1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
//! In this file we handle the "Tree" part of Tree Borrows, i.e. all tree
//! traversal functions, optimizations to trim branches, and keeping track of
//! the relative position of the access to each node being updated. This of course
//! also includes the definition of the tree structure.
//!
//! Functions here manipulate permissions but are oblivious to them: as
//! the internals of `Permission` are private, the update process is a black
//! box. All we need to know here are
//! - the fact that updates depend only on the old state, the status of protectors,
//!   and the relative position of the access;
//! - idempotency properties asserted in `perms.rs` (for optimizations)

use std::fmt;

use smallvec::SmallVec;

use rustc_data_structures::fx::FxHashSet;
use rustc_span::Span;
use rustc_target::abi::Size;

use crate::borrow_tracker::tree_borrows::{
    diagnostics::{self, NodeDebugInfo, TbError, TransitionError},
    perms::PermTransition,
    unimap::{UniEntry, UniIndex, UniKeyMap, UniValMap},
    Permission,
};
use crate::borrow_tracker::{GlobalState, ProtectorKind};
use crate::*;

mod tests;

/// Data for a single *location*.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(super) struct LocationState {
    /// A location is initialized when it is child-accessed for the first time (and the initial
    /// retag initializes the location for the range covered by the type), and it then stays
    /// initialized forever.
    /// For initialized locations, "permission" is the current permission. However, for
    /// uninitialized locations, we still need to track the "future initial permission": this will
    /// start out to be `default_initial_perm`, but foreign accesses need to be taken into account.
    /// Crucially however, while transitions to `Disabled` would usually be UB if this location is
    /// protected, that is *not* the case for uninitialized locations. Instead we just have a latent
    /// "future initial permission" of `Disabled`, causing UB only if an access is ever actually
    /// performed.
    /// Note that the tree root is also always initialized, as if the allocation was a write access.
    initialized: bool,
    /// This pointer's current permission / future initial permission.
    permission: Permission,
    /// Strongest foreign access whose effects have already been applied to
    /// this node and all its children since the last child access.
    /// This is `None` if the most recent access is a child access,
    /// `Some(Write)` if at least one foreign write access has been applied
    /// since the previous child access, and `Some(Read)` if at least one
    /// foreign read and no foreign write have occurred since the last child access.
    latest_foreign_access: Option<AccessKind>,
}

impl LocationState {
    /// Constructs a new initial state. It has neither been accessed, nor been subjected
    /// to any foreign access yet.
    /// The permission is not allowed to be `Active`.
    fn new_uninit(permission: Permission) -> Self {
        assert!(permission.is_initial() || permission.is_disabled());
        Self { permission, initialized: false, latest_foreign_access: None }
    }

    /// Constructs a new initial state. It has not yet been subjected
    /// to any foreign access. However, it is already marked as having been accessed.
    fn new_init(permission: Permission) -> Self {
        Self { permission, initialized: true, latest_foreign_access: None }
    }

    /// Check if the location has been initialized, i.e. if it has
    /// ever been accessed through a child pointer.
    pub fn is_initialized(&self) -> bool {
        self.initialized
    }

    /// Check if the state can exist as the initial permission of a pointer.
    ///
    /// Do not confuse with `is_initialized`, the two are almost orthogonal
    /// as apart from `Active` which is not initial and must be initialized,
    /// any other permission can have an arbitrary combination of being
    /// initial/initialized.
    /// FIXME: when the corresponding `assert` in `tree_borrows/mod.rs` finally
    /// passes and can be uncommented, remove this `#[allow(dead_code)]`.
    #[cfg_attr(not(test), allow(dead_code))]
    pub fn is_initial(&self) -> bool {
        self.permission.is_initial()
    }

