rustc_const_eval/interpret/
eval_context.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
use std::assert_matches::debug_assert_matches;

use either::{Left, Right};
use rustc_abi::{Align, HasDataLayout, Size, TargetDataLayout};
use rustc_errors::DiagCtxtHandle;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::infer::at::ToTrace;
use rustc_infer::traits::ObligationCause;
use rustc_middle::mir::interpret::{ErrorHandled, InvalidMetaKind, ReportedErrorInfo};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::layout::{
    self, FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOfHelpers, TyAndLayout,
};
use rustc_middle::ty::{self, GenericArgsRef, Ty, TyCtxt, TypeFoldable, TypingEnv, Variance};
use rustc_middle::{mir, span