tcx>,
a: ty::Region<'tcx>,
bound: VerifyBound<'tcx>,
) {
debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
self.inner
.borrow_mut()
.unwrap_region_constraints()
.verify_generic_bound(origin, kind, a, bound);
}
/// Obtains the latest type of the given closure; this may be a
/// closure in the current function, in which case its
/// `ClosureKind` may not yet be known.
pub fn closure_kind(&self, closure_ty: Ty<'tcx>) -> Option<ty::ClosureKind> {
let unresolved_kind_ty = match *closure_ty.kind() {
ty::Closure(_, args) => args.as_closure().kind_ty(),
ty::CoroutineClosure(_, args) => args.as_coroutine_closure().kind_ty(),
_ => bug!("unexpected type {closure_ty}"),
};
let closure_kind_ty = self.shallow_resolve(unresolved_kind_ty);
closure_kind_ty.to_opt_closure_kind()
}
pub fn universe(&self) -> ty::UniverseIndex {
self.universe.get()
}
/// Creates and return a fresh universe that extends all previous
/// universes. Updates `self.universe` to that new universe.
pub fn create_next_universe(&self) -> ty::UniverseIndex {
let u = self.universe.get().next_universe();
debug!("create_next_universe {u:?}");
self.universe.set(u);
u
}
pub fn try_const_eval_resolve(
&self,
param_env: ty::ParamEnv<'tcx>,
unevaluated: ty::UnevaluatedConst<'tcx>,
span: Span,
) -> Result<ty::Const<'tcx>, ErrorHandled> {
match self.const_eval_resolve(param_env, unevaluated, span) {
Ok(Ok(val)) => Ok(ty::Const::new_value(
self.tcx,
val,
self.tcx.type_of(unevaluated.def).instantiate(self.tcx, unevaluated.args),
)),
Ok(Err(bad_ty)) => {
let tcx = self.tcx;
let def_id = unevaluated.def;
span_bug!(
tcx.def_span(def_id),
"unable to construct a valtree for the unevaluated constant {:?}: type {bad_ty} is not valtree-compatible",
unevaluated
);
}
Err(err) => Err(err),
}
}
/// Resolves and evaluates a constant.
///
/// The constant can be located on a trait like `<A as B>::C`, in which case the given
/// generic parameters and environment are used to resolve the constant. Alternatively if the
/// constant has generic parameters in scope the instantiations are used to evaluate the value of
/// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
/// constant `bar::<T>()` requires a instantiation for `T`, if the instantiation for `T` is still
/// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
/// returned.
///
/// This handles inferences variables within both `param_env` and `args` by
/// performing the operation on their respective canonical forms.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_resolve(
&self,
mut param_env: ty::ParamEnv<'tcx>,
unevaluated: ty::UnevaluatedConst<'tcx>,
span: Span,
) -> EvalToValTreeResult<'tcx> {
let mut args = self.resolve_vars_if_possible(unevaluated.args);
debug!(?args);
// Postpone the evaluation of constants whose args depend on inference
// variables
let tcx = self.tcx;
if args.has_non_region_infer() {
if let Some(ct) = tcx.thir_abstract_const(unevaluated.def)? {
let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, args));
if let Err(e) = ct.error_reported() {
return Err(ErrorHandled::Reported(e.into(), span));
} else if ct.has_non_region_infer() || ct.has_non_region_param() {
return Err(ErrorHandled::TooGeneric(span));
} else {
args = replace_param_and_infer_args_with_placeholder(tcx, args);
}
} else {
args = GenericArgs::identity_for_item(tcx, unevaluated.def);
param_env = tcx.param_env(unevaluated.def);
}
}
let param_env_erased = tcx.erase_regions(param_env);
let args_erased = tcx.erase_regions(args);
debug!(?param_env_erased);
debug!(?args_erased);
let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, args: args_erased };
// The return value is the evaluated value which doesn't contain any reference to inference
// variables, thus we don't need to instantiate back the original values.
tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
}
/// The returned function is used in a fast path. If it returns `true` the variable is
/// unchanged, `false` indicates that the status is unknown.