    pub fn permission(&self) -> Permission {
        self.permission
    }

    /// Apply the effect of an access to one location, including
    /// - applying `Permission::perform_access` to the inner `Permission`,
    /// - emitting protector UB if the location is initialized,
    /// - updating the initialized status (child accesses produce initialized locations).
    fn perform_access(
        &mut self,
        access_kind: AccessKind,
        rel_pos: AccessRelatedness,
        protected: bool,
    ) -> Result<PermTransition, TransitionError> {
        let old_perm = self.permission;
        let transition = Permission::perform_access(access_kind, rel_pos, old_perm, protected)
            .ok_or(TransitionError::ChildAccessForbidden(old_perm))?;
        // Why do only initialized locations cause protector errors?
        // Consider two mutable references `x`, `y` into disjoint parts of
        // the same allocation. A priori, these may actually both be used to
        // access the entire allocation, as long as only reads occur. However,
        // a write to `y` needs to somehow record that `x` can no longer be used
        // on that location at all. For these uninitialized locations (i.e., locations
        // that haven't been accessed with `x` yet), we track the "future initial state":
        // it defaults to whatever the initial state of the tag is,
        // but the access to `y` moves that "future initial state" of `x` to `Disabled`.
        // However, usually a `Reserved -> Disabled` transition would be UB due to the protector!
        // So clearly protectors shouldn't fire for such "future initial state" transitions.
        //
        // See the test `two_mut_protected_same_alloc` in `tests/pass/tree_borrows/tree-borrows.rs`
        // for an example of safe code that would be UB if we forgot to check `self.initialized`.
        if protected && self.initialized && transition.produces_disabled() {
            return Err(TransitionError::ProtectedDisabled(old_perm));
        }
        self.permission = transition.applied(old_perm).unwrap();
        self.initialized |= !rel_pos.is_foreign();
        Ok(transition)
    }

    // Helper to optimize the tree traversal.
    // The optimization here consists of observing thanks to the tests
    // `foreign_read_is_noop_after_foreign_write` and `all_transitions_idempotent`,
    // that there are actually just three possible sequences of events that can occur
    // in between two child accesses that produce different results.
    //
    // Indeed,
    // - applying any number of foreign read accesses is the same as applying
    //   exactly one foreign read,
    // - applying any number of foreign read or write accesses is the same
    //   as applying exactly one foreign write.
    // therefore the three sequences of events that can produce different
    // outcomes are
    // - an empty sequence (`self.latest_foreign_access = None`)
    // - a nonempty read-only sequence (`self.latest_foreign_access = Some(Read)`)
    // - a nonempty sequence with at least one write (`self.latest_foreign_access = Some(Write)`)
    //
    // This function not only determines if skipping the propagation right now
    // is possible, it also updates the internal state to keep track of whether
    // the propagation can be skipped next time.
    // It is a performance loss not to call this function when a foreign access occurs.
    // It is unsound not to call this function when a child access occurs.
    fn skip_if_known_noop(
        &mut self,
        access_kind: AccessKind,
        rel_pos: AccessRelatedness,
    ) -> ContinueTraversal {
        if rel_pos.is_foreign() {
            let new_access_noop = match (self.latest_foreign_access, access_kind) {
                // Previously applied transition makes the new one a guaranteed
                // noop in the two following cases:
                // (1) justified by `foreign_read_is_noop_after_foreign_write`
                (Some(AccessKind::Write), AccessKind::Read) => true,
                // (2) justified by `all_transitions_idempotent`
                (Some(old), new) if old == new => true,
                // In all other cases there has been a recent enough
                // child access that the effects of the new foreign access
                // need to be applied to this subtree.
                _ => false,
            };
            if new_access_noop {
                // Abort traversal if the new transition is indeed guaranteed
                // to be noop.
                // No need to update `self.latest_foreign_access`,
                // the type of the current streak among nonempty read-only
                // or nonempty with at least one write has not changed.
                ContinueTraversal::SkipChildren
            } else {
                // Otherwise propagate this time, and also record the
                // access that just occurred so that we can skip the propagation
                // next time.
                self.latest_foreign_access = Some(access_kind);
                ContinueTraversal::Recurse
            }
        } else {
            // A child access occurred, this breaks the streak of foreign
            // accesses in a row and the sequence since the previous child access
            // is now empty.
            self.latest_foreign_access = None;
            ContinueTraversal::Recurse
        }
    }
}

impl fmt::Display for LocationState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.permission)?;
        if !self.initialized {
            write!(f, "?")?;
        }
        Ok(())
    }
}

