rustc_hir_analysis/coherence/orphan.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
//! Orphan checker: every impl either implements a trait defined in this
//! crate or pertains to a type defined in this crate.
use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::ErrorGuaranteed;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_lint_defs::builtin::UNCOVERED_PARAM_IN_PROJECTION;
use rustc_middle::ty::{
self, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeSuperVisitable,
TypeVisitable, TypeVisitableExt, TypeVisitor, TypingMode,
};
use rustc_middle::{bug, span_bug};
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_trait_selection::traits::{
self, IsFirstInputType, OrphanCheckErr, OrphanCheckMode, UncoveredTyParams,
};
use tracing::{debug, instrument};
use crate::errors;
#[instrument(level = "debug", skip(tcx))]
pub(crate) fn orphan_check_impl(
tcx: TyCtxt<'_>,
impl_def_id: LocalDefId,
) -> Result<(), ErrorGuaranteed> {
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity();
trait_ref.error_reported()?;
match orphan_check(tcx, impl_def_id, OrphanCheckMode::Proper) {
Ok(()) => {}
Err(err) => match orphan_check(tcx, impl_def_id, OrphanCheckMode::Compat) {
Ok(()) => match err {
OrphanCheckErr::UncoveredTyParams(uncovered_ty_params) => {
lint_uncovered_ty_params(tcx, uncovered_ty_params, impl_def_id)
}
OrphanCheckErr::NonLocalInputType(_) => {
bug!("orphanck: shouldn't've gotten non-local input tys in compat mode")
}
},
Err(err) => return Err(emit_orphan_check_error(tcx, trait_ref, impl_def_id, err)),
},
}
let trait_def_id = trait_ref.def_id;
// In addition to the above rules, we restrict impls of auto traits
// so that they can only be implemented on nominal types, such as structs,
// enums or foreign types. To see why this restriction exists, consider the
// following example (#22978). Imagine that crate A defines an auto trait
// `Foo` and a fn that operates on pairs of types:
//
// ```
// // Crate A
// auto trait Foo { }
// fn two_foos<A:Foo,B:Foo>(..) {
// one_foo::<(A,B)>(..)
// }
// fn one_foo<T:Foo>(..) { .. }
// ```
//
// This type-checks fine; in particular the fn
// `two_foos` is able to conclude that `(A,B):Foo`
// because `A:Foo` and `B:Foo`.
//
// Now imagine that crate B comes along and does the following:
//
// ```
// struct A { }
// struct B { }
// impl Foo for A { }
// impl Foo for B { }
// impl !Foo for (A, B) { }
// ```
//
// This final impl is legal according to the orphan
// rules, but it invalidates the reasoning from
// `two_foos` above.
debug!(
"trait_ref={:?} trait_def_id={:?} trait_is_auto={}",
trait_ref,
trait_def_id,
tcx.trait_is_auto(trait_def_id)
);
if tcx.trait_is_auto(trait_def_id) {
let self_ty = trait_ref.self_ty();
// If the impl is in the same crate as the auto-trait, almost anything
// goes.
//
// impl MyAuto for Rc<Something> {} // okay
// impl<T> !MyAuto for *const T {} // okay
// impl<T> MyAuto for T {} // okay
//
// But there is one important exception: implementing for a trait object
// is not allowed.
//
// impl MyAuto for dyn Trait {} // NOT OKAY
// impl<T: ?Sized> MyAuto for T {} // NOT OKAY
//
// With this restriction, it's guaranteed that an auto-trait is
// implemented for a trait object if and only if the auto-trait is one
// of the trait object's trait bounds (or a supertrait of a bound). In
// other words `dyn Trait + AutoTrait` always implements AutoTrait,
// while `dyn Trait` never implements AutoTrait.
//
// This is necessary in order for autotrait bounds on methods of trait
// objects to be sound.
//
// auto trait AutoTrait {}
//
// trait DynCompatibleTrait {
// fn f(&self) where Self: AutoTrait;
// }
//
// We can allow f to be called on `dyn DynCompatibleTrait + AutoTrait`.
//
// If we didn't deny `impl AutoTrait for dyn Trait`, it would be unsound
// for the `DynCompatibleTrait` shown above to be dyn-compatible because someone
// could take some type implementing `DynCompatibleTrait` but not `AutoTrait`,
// unsize it to `dyn DynCompatibleTrait`, and call `.f()` which has no
// concrete implementation (issue #50781).
enum LocalImpl {
Allow,
Disallow { problematic_kind: &'static str },
}
// If the auto-trait is from a dependency, it must only be getting
// implemented for a nominal type, and specifically one local to the
// current crate.