#[inline]
pub fn is_ty_infer_var_definitely_unchanged<'a>(
&'a self,
) -> (impl Fn(TyOrConstInferVar) -> bool + Captures<'tcx> + 'a) {
// This hoists the borrow/release out of the loop body.
let inner = self.inner.try_borrow();
move |infer_var: TyOrConstInferVar| match (infer_var, &inner) {
(TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
use self::type_variable::TypeVariableValue;
matches!(
inner.try_type_variables_probe_ref(ty_var),
Some(TypeVariableValue::Unknown { .. })
)
}
_ => false,
}
}
/// `ty_or_const_infer_var_changed` is equivalent to one of these two:
/// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
/// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
///
/// However, `ty_or_const_infer_var_changed` is more efficient. It's always
/// inlined, despite being large, because it has only two call sites that
/// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
/// inference variables), and it handles both `Ty` and `ty::Const` without
/// having to resort to storing full `GenericArg`s in `stalled_on`.
#[inline(always)]
pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool {
match infer_var {
TyOrConstInferVar::Ty(v) => {
use self::type_variable::TypeVariableValue;
// If `inlined_probe` returns a `Known` value, it never equals
// `ty::Infer(ty::TyVar(v))`.
match self.inner.borrow_mut().type_variables().inlined_probe(v) {
TypeVariableValue::Unknown { .. } => false,
TypeVariableValue::Known { .. } => true,
}
}
TyOrConstInferVar::TyInt(v) => {
// If `inlined_probe_value` returns a value it's always a
// `ty::Int(_)` or `ty::UInt(_)`, which never matches a
// `ty::Infer(_)`.
self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_known()
}
TyOrConstInferVar::TyFloat(v) => {
// If `probe_value` returns a value it's always a
// `ty::Float(_)`, which never matches a `ty::Infer(_)`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
self.inner.borrow_mut().float_unification_table().probe_value(v).is_known()
}
TyOrConstInferVar::Const(v) => {
// If `probe_value` returns a `Known` value, it never equals
// `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
match self.inner.borrow_mut().const_unification_table().probe_value(v) {
ConstVariableValue::Unknown { .. } => false,
ConstVariableValue::Known { .. } => true,
}
}
TyOrConstInferVar::Effect(v) => {
// If `probe_value` returns `Some`, it never equals
// `ty::ConstKind::Infer(ty::InferConst::Effect(v))`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
self.probe_effect_var(v).is_some()
}
}
}
/// Attach a callback to be invoked on each root obligation evaluated in the new trait solver.
pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) {
debug_assert!(
self.obligation_inspector.get().is_none(),
"shouldn't override a set obligation inspector"
);
self.obligation_inspector.set(Some(inspector));
}
}
/// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
#[derive(Copy, Clone, Debug)]
pub enum TyOrConstInferVar {
/// Equivalent to `ty::Infer(ty::TyVar(_))`.
Ty(TyVid),
/// Equivalent to `ty::Infer(ty::IntVar(_))`.
TyInt(IntVid),
/// Equivalent to `ty::Infer(ty::FloatVar(_))`.
TyFloat(FloatVid),
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
Const(ConstVid),
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::EffectVar(_))`.
Effect(EffectVid),
}
impl<'tcx> TyOrConstInferVar {
/// Tries to extract an inference variable from a type or a constant, returns `None`
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
match arg.unpack() {
GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
GenericArgKind::Lifetime(_) => None,
}
}
/// Tries to extract an inference variable from a type, returns `None`
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
match *ty.kind() {
ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
_ => None,
}
}
/// Tries to extract an inference variable from a constant, returns `None`
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
match ct.kind() {
ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
ty::ConstKind::Infer(InferConst::EffectVar(v)) => Some(TyOrConstInferVar::Effect(v)),
_ => None,
}
}
}
/// Replace `{integer}` with `i32` and `{float}` with `f64`.