/// Tree structure with both parents and children since we want to be
/// able to traverse the tree efficiently in both directions.
#[derive(Clone, Debug)]
pub struct Tree {
    /// Mapping from tags to keys. The key obtained can then be used in
    /// any of the `UniValMap` relative to this allocation, i.e. both the
    /// `nodes` and `rperms` of the same `Tree`.
    /// The parent-child relationship in `Node` is encoded in terms of these same
    /// keys, so traversing the entire tree needs exactly one access to
    /// `tag_mapping`.
    pub(super) tag_mapping: UniKeyMap<BorTag>,
    /// All nodes of this tree.
    pub(super) nodes: UniValMap<Node>,
    /// Maps a tag and a location to a perm, with possible lazy
    /// initialization.
    ///
    /// NOTE: not all tags registered in `nodes` are necessarily in all
    /// ranges of `rperms`, because `rperms` is in part lazily initialized.
    /// Just because `nodes.get(key)` is `Some(_)` does not mean you can safely
    /// `unwrap` any `perm.get(key)`.
    ///
    /// We do uphold the fact that `keys(perms)` is a subset of `keys(nodes)`
    pub(super) rperms: RangeMap<UniValMap<LocationState>>,
    /// The index of the root node.
    pub(super) root: UniIndex,
}

/// A node in the borrow tree. Each node is uniquely identified by a tag via
/// the `nodes` map of `Tree`.
#[derive(Clone, Debug)]
pub(super) struct Node {
    /// The tag of this node.
    pub tag: BorTag,
    /// All tags except the root have a parent tag.
    pub parent: Option<UniIndex>,
    /// If the pointer was reborrowed, it has children.
    // FIXME: bench to compare this to FxHashSet and to other SmallVec sizes
    pub children: SmallVec<[UniIndex; 4]>,
    /// Either `Reserved`,  `Frozen`, or `Disabled`, it is the permission this tag will
    /// lazily be initialized to on the first access.
    /// It is only ever `Disabled` for a tree root, since the root is initialized to `Active` by
    /// its own separate mechanism.
    default_initial_perm: Permission,
    /// Some extra information useful only for debugging purposes
    pub debug_info: NodeDebugInfo,
}

/// Data given to the transition function
struct NodeAppArgs<'node> {
    /// Node on which the transition is currently being applied
    node: &'node mut Node,
    /// Mutable access to its permissions
    perm: UniEntry<'node, LocationState>,
    /// Relative position of the access
    rel_pos: AccessRelatedness,
}
/// Data given to the error handler
struct ErrHandlerArgs<'node, InErr> {
    /// Kind of error that occurred
    error_kind: InErr,
    /// Tag that triggered the error (not the tag that was accessed,
    /// rather the parent tag that had insufficient permissions or the
    /// non-parent tag that had a protector).
    conflicting_info: &'node NodeDebugInfo,
    /// Information about the tag that was accessed just before the
    /// error was triggered.
    accessed_info: &'node NodeDebugInfo,
}
/// Internal contents of `Tree` with the minimum of mutable access for
/// the purposes of the tree traversal functions: the permissions (`perms`) can be
/// updated but not the tree structure (`tag_mapping` and `nodes`)
struct TreeVisitor<'tree> {
    tag_mapping: &'tree UniKeyMap<BorTag>,
    nodes: &'tree mut UniValMap<Node>,
    perms: &'tree mut UniValMap<LocationState>,
}