//
// impl<T> Sync for MyStruct<T> {} // okay
//
// impl Sync for Rc<MyStruct> {} // NOT OKAY
enum NonlocalImpl {
Allow,
DisallowBecauseNonlocal,
DisallowOther,
}
// Exhaustive match considering that this logic is essential for
// soundness.
let (local_impl, nonlocal_impl) = match self_ty.kind() {
// struct Struct<T>;
// impl AutoTrait for Struct<Foo> {}
ty::Adt(self_def, _) => (
LocalImpl::Allow,
if self_def.did().is_local() {
NonlocalImpl::Allow
} else {
NonlocalImpl::DisallowBecauseNonlocal
},
),
// extern { type OpaqueType; }
// impl AutoTrait for OpaqueType {}
ty::Foreign(did) => (
LocalImpl::Allow,
if did.is_local() {
NonlocalImpl::Allow
} else {
NonlocalImpl::DisallowBecauseNonlocal
},
),
// impl AutoTrait for dyn Trait {}
ty::Dynamic(..) => (
LocalImpl::Disallow { problematic_kind: "trait object" },
NonlocalImpl::DisallowOther,
),
// impl<T> AutoTrait for T {}
// impl<T: ?Sized> AutoTrait for T {}
ty::Param(..) => (
if self_ty.is_sized(tcx, ty::TypingEnv::non_body_analysis(tcx, impl_def_id)) {
LocalImpl::Allow
} else {
LocalImpl::Disallow { problematic_kind: "generic type" }
},
NonlocalImpl::DisallowOther,
),
ty::Alias(kind, _) => {
let problematic_kind = match kind {
// trait Id { type This: ?Sized; }
// impl<T: ?Sized> Id for T {
// type This = T;
// }
// impl<T: ?Sized> AutoTrait for <T as Id>::This {}
ty::Projection => "associated type",
// type Foo = (impl Sized, bool)
// impl AutoTrait for Foo {}
ty::Weak => "type alias",
// type Opaque = impl Trait;
// impl AutoTrait for Opaque {}
ty::Opaque => "opaque type",
// ```
// struct S<T>(T);
// impl<T: ?Sized> S<T> {
// type This = T;
// }
// impl<T: ?Sized> AutoTrait for S<T>::This {}
// ```
// FIXME(inherent_associated_types): The example code above currently leads to a cycle
ty::Inherent => "associated type",
};
(LocalImpl::Disallow { problematic_kind }, NonlocalImpl::DisallowOther)
}
ty::Pat(..) => (
LocalImpl::Disallow { problematic_kind: "pattern type" },
NonlocalImpl::DisallowOther,
),
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Str
| ty::Array(..)
| ty::Slice(..)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Never
| ty::Tuple(..) => (LocalImpl::Allow, NonlocalImpl::DisallowOther),
ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Infer(..) => {
let sp = tcx.def_span(impl_def_id);
span_bug!(sp, "weird self type for autotrait impl")
}
ty::Error(..) => (LocalImpl::Allow, NonlocalImpl::Allow),
};
if trait_def_id.is_local() {
match local_impl {
LocalImpl::Allow => {}
LocalImpl::Disallow { problematic_kind } => {
return Err(tcx.dcx().emit_err(errors::TraitsWithDefaultImpl {
span: tcx.def_span(impl_def_id),
traits: tcx.def_path_str(trait_def_id),
problematic_kind,
self_ty,
}));
}
}
} else {
match nonlocal_impl {
NonlocalImpl::Allow => {}
NonlocalImpl::DisallowBecauseNonlocal => {
return Err(tcx.dcx().emit_err(errors::CrossCrateTraitsDefined {
span: tcx.def_span(impl_def_id),
traits: tcx.def_path_str(trait_def_id),
}));
}
NonlocalImpl::DisallowOther => {
return Err(tcx.dcx().emit_err(errors::CrossCrateTraits {
span: tcx.def_span(impl_def_id),
traits: tcx.def_path_str(trait_def_id),
self_ty,
}));
}
}
}
}
Ok(())
}
/// Checks the coherence orphan rules.
///
/// `impl_def_id` should be the `DefId` of a trait impl.
///
/// To pass, either the trait must be local, or else two conditions must be satisfied:
///
/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
/// 2. Some local type must appear in `Self`.
