rustc_hir_analysis/coherence/
orphan.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
//! Orphan checker: every impl either implements a trait defined in this
//! crate or pertains to a type defined in this crate.

use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::ErrorGuaranteed;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_lint_defs::builtin::UNCOVERED_PARAM_IN_PROJECTION;
use rustc_middle::ty::{
    self, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeSuperVisitable,
    TypeVisitable, TypeVisitableExt, TypeVisitor, TypingMode,
};
use rustc_middle::{bug, span_bug};
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_trait_selection::traits::{
    self, IsFirstInputType, OrphanCheckErr, OrphanCheckMode, UncoveredTyParams,
};
use tracing::{debug, instrument};

use crate::errors;

#[instrument(level = "debug", skip(tcx))]
pub(crate) fn orphan_check_impl(
    tcx: TyCtxt<'_>,
    impl_def_id: LocalDefId,
) -> Result<(), ErrorGuaranteed> {
    let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity();
    trait_ref.error_reported()?;

    match orphan_check(tcx, impl_def_id, OrphanCheckMode::Proper) {
        Ok(()) => {}
        Err(err) => match orphan_check(tcx, impl_def_id, OrphanCheckMode::Compat) {
            Ok(()) => match err {
                OrphanCheckErr::UncoveredTyParams(uncovered_ty_params) => {
                    lint_uncovered_ty_params(tcx, uncovered_ty_params, impl_def_id)
                }
                OrphanCheckErr::NonLocalInputType(_) => {
                    bug!("orphanck: shouldn't've gotten non-local input tys in compat mode")
                }
            },
            Err(err) => return Err(emit_orphan_check_error(tcx, trait_ref, impl_def_id, err)),
        },
    }

    let trait_def_id = trait_ref.def_id;

    // In addition to the above rules, we restrict impls of auto traits
    // so that they can only be implemented on nominal types, such as structs,
    // enums or foreign types. To see why this restriction exists, consider the
    // following example (#22978). Imagine that crate A defines an auto trait
    // `Foo` and a fn that operates on pairs of types:
    //
    // ```
    // // Crate A
    // auto trait Foo { }
    // fn two_foos<A:Foo,B:Foo>(..) {
    //     one_foo::<(A,B)>(..)
    // }
    // fn one_foo<T:Foo>(..) { .. }
    // ```
    //
    // This type-checks fine; in particular the fn
    // `two_foos` is able to conclude that `(A,B):Foo`
    // because `A:Foo` and `B:Foo`.
    //
    // Now imagine that crate B comes along and does the following:
    //
    // ```
    // struct A { }
    // struct B { }
    // impl Foo for A { }
    // impl Foo for B { }
    // impl !Foo for (A, B) { }
    // ```
    //
    // This final impl is legal according to the orphan
    // rules, but it invalidates the reasoning from
    // `two_foos` above.
    debug!(
        "trait_ref={:?} trait_def_id={:?} trait_is_auto={}",
        trait_ref,
        trait_def_id,
        tcx.trait_is_auto(trait_def_id)
    );

    if tcx.trait_is_auto(trait_def_id) {
        let self_ty = trait_ref.self_ty();

        // If the impl is in the same crate as the auto-trait, almost anything
        // goes.
        //
        //     impl MyAuto for Rc<Something> {}  // okay
        //     impl<T> !MyAuto for *const T {}   // okay
        //     impl<T> MyAuto for T {}           // okay
        //
        // But there is one important exception: implementing for a trait object
        // is not allowed.
        //
        //     impl MyAuto for dyn Trait {}      // NOT OKAY
        //     impl<T: ?Sized> MyAuto for T {}   // NOT OKAY
        //
        // With this restriction, it's guaranteed that an auto-trait is
        // implemented for a trait object if and only if the auto-trait is one
        // of the trait object's trait bounds (or a supertrait of a bound). In
        // other words `dyn Trait + AutoTrait` always implements AutoTrait,
        // while `dyn Trait` never implements AutoTrait.
        //
        // This is necessary in order for autotrait bounds on methods of trait
        // objects to be sound.
        //
        //     auto trait AutoTrait {}
        //
        //     trait DynCompatibleTrait {
        //         fn f(&self) where Self: AutoTrait;
        //     }
        //
        // We can allow f to be called on `dyn DynCompatibleTrait + AutoTrait`.
        //
        // If we didn't deny `impl AutoTrait for dyn Trait`, it would be unsound
        // for the `DynCompatibleTrait` shown above to be dyn-compatible because someone
        // could take some type implementing `DynCompatibleTrait` but not `AutoTrait`,
        // unsize it to `dyn DynCompatibleTrait`, and call `.f()` which has no
        // concrete implementation (issue #50781).
        enum LocalImpl {
            Allow,
            Disallow { problematic_kind: &'static str },
        }