/// Whether to continue exploring the children recursively or not.
enum ContinueTraversal {
    Recurse,
    SkipChildren,
}

/// Stack of nodes left to explore in a tree traversal.
struct TreeVisitorStack<NodeApp, ErrHandler> {
    /// Identifier of the original access.
    initial: UniIndex,
    /// Function to apply to each tag.
    f_propagate: NodeApp,
    /// Handler to add the required context to diagnostics.
    err_builder: ErrHandler,
    /// Mutable state of the visit: the tags left to handle.
    /// Every tag pushed should eventually be handled,
    /// and the precise order is relevant for diagnostics.
    stack: Vec<(UniIndex, AccessRelatedness)>,
}

impl<NodeApp, InnErr, OutErr, ErrHandler> TreeVisitorStack<NodeApp, ErrHandler>
where
    NodeApp: Fn(NodeAppArgs<'_>) -> Result<ContinueTraversal, InnErr>,
    ErrHandler: Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
{
    /// Apply the function to the current `tag`, and push its children
    /// to the stack of future tags to visit.
    fn exec_and_visit(
        &mut self,
        this: &mut TreeVisitor<'_>,
        idx: UniIndex,
        exclude: Option<UniIndex>,
        rel_pos: AccessRelatedness,
    ) -> Result<(), OutErr> {
        // 1. apply the propagation function
        let node = this.nodes.get_mut(idx).unwrap();
        let recurse =
            (self.f_propagate)(NodeAppArgs { node, perm: this.perms.entry(idx), rel_pos })
                .map_err(|error_kind| {
                    (self.err_builder)(ErrHandlerArgs {
                        error_kind,
                        conflicting_info: &this.nodes.get(idx).unwrap().debug_info,
                        accessed_info: &this.nodes.get(self.initial).unwrap().debug_info,
                    })
                })?;
        let node = this.nodes.get(idx).unwrap();
        // 2. add the children to the stack for future traversal
        if matches!(recurse, ContinueTraversal::Recurse) {
            let general_child_rel = rel_pos.for_child();
            for &child in node.children.iter() {
                // Some child might be excluded from here and handled separately,
                // e.g. the initially accessed tag.
                if Some(child) != exclude {
                    // We should still ensure that if we don't skip the initially accessed
                    // it will receive the proper `AccessRelatedness`.
                    let this_child_rel = if child == self.initial {
                        AccessRelatedness::This
                    } else {
                        general_child_rel
                    };
                    self.stack.push((child, this_child_rel));
                }
            }
        }
        Ok(())
    }

    fn new(initial: UniIndex, f_propagate: NodeApp, err_builder: ErrHandler) -> Self {
        Self { initial, f_propagate, err_builder, stack: Vec::new() }
    }

    /// Finish the exploration by applying `exec_and_visit` until
    /// the stack is empty.
    fn finish(&mut self, visitor: &mut TreeVisitor<'_>) -> Result<(), OutErr> {
        while let Some((idx, rel_pos)) = self.stack.pop() {
            self.exec_and_visit(visitor, idx, /* no children to exclude */ None, rel_pos)?;
        }
        Ok(())
    }

    /// Push all ancestors to the exploration stack in order of nearest ancestor
    /// towards the top.
    fn push_and_visit_strict_ancestors(
        &mut self,
        visitor: &mut TreeVisitor<'_>,
    ) -> Result<(), OutErr> {
        let mut path_ascend = Vec::new();
        // First climb to the root while recording the path
        let mut curr = self.initial;
        while let Some(ancestor) = visitor.nodes.get(curr).unwrap().parent {
            path_ascend.push((ancestor, curr));
            curr = ancestor;
        }
        // Then descend:
        // - execute f_propagate on each node
        // - record children in visit
        while let Some((ancestor, next_in_path)) = path_ascend.pop() {
            // Explore ancestors in descending order.
            // `next_in_path` is excluded from the recursion because it
            // will be the `ancestor` of the next iteration.
            // It also needs a different `AccessRelatedness` than the other
            // children of `ancestor`.
            self.exec_and_visit(
                visitor,
                ancestor,
                Some(next_in_path),
                AccessRelatedness::StrictChildAccess,
            )?;
        }
        Ok(())
    }
}