#[instrument(level = "debug", skip(tcx), ret)]
fn orphan_check<'tcx>(
tcx: TyCtxt<'tcx>,
impl_def_id: LocalDefId,
mode: OrphanCheckMode,
) -> Result<(), OrphanCheckErr<TyCtxt<'tcx>, FxIndexSet<DefId>>> {
// We only accept this routine to be invoked on implementations
// of a trait, not inherent implementations.
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
debug!(trait_ref = ?trait_ref.skip_binder());
// If the *trait* is local to the crate, ok.
if let Some(def_id) = trait_ref.skip_binder().def_id.as_local() {
debug!("trait {def_id:?} is local to current crate");
return Ok(());
}
// (1) Instantiate all generic params with fresh inference vars.
let infcx = tcx.infer_ctxt().build(TypingMode::Coherence);
let cause = traits::ObligationCause::dummy();
let args = infcx.fresh_args_for_item(cause.span, impl_def_id.to_def_id());
let trait_ref = trait_ref.instantiate(tcx, args);
let lazily_normalize_ty = |user_ty: Ty<'tcx>| {
let ty::Alias(..) = user_ty.kind() else { return Ok(user_ty) };
let ocx = traits::ObligationCtxt::new(&infcx);
let ty = ocx.normalize(&cause, ty::ParamEnv::empty(), user_ty);
let ty = infcx.resolve_vars_if_possible(ty);
let errors = ocx.select_where_possible();
if !errors.is_empty() {
return Ok(user_ty);
}
let ty = if infcx.next_trait_solver() {
ocx.structurally_normalize(
&cause,
ty::ParamEnv::empty(),
infcx.resolve_vars_if_possible(ty),
)
.unwrap_or(ty)
} else {
ty
};
Ok::<_, !>(ty)
};
let result = traits::orphan_check_trait_ref(
&infcx,
trait_ref,
traits::InCrate::Local { mode },
lazily_normalize_ty,
)
.into_ok();
// (2) Try to map the remaining inference vars back to generic params.
result.map_err(|err| match err {
OrphanCheckErr::UncoveredTyParams(UncoveredTyParams { uncovered, local_ty }) => {
let mut collector =
UncoveredTyParamCollector { infcx: &infcx, uncovered_params: Default::default() };
uncovered.visit_with(&mut collector);
// FIXME(fmease): This is very likely reachable.
debug_assert!(!collector.uncovered_params.is_empty());
OrphanCheckErr::UncoveredTyParams(UncoveredTyParams {
uncovered: collector.uncovered_params,
local_ty,
})
}
OrphanCheckErr::NonLocalInputType(tys) => {
let generics = tcx.generics_of(impl_def_id);
let tys = tys
.into_iter()
.map(|(ty, is_target_ty)| {
(ty.fold_with(&mut TyVarReplacer { infcx: &infcx, generics }), is_target_ty)
})
.collect();
OrphanCheckErr::NonLocalInputType(tys)
}
})
}
fn emit_orphan_check_error<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
impl_def_id: LocalDefId,
err: traits::OrphanCheckErr<TyCtxt<'tcx>, FxIndexSet<DefId>>,
) -> ErrorGuaranteed {
match err {
traits::OrphanCheckErr::NonLocalInputType(tys) => {
let item = tcx.hir().expect_item(impl_def_id);
let impl_ = item.expect_impl();
let hir_trait_ref = impl_.of_trait.as_ref().unwrap();
let span = tcx.def_span(impl_def_id);
let mut diag = tcx.dcx().create_err(match trait_ref.self_ty().kind() {
ty::Adt(..) => errors::OnlyCurrentTraits::Outside { span, note: () },
_ if trait_ref.self_ty().is_primitive() => {
errors::OnlyCurrentTraits::Primitive { span, note: () }
}
_ => errors::OnlyCurrentTraits::Arbitrary { span, note: () },
});
for &(mut ty, is_target_ty) in &tys {
let span = if matches!(is_target_ty, IsFirstInputType::Yes) {
// Point at `D<A>` in `impl<A, B> for C<B> in D<A>`
impl_.self_ty.span
} else {
// Point at `C<B>` in `impl<A, B> for C<B> in D<A>`
hir_trait_ref.path.span
};
ty = tcx.erase_regions(ty);
let is_foreign =
!trait_ref.def_id.is_local() && matches!(is_target_ty, IsFirstInputType::No);
match *ty.kind() {
ty::Slice(_) => {
if is_foreign {
diag.subdiagnostic(errors::OnlyCurrentTraitsForeign { span });
} else {
diag.subdiagnostic(errors::OnlyCurrentTraitsName {
span,
name: "slices",
});
}
}
ty::Array(..) => {
if is_foreign {