        // If the auto-trait is from a dependency, it must only be getting
        // implemented for a nominal type, and specifically one local to the
        // current crate.
        //
        //     impl<T> Sync for MyStruct<T> {}   // okay
        //
        //     impl Sync for Rc<MyStruct> {}     // NOT OKAY
        enum NonlocalImpl {
            Allow,
            DisallowBecauseNonlocal,
            DisallowOther,
        }

        // Exhaustive match considering that this logic is essential for
        // soundness.
        let (local_impl, nonlocal_impl) = match self_ty.kind() {
            // struct Struct<T>;
            // impl AutoTrait for Struct<Foo> {}
            ty::Adt(self_def, _) => (
                LocalImpl::Allow,
                if self_def.did().is_local() {
                    NonlocalImpl::Allow
                } else {
                    NonlocalImpl::DisallowBecauseNonlocal
                },
            ),

            // extern { type OpaqueType; }
            // impl AutoTrait for OpaqueType {}
            ty::Foreign(did) => (
                LocalImpl::Allow,
                if did.is_local() {
                    NonlocalImpl::Allow
                } else {
                    NonlocalImpl::DisallowBecauseNonlocal
                },
            ),

            // impl AutoTrait for dyn Trait {}
            ty::Dynamic(..) => (
                LocalImpl::Disallow { problematic_kind: "trait object" },
                NonlocalImpl::DisallowOther,
            ),

            // impl<T> AutoTrait for T {}
            // impl<T: ?Sized> AutoTrait for T {}
            ty::Param(..) => (
                if self_ty.is_sized(tcx, ty::TypingEnv::non_body_analysis(tcx, impl_def_id)) {
                    LocalImpl::Allow
                } else {
                    LocalImpl::Disallow { problematic_kind: "generic type" }
                },
                NonlocalImpl::DisallowOther,
            ),

            ty::Alias(kind, _) => {
                let problematic_kind = match kind {
                    // trait Id { type This: ?Sized; }
                    // impl<T: ?Sized> Id for T {
                    //     type This = T;
                    // }
                    // impl<T: ?Sized> AutoTrait for <T as Id>::This {}
                    ty::Projection => "associated type",
                    // type Foo = (impl Sized, bool)
                    // impl AutoTrait for Foo {}
                    ty::Weak => "type alias",
                    // type Opaque = impl Trait;
                    // impl AutoTrait for Opaque {}
                    ty::Opaque => "opaque type",
                    // ```
                    // struct S<T>(T);
                    // impl<T: ?Sized> S<T> {
                    //     type This = T;
                    // }
                    // impl<T: ?Sized> AutoTrait for S<T>::This {}
                    // ```
                    // FIXME(inherent_associated_types): The example code above currently leads to a cycle
                    ty::Inherent => "associated type",
                };
                (LocalImpl::Disallow { problematic_kind }, NonlocalImpl::DisallowOther)
            }

            ty::Pat(..) => (
                LocalImpl::Disallow { problematic_kind: "pattern type" },
                NonlocalImpl::DisallowOther,
            ),

            ty::Bool
            | ty::Char
            | ty::Int(..)
            | ty::Uint(..)
            | ty::Float(..)
            | ty::Str
            | ty::Array(..)
            | ty::Slice(..)
            | ty::RawPtr(..)
            | ty::Ref(..)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::Never
            | ty::Tuple(..) => (LocalImpl::Allow, NonlocalImpl::DisallowOther),

            ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Bound(..)
            | ty::Placeholder(..)
            | ty::Infer(..) => {
                let sp = tcx.def_span(impl_def_id);
                span_bug!(sp, "weird self type for autotrait impl")
            }

            ty::Error(..) => (LocalImpl::Allow, NonlocalImpl::Allow),
        };

        if trait_def_id.is_local() {
            match local_impl {
                LocalImpl::Allow => {}
                LocalImpl::Disallow { problematic_kind } => {
                    return Err(tcx.dcx().emit_err(errors::TraitsWithDefaultImpl {
                        span: tcx.def_span(impl_def_id),
                        traits: tcx.def_path_str(trait_def_id),
                        problematic_kind,
                        self_ty,
                    }));
                }
            }
        } else {
            match nonlocal_impl {
                NonlocalImpl::Allow => {}
                NonlocalImpl::DisallowBecauseNonlocal => {
                    return Err(tcx.dcx().emit_err(errors::CrossCrateTraitsDefined {
                        span: tcx.def_span(impl_def_id),
                        traits: tcx.def_path_str(trait_def_id),
                    }));
                }
                NonlocalImpl::DisallowOther => {
                    return Err(tcx.dcx().emit_err(errors::CrossCrateTraits {
                        span: tcx.def_span(impl_def_id),
                        traits: tcx.def_path_str(trait_def_id),
                        self_ty,
                    }));
                }
            }
        }
    }

    Ok(())
}

/// Checks the coherence orphan rules.
///
/// `impl_def_id` should be the `DefId` of a trait impl.
///
/// To pass, either the trait must be local, or else two conditions must be satisfied:
///
/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
/// 2. Some local type must appear in `Self`.
#[instrument(level = "debug", skip(tcx), ret)]
fn orphan_check<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_def_id: LocalDefId,
    mode: OrphanCheckMode,
) -> Result<(), OrphanCheckErr<TyCtxt<'tcx>, FxIndexSet<DefId>>> {
    // We only accept this routine to be invoked on implementations
    // of a trait, not inherent implementations.
    let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
    debug!(trait_ref = ?trait_ref.skip_binder());

    // If the *trait* is local to the crate, ok.
    if let Some(def_id) = trait_ref.skip_binder().def_id.as_local() {
        debug!("trait {def_id:?} is local to current crate");
        return Ok(());
    }

    // (1)  Instantiate all generic params with fresh inference vars.
    let infcx = tcx.infer_ctxt().build(TypingMode::Coherence);
    let cause = traits::ObligationCause::dummy();
    let args = infcx.fresh_args_for_item(cause.span, impl_def_id.to_def_id());
    let trait_ref = trait_ref.instantiate(tcx, args);

    let lazily_normalize_ty = |user_ty: Ty<'tcx>| {
        let ty::Alias(..) = user_ty.kind() else { return Ok(user_ty) };

        let ocx = traits::ObligationCtxt::new(&infcx);
        let ty = ocx.normalize(&cause, ty::ParamEnv::empty(), user_ty);
        let ty = infcx.resolve_vars_if_possible(ty);
        let errors = ocx.select_where_possible();
        if !errors.is_empty() {
            return Ok(user_ty);
        }

        let ty = if infcx.next_trait_solver() {
            ocx.structurally_normalize(
                &cause,
                ty::ParamEnv::empty(),
                infcx.resolve_vars_if_possible(ty),
            )
            .unwrap_or(ty)
        } else {
            ty
        };

        Ok::<_, !>(ty)
    };

    let result = traits::orphan_check_trait_ref(
        &infcx,
        trait_ref,
        traits::InCrate::Local { mode },
        lazily_normalize_ty,
    )
    .into_ok();