impl<'tree> TreeVisitor<'tree> {
    // Applies `f_propagate` to every vertex of the tree top-down in the following order: first
    // all ancestors of `start`, then `start` itself, then children of `start`, then the rest.
    // This ensures that errors are triggered in the following order
    // - first invalid accesses with insufficient permissions, closest to the root first,
    // - then protector violations, closest to `start` first.
    //
    // `f_propagate` should follow the following format: for a given `Node` it updates its
    // `Permission` depending on the position relative to `start` (given by an
    // `AccessRelatedness`).
    // It outputs whether the tree traversal for this subree should continue or not.
    fn traverse_parents_this_children_others<InnErr, OutErr>(
        mut self,
        start: BorTag,
        f_propagate: impl Fn(NodeAppArgs<'_>) -> Result<ContinueTraversal, InnErr>,
        err_builder: impl Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
    ) -> Result<(), OutErr> {
        let start_idx = self.tag_mapping.get(&start).unwrap();
        let mut stack = TreeVisitorStack::new(start_idx, f_propagate, err_builder);
        stack.push_and_visit_strict_ancestors(&mut self)?;
        // All (potentially zero) ancestors have been explored,
        // it's time to explore the `start` tag.
        stack.exec_and_visit(
            &mut self,
            start_idx,
            /* no children to exclude */ None,
            AccessRelatedness::This,
        )?;
        // Then finish with a normal DFS.
        stack.finish(&mut self)
    }

    // Applies `f_propagate` to every non-child vertex of the tree (ancestors first).
    //
    // `f_propagate` should follow the following format: for a given `Node` it updates its
    // `Permission` depending on the position relative to `start` (given by an
    // `AccessRelatedness`).
    // It outputs whether the tree traversal for this subree should continue or not.
    fn traverse_nonchildren<InnErr, OutErr>(
        mut self,
        start: BorTag,
        f_propagate: impl Fn(NodeAppArgs<'_>) -> Result<ContinueTraversal, InnErr>,
        err_builder: impl Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
    ) -> Result<(), OutErr> {
        let start_idx = self.tag_mapping.get(&start).unwrap();
        let mut stack = TreeVisitorStack::new(start_idx, f_propagate, err_builder);
        stack.push_and_visit_strict_ancestors(&mut self)?;
        // We *don't* visit the `start` tag, and we don't push its children.
        // Only finish the DFS with the cousins.
        stack.finish(&mut self)
    }
}

impl Tree {
    /// Create a new tree, with only a root pointer.
    pub fn new(root_tag: BorTag, size: Size, span: Span) -> Self {
        // The root has `Disabled` as the default permission,
        // so that any access out of bounds is invalid.
        let root_default_perm = Permission::new_disabled();
        let mut tag_mapping = UniKeyMap::default();
        let root_idx = tag_mapping.insert(root_tag);
        let nodes = {
            let mut nodes = UniValMap::<Node>::default();
            let mut debug_info = NodeDebugInfo::new(root_tag, root_default_perm, span);
            // name the root so that all allocations contain one named pointer
            debug_info.add_name("root of the allocation");
            nodes.insert(
                root_idx,
                Node {
                    tag: root_tag,
                    parent: None,
                    children: SmallVec::default(),
                    default_initial_perm: root_default_perm,
                    debug_info,
                },
            );
            nodes
        };
        let rperms = {
            let mut perms = UniValMap::default();
            // We manually set it to `Active` on all in-bounds positions.
            // We also ensure that it is initialized, so that no `Active` but
            // not yet initialized nodes exist. Essentially, we pretend there
            // was a write that initialized these to `Active`.
            perms.insert(root_idx, LocationState::new_init(Permission::new_active()));
            RangeMap::new(size, perms)
        };
        Self { root: root_idx, nodes, rperms, tag_mapping }
    }
}