/// Used only for diagnostics.
struct InferenceLiteralEraser<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
_ => ty.super_fold_with(self),
}
}
}
impl<'tcx> TypeTrace<'tcx> {
pub fn span(&self) -> Span {
self.cause.span
}
pub fn types(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: ValuePairs::Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
pub fn trait_refs(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: ty::TraitRef<'tcx>,
b: ty::TraitRef<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: ValuePairs::TraitRefs(ExpectedFound::new(a_is_expected, a, b)),
}
}
pub fn consts(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: ValuePairs::Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
fn dummy(cause: &ObligationCause<'tcx>) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: ValuePairs::Dummy }
}
}
impl<'tcx> SubregionOrigin<'tcx> {
pub fn span(&self) -> Span {
match *self {
Subtype(ref a) => a.span(),
RelateObjectBound(a) => a,
RelateParamBound(a, ..) => a,
RelateRegionParamBound(a, _) => a,
Reborrow(a) => a,
ReferenceOutlivesReferent(_, a) => a,
CompareImplItemObligation { span, .. } => span,
AscribeUserTypeProvePredicate(span) => span,
CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
}
}
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
where
F: FnOnce() -> Self,
{
match *cause.code() {
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
}
traits::ObligationCauseCode::CompareImplItem {
impl_item_def_id,
trait_item_def_id,
kind: _,
} => SubregionOrigin::CompareImplItemObligation {
span: cause.span,
impl_item_def_id,
trait_item_def_id,
},
traits::ObligationCauseCode::CheckAssociatedTypeBounds {
impl_item_def_id,
trait_item_def_id,
} => SubregionOrigin::CheckAssociatedTypeBounds {
impl_item_def_id,
trait_item_def_id,
parent: Box::new(default()),
},
traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
SubregionOrigin::AscribeUserTypeProvePredicate(span)
}
traits::ObligationCauseCode::ObjectTypeBound(ty, _reg) => {
SubregionOrigin::RelateRegionParamBound(cause.span, Some(ty))
}
_ => default(),
}
}
}
impl RegionVariableOrigin {
pub fn span(&self) -> Span {
match *self {
MiscVariable(a)
| PatternRegion(a)
| BorrowRegion(a)
| Autoref(a)
| Coercion(a)
| RegionParameterDefinition(a, ..)
| BoundRegion(a, ..)
| UpvarRegion(_, a) => a,
Nll(..) => bug!("NLL variable used with `span`"),
}
}
}
/// Replaces args that reference param or infer variables with suitable
/// placeholders. This function is meant to remove these param and infer
/// args when they're not actually needed to evaluate a constant.
fn replace_param_and_infer_args_with_placeholder<'tcx>(
tcx: TyCtxt<'tcx>,
args: GenericArgsRef<'tcx>,
) -> GenericArgsRef<'tcx> {
struct ReplaceParamAndInferWithPlaceholder<'tcx> {
tcx: TyCtxt<'tcx>,
idx: u32,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Infer(_) = t.kind() {
let idx = {
let idx = self.idx;
self.idx += 1;
idx
};
Ty::new_placeholder(
self.tcx,
ty::PlaceholderType {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundTy {
var: ty::BoundVar::from_u32(idx),
kind: ty::BoundTyKind::Anon,
},
},
)
} else {
t.super_fold_with(self)
}
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
if let ty::ConstKind::Infer(_) = c.kind() {
ty::Const::new_placeholder(
self.tcx,
ty::PlaceholderConst {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundVar::from_u32({
let idx = self.idx;
self.idx += 1;
idx
}),
},
)
} else {
c.super_fold_with(self)
}
}
}
args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 })
}
impl<'tcx> InferCtxt<'tcx> {
/// Given a [`hir::Block`], get the span of its last expression or
/// statement, peeling off any inner blocks.
pub fn find_block_span(&self, block: &'tcx hir::Block<'tcx>) -> Span {
let block = block.innermost_block();
if let Some(expr) = &block.expr {
expr.span
} else if let Some(stmt) = block.stmts.last() {
// possibly incorrect trailing `;` in the else arm
stmt.span
} else {
// empty block; point at its entirety
block.span
}
}
/// Given a [`hir::HirId`] for a block, get the span of its last expression
/// or statement, peeling off any inner blocks.
pub fn find_block_span_from_hir_id(&self, hir_id: hir::HirId) -> Span {
match self.tcx.hir_node(hir_id) {
hir::Node::Block(blk) => self.find_block_span(blk),
// The parser was in a weird state if either of these happen, but
// it's better not to panic.
hir::Node::Expr(e) => e.span,
_ => rustc_span::DUMMY_SP,
}
}
}