    // (2)  Try to map the remaining inference vars back to generic params.
    result.map_err(|err| match err {
        OrphanCheckErr::UncoveredTyParams(UncoveredTyParams { uncovered, local_ty }) => {
            let mut collector =
                UncoveredTyParamCollector { infcx: &infcx, uncovered_params: Default::default() };
            uncovered.visit_with(&mut collector);
            // FIXME(fmease): This is very likely reachable.
            debug_assert!(!collector.uncovered_params.is_empty());

            OrphanCheckErr::UncoveredTyParams(UncoveredTyParams {
                uncovered: collector.uncovered_params,
                local_ty,
            })
        }
        OrphanCheckErr::NonLocalInputType(tys) => {
            let generics = tcx.generics_of(impl_def_id);
            let tys = tys
                .into_iter()
                .map(|(ty, is_target_ty)| {
                    (ty.fold_with(&mut TyVarReplacer { infcx: &infcx, generics }), is_target_ty)
                })
                .collect();
            OrphanCheckErr::NonLocalInputType(tys)
        }
    })
}

fn emit_orphan_check_error<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ref: ty::TraitRef<'tcx>,
    impl_def_id: LocalDefId,
    err: traits::OrphanCheckErr<TyCtxt<'tcx>, FxIndexSet<DefId>>,
) -> ErrorGuaranteed {
    match err {
        traits::OrphanCheckErr::NonLocalInputType(tys) => {
            let item = tcx.hir().expect_item(impl_def_id);
            let impl_ = item.expect_impl();
            let hir_trait_ref = impl_.of_trait.as_ref().unwrap();

            let span = tcx.def_span(impl_def_id);
            let mut diag = tcx.dcx().create_err(match trait_ref.self_ty().kind() {
                ty::Adt(..) => errors::OnlyCurrentTraits::Outside { span, note: () },
                _ if trait_ref.self_ty().is_primitive() => {
                    errors::OnlyCurrentTraits::Primitive { span, note: () }
                }
                _ => errors::OnlyCurrentTraits::Arbitrary { span, note: () },
            });

            for &(mut ty, is_target_ty) in &tys {
                let span = if matches!(is_target_ty, IsFirstInputType::Yes) {
                    // Point at `D<A>` in `impl<A, B> for C<B> in D<A>`
                    impl_.self_ty.span
                } else {
                    // Point at `C<B>` in `impl<A, B> for C<B> in D<A>`
                    hir_trait_ref.path.span
                };

                ty = tcx.erase_regions(ty);

                let is_foreign =
                    !trait_ref.def_id.is_local() && matches!(is_target_ty, IsFirstInputType::No);

                match *ty.kind() {
                    ty::Slice(_) => {
                        if is_foreign {
                            diag.subdiagnostic(errors::OnlyCurrentTraitsForeign { span });
                        } else {
                            diag.subdiagnostic(errors::OnlyCurrentTraitsName {
                                span,
                                name: "slices",
                            });
                        }
                    }
                    ty::Array(..) => {
                        if is_foreign {
                            diag.subdiagnostic(errors::OnlyCurrentTraitsForeign { span });
                        } else {
                            diag.subdiagnostic(errors::OnlyCurrentTraitsName {
                                span,
                                name: "arrays",
                            });
                        }
                    }
                    ty::Tuple(..) => {
                        if is_foreign {
                            diag.subdiagnostic(errors::OnlyCurrentTraitsForeign { span });
                        } else {
                            diag.subdiagnostic(errors::OnlyCurrentTraitsName {
                                span,
                                name: "tuples",
                            });
                        }
                    }
                    ty::Alias(ty::Opaque, ..) => {
                        diag.subdiagnostic(errors::OnlyCurrentTraitsOpaque { span });
                    }
                    ty::RawPtr(ptr_ty, mutbl) => {
                        if !trait_ref.self_ty().has_param() {
                            diag.subdiagnostic(errors::OnlyCurrentTraitsPointerSugg {
                                wrapper_span: impl_.self_ty.span,
                                struct_span: item.span.shrink_to_lo(),
                                mut_key: mutbl.prefix_str(),
                                ptr_ty,
                            });
                        }
                        diag.subdiagnostic(errors::OnlyCurrentTraitsPointer { span, pointer: ty });
                    }
                    ty::Adt(adt_def, _) => {
                        diag.subdiagnostic(errors::OnlyCurrentTraitsAdt {
                            span,
                            name: tcx.def_path_str(adt_def.did()),
                        });
                    }
                    _ => {
                        diag.subdiagnostic(errors::OnlyCurrentTraitsTy { span, ty });
                    }
                }
            }