impl<'tcx> Tree {
    /// Insert a new tag in the tree
    pub fn new_child(
        &mut self,
        parent_tag: BorTag,
        new_tag: BorTag,
        default_initial_perm: Permission,
        reborrow_range: AllocRange,
        span: Span,
    ) -> InterpResult<'tcx> {
        assert!(!self.tag_mapping.contains_key(&new_tag));
        let idx = self.tag_mapping.insert(new_tag);
        let parent_idx = self.tag_mapping.get(&parent_tag).unwrap();
        // Create the node
        self.nodes.insert(
            idx,
            Node {
                tag: new_tag,
                parent: Some(parent_idx),
                children: SmallVec::default(),
                default_initial_perm,
                debug_info: NodeDebugInfo::new(new_tag, default_initial_perm, span),
            },
        );
        // Register new_tag as a child of parent_tag
        self.nodes.get_mut(parent_idx).unwrap().children.push(idx);
        // Initialize perms
        let perm = LocationState::new_init(default_initial_perm);
        for (_perms_range, perms) in self.rperms.iter_mut(reborrow_range.start, reborrow_range.size)
        {
            perms.insert(idx, perm);
        }
        Ok(())
    }

    /// Deallocation requires
    /// - a pointer that permits write accesses
    /// - the absence of Strong Protectors anywhere in the allocation
    pub fn dealloc(
        &mut self,
        tag: BorTag,
        access_range: AllocRange,
        global: &GlobalState,
        alloc_id: AllocId, // diagnostics
        span: Span,        // diagnostics
    ) -> InterpResult<'tcx> {
        self.perform_access(
            AccessKind::Write,
            tag,
            Some(access_range),
            global,
            alloc_id,
            span,
            diagnostics::AccessCause::Dealloc,
        )?;
        for (perms_range, perms) in self.rperms.iter_mut(access_range.start, access_range.size) {
            TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
                .traverse_parents_this_children_others(
                    tag,
                    |args: NodeAppArgs<'_>| -> Result<ContinueTraversal, TransitionError> {
                        let NodeAppArgs { node, .. } = args;
                        if global.borrow().protected_tags.get(&node.tag)
                            == Some(&ProtectorKind::StrongProtector)
                        {
                            Err(TransitionError::ProtectedDealloc)
                        } else {
                            Ok(ContinueTraversal::Recurse)
                        }
                    },
                    |args: ErrHandlerArgs<'_, TransitionError>| -> InterpError<'tcx> {
                        let ErrHandlerArgs { error_kind, conflicting_info, accessed_info } = args;
                        TbError {
                            conflicting_info,
                            access_cause: diagnostics::AccessCause::Dealloc,
                            alloc_id,
                            error_offset: perms_range.start,
                            error_kind,
                            accessed_info,
                        }
                        .build()
                    },
                )?;
        }
        Ok(())
    }

    /// Map the per-node and per-location `LocationState::perform_access`
    /// to each location of `access_range`, on every tag of the allocation.
    ///
    /// If `access_range` is `None`, this is interpreted as the special
    /// access that is applied on protector release:
    /// - the access will be applied only to initialized locations of the allocation,
    /// - and it will not be visible to children.
    ///
    /// `LocationState::perform_access` will take care of raising transition
    /// errors and updating the `initialized` status of each location,
    /// this traversal adds to that:
    /// - inserting into the map locations that do not exist yet,
    /// - trimming the traversal,
    /// - recording the history.
    pub fn perform_access(
        &mut self,
        access_kind: AccessKind,
        tag: BorTag,
        access_range: Option<AllocRange>,
        global: &GlobalState,
        alloc_id: AllocId,                      // diagnostics
        span: Span,                             // diagnostics
        access_cause: diagnostics::AccessCause, // diagnostics
    ) -> InterpResult<'tcx> {
        use std::ops::Range;
        // Performs the per-node work:
        // - insert the permission if it does not exist
        // - perform the access
        // - record the transition
        // to which some optimizations are added:
        // - skip the traversal of the children in some cases
        // - do not record noop transitions
        //
        // `perms_range` is only for diagnostics (it is the range of
        // the `RangeMap` on which we are currently working).
        let node_app = |perms_range: Range<u64>,
                        args: NodeAppArgs<'_>|
         -> Result<ContinueTraversal, TransitionError> {
            let NodeAppArgs { node, mut perm, rel_pos } = args;