diag.subdiagnostic(errors::OnlyCurrentTraitsForeign { span });
} else {
diag.subdiagnostic(errors::OnlyCurrentTraitsName {
span,
name: "arrays",
});
}
}
ty::Tuple(..) => {
if is_foreign {
diag.subdiagnostic(errors::OnlyCurrentTraitsForeign { span });
} else {
diag.subdiagnostic(errors::OnlyCurrentTraitsName {
span,
name: "tuples",
});
}
}
ty::Alias(ty::Opaque, ..) => {
diag.subdiagnostic(errors::OnlyCurrentTraitsOpaque { span });
}
ty::RawPtr(ptr_ty, mutbl) => {
if !trait_ref.self_ty().has_param() {
diag.subdiagnostic(errors::OnlyCurrentTraitsPointerSugg {
wrapper_span: impl_.self_ty.span,
struct_span: item.span.shrink_to_lo(),
mut_key: mutbl.prefix_str(),
ptr_ty,
});
}
diag.subdiagnostic(errors::OnlyCurrentTraitsPointer { span, pointer: ty });
}
ty::Adt(adt_def, _) => {
diag.subdiagnostic(errors::OnlyCurrentTraitsAdt {
span,
name: tcx.def_path_str(adt_def.did()),
});
}
_ => {
diag.subdiagnostic(errors::OnlyCurrentTraitsTy { span, ty });
}
}
}
diag.emit()
}
traits::OrphanCheckErr::UncoveredTyParams(UncoveredTyParams { uncovered, local_ty }) => {
let mut reported = None;
for param_def_id in uncovered {
let span = tcx.def_ident_span(param_def_id).unwrap();
let name = tcx.item_name(param_def_id);
reported.get_or_insert(match local_ty {
Some(local_type) => tcx.dcx().emit_err(errors::TyParamFirstLocal {
span,
note: (),
param: name,
local_type,
}),
None => tcx.dcx().emit_err(errors::TyParamSome { span, note: (), param: name }),
});
}
reported.unwrap() // FIXME(fmease): This is very likely reachable.
}
}
}
fn lint_uncovered_ty_params<'tcx>(
tcx: TyCtxt<'tcx>,
UncoveredTyParams { uncovered, local_ty }: UncoveredTyParams<TyCtxt<'tcx>, FxIndexSet<DefId>>,
impl_def_id: LocalDefId,
) {
let hir_id = tcx.local_def_id_to_hir_id(impl_def_id);
for param_def_id in uncovered {
let span = tcx.def_ident_span(param_def_id).unwrap();
let name = tcx.item_name(param_def_id);
match local_ty {
Some(local_type) => tcx.emit_node_span_lint(
UNCOVERED_PARAM_IN_PROJECTION,
hir_id,
span,
errors::TyParamFirstLocalLint { span, note: (), param: name, local_type },
),
None => tcx.emit_node_span_lint(
UNCOVERED_PARAM_IN_PROJECTION,
hir_id,
span,
errors::TyParamSomeLint { span, note: (), param: name },
),
};
}
}
struct UncoveredTyParamCollector<'cx, 'tcx> {
infcx: &'cx InferCtxt<'tcx>,
uncovered_params: FxIndexSet<DefId>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for UncoveredTyParamCollector<'_, 'tcx> {
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
if !ty.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
return;
}
let ty::Infer(ty::TyVar(vid)) = *ty.kind() else {
return ty.super_visit_with(self);
};
let origin = self.infcx.type_var_origin(vid);
if let Some(def_id) = origin.param_def_id {
self.uncovered_params.insert(def_id);
}
}
fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result {
if ct.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
ct.super_visit_with(self)
}
}
}
struct TyVarReplacer<'cx, 'tcx> {
infcx: &'cx InferCtxt<'tcx>,
generics: &'tcx ty::Generics,
}
impl<'cx, 'tcx> TypeFolder<TyCtxt<'tcx>> for TyVarReplacer<'cx, 'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if !ty.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
return ty;
}
let ty::Infer(ty::TyVar(vid)) = *ty.kind() else {
return ty.super_fold_with(self);
};
let origin = self.infcx.type_var_origin(vid);
if let Some(def_id) = origin.param_def_id {
// The generics of an `impl` don't have a parent, we can index directly.
let index = self.generics.param_def_id_to_index[&def_id];
let name = self.generics.own_params[index as usize].name;
Ty::new_param(self.infcx.tcx, index, name)
} else {
ty
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
if !ct.has_type_flags(ty::TypeFlags::HAS_TY_INFER) {
return ct;
}
ct.super_fold_with(self)
}
}