            diag.emit()
        }
        traits::OrphanCheckErr::UncoveredTyParams(UncoveredTyParams { uncovered, local_ty }) => {
            let mut reported = None;
            for param_def_id in uncovered {
                let span = tcx.def_ident_span(param_def_id).unwrap();
                let name = tcx.item_name(param_def_id);

                reported.get_or_insert(match local_ty {
                    Some(local_type) => tcx.dcx().emit_err(errors::TyParamFirstLocal {
                        span,
                        note: (),
                        param: name,
                        local_type,
                    }),
                    None => tcx.dcx().emit_err(errors::TyParamSome { span, note: (), param: name }),
                });
            }
            reported.unwrap() // FIXME(fmease): This is very likely reachable.
        }
    }
}

fn lint_uncovered_ty_params<'tcx>(
    tcx: TyCtxt<'tcx>,
    UncoveredTyParams { uncovered, local_ty }: UncoveredTyParams<TyCtxt<'tcx>, FxIndexSet<DefId>>,
    impl_def_id: LocalDefId,
) {
    let hir_id = tcx.local_def_id_to_hir_id(impl_def_id);

    for param_def_id in uncovered {
        let span = tcx.def_ident_span(param_def_id).unwrap();
        let name = tcx.item_name(param_def_id);

        match local_ty {
            Some(local_type) => tcx.emit_node_span_lint(
                UNCOVERED_PARAM_IN_PROJECTION,
                hir_id,
                span,
                errors::TyParamFirstLocalLint { span, note: (), param: name, local_type },
            ),
            None => tcx.emit_node_span_lint(
                UNCOVERED_PARAM_IN_PROJECTION,
                hir_id,
                span,
                errors::TyParamSomeLint { span, note: (), param: name },
            ),
        };
    }
}

struct UncoveredTyParamCollector<'cx, 'tcx> {
    infcx: &'cx InferCtxt<'tcx>,
    uncovered_params: FxIndexSet<DefId>,
}

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for UncoveredTyParamCollector<'_, 'tcx> {
    fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
        if !ty.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
            return;
        }
        let ty::Infer(ty::TyVar(vid)) = *ty.kind() else {
            return ty.super_visit_with(self);
        };
        let origin = self.infcx.type_var_origin(vid);
        if let Some(def_id) = origin.param_def_id {
            self.uncovered_params.insert(def_id);
        }
    }

    fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result {
        if ct.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
            ct.super_visit_with(self)
        }
    }
}

struct TyVarReplacer<'cx, 'tcx> {
    infcx: &'cx InferCtxt<'tcx>,
    generics: &'tcx ty::Generics,
}

impl<'cx, 'tcx> TypeFolder<TyCtxt<'tcx>> for TyVarReplacer<'cx, 'tcx> {
    fn cx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        if !ty.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
            return ty;
        }
        let ty::Infer(ty::TyVar(vid)) = *ty.kind() else {
            return ty.super_fold_with(self);
        };
        let origin = self.infcx.type_var_origin(vid);
        if let Some(def_id) = origin.param_def_id {
            // The generics of an `impl` don't have a parent, we can index directly.
            let index = self.generics.param_def_id_to_index[&def_id];
            let name = self.generics.own_params[index as usize].name;

            Ty::new_param(self.infcx.tcx, index, name)
        } else {
            ty
        }
    }

    fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
        if !ct.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
            return ct;
        }
        ct.super_fold_with(self)
    }
}