            let old_state = perm.or_insert(LocationState::new_uninit(node.default_initial_perm));

            match old_state.skip_if_known_noop(access_kind, rel_pos) {
                ContinueTraversal::SkipChildren => return Ok(ContinueTraversal::SkipChildren),
                _ => {}
            }

            let protected = global.borrow().protected_tags.contains_key(&node.tag);
            let transition = old_state.perform_access(access_kind, rel_pos, protected)?;

            // Record the event as part of the history
            if !transition.is_noop() {
                node.debug_info.history.push(diagnostics::Event {
                    transition,
                    is_foreign: rel_pos.is_foreign(),
                    access_cause,
                    access_range,
                    transition_range: perms_range,
                    span,
                });
            }
            Ok(ContinueTraversal::Recurse)
        };

        // Error handler in case `node_app` goes wrong.
        // Wraps the faulty transition in more context for diagnostics.
        let err_handler = |perms_range: Range<u64>,
                           args: ErrHandlerArgs<'_, TransitionError>|
         -> InterpError<'tcx> {
            let ErrHandlerArgs { error_kind, conflicting_info, accessed_info } = args;
            TbError {
                conflicting_info,
                access_cause,
                alloc_id,
                error_offset: perms_range.start,
                error_kind,
                accessed_info,
            }
            .build()
        };

        if let Some(access_range) = access_range {
            // Default branch: this is a "normal" access through a known range.
            // We iterate over affected locations and traverse the tree for each of them.
            for (perms_range, perms) in self.rperms.iter_mut(access_range.start, access_range.size)
            {
                TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
                    .traverse_parents_this_children_others(
                        tag,
                        |args| node_app(perms_range.clone(), args),
                        |args| err_handler(perms_range.clone(), args),
                    )?;
            }
        } else {
            // This is a special access through the entire allocation.
            // It actually only affects `initialized` locations, so we need
            // to filter on those before initiating the traversal.
            //
            // In addition this implicit access should not be visible to children,
            // thus the use of `traverse_nonchildren`.
            // See the test case `returned_mut_is_usable` from
            // `tests/pass/tree_borrows/tree-borrows.rs` for an example of
            // why this is important.
            for (perms_range, perms) in self.rperms.iter_mut_all() {
                let idx = self.tag_mapping.get(&tag).unwrap();
                // Only visit initialized permissions
                if let Some(p) = perms.get(idx)
                    && p.initialized
                {
                    TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
                        .traverse_nonchildren(
                        tag,
                        |args| node_app(perms_range.clone(), args),
                        |args| err_handler(perms_range.clone(), args),
                    )?;
                }
            }
        }
        Ok(())
    }
}

/// Integration with the BorTag garbage collector
impl Tree {
    pub fn remove_unreachable_tags(&mut self, live_tags: &FxHashSet<BorTag>) {
        let root_is_needed = self.keep_only_needed(self.root, live_tags); // root can't be removed
        assert!(root_is_needed);
        // Right after the GC runs is a good moment to check if we can
        // merge some adjacent ranges that were made equal by the removal of some
        // tags (this does not necessarily mean that they have identical internal representations,
        // see the `PartialEq` impl for `UniValMap`)
        self.rperms.merge_adjacent_thorough();
    }

    /// Traverses the entire tree looking for useless tags.
    /// Returns true iff the tag it was called on is still live or has live children,
    /// and removes from the tree all tags that have no live children.
    ///
    /// NOTE: This leaves in the middle of the tree tags that are unreachable but have
    /// reachable children. There is a potential for compacting the tree by reassigning
    /// children of dead tags to the nearest live parent, but it must be done with care
    /// not to remove UB.
    ///
    /// Example: Consider the tree `root - parent - child`, with `parent: Frozen` and
    /// `child: Reserved`. This tree can exist. If we blindly delete `parent` and reassign
    /// `child` to be a direct child of `root` then Writes to `child` are now permitted
    /// whereas they were not when `parent` was still there.
    fn keep_only_needed(&mut self, idx: UniIndex, live: &FxHashSet<BorTag>) -> bool {
        let node = self.nodes.get(idx).unwrap();
        // FIXME: this function does a lot of cloning, a 2-pass approach is possibly
        // more efficient. It could consist of
        // 1. traverse the Tree, collect all useless tags in a Vec
        // 2. traverse the Vec, remove all tags previously selected
        // Bench it.
        let children: SmallVec<_> = node
            .children
            .clone()
            .into_iter()
            .filter(|child| self.keep_only_needed(*child, live))
            .collect();
        let no_children = children.is_empty();
        let node = self.nodes.get_mut(idx).unwrap();
        node.children = children;
        if !live.contains(&node.tag) && no_children {
            // All of the children and this node are unreachable, delete this tag
            // from the tree (the children have already been deleted by recursive
            // calls).
            // Due to the API of UniMap we must absolutely call
            // `UniValMap::remove` for the key of this tag on *all* maps that used it
            // (which are `self.nodes` and every range of `self.rperms`)
            // before we can safely apply `UniValMap::forget` to truly remove
            // the tag from the mapping.
            let tag = node.tag;
            self.nodes.remove(idx);
            for (_perms_range, perms) in self.rperms.iter_mut_all() {
                perms.remove(idx);
            }
            self.tag_mapping.remove(&tag);
            // The tag has been deleted, inform the caller
            false
        } else {
            // The tag is still live or has live children, it must be kept
            true
        }
    }
}

impl VisitProvenance for Tree {
    fn visit_provenance(&self, visit: &mut VisitWith<'_>) {
        // To ensure that the root never gets removed, we visit it
        // (the `root` node of `Tree` is not an `Option<_>`)
        visit(None, Some(self.nodes.get(self.root).unwrap().tag))
    }
}

/// Relative position of the access
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum AccessRelatedness {
    /// The accessed pointer is the current one
    This,
    /// The accessed pointer is a (transitive) child of the current one.
    // Current pointer is excluded (unlike in some other places of this module
    // where "child" is inclusive).
    StrictChildAccess,
    /// The accessed pointer is a (transitive) parent of the current one.
    // Current pointer is excluded.
    AncestorAccess,
    /// The accessed pointer is neither of the above.
    // It's a cousin/uncle/etc., something in a side branch.
    // FIXME: find a better name ?
    DistantAccess,
}

impl AccessRelatedness {
    /// Check that access is either Ancestor or Distant, i.e. not
    /// a transitive child (initial pointer included).
    pub fn is_foreign(self) -> bool {
        matches!(self, AccessRelatedness::AncestorAccess | AccessRelatedness::DistantAccess)
    }

    /// Given the AccessRelatedness for the parent node, compute the AccessRelatedness
    /// for the child node. This function assumes that we propagate away from the initial
    /// access.
    pub fn for_child(self) -> Self {
        use AccessRelatedness::*;
        match self {
            AncestorAccess | This => AncestorAccess,
            StrictChildAccess | DistantAccess => DistantAccess,
        }
    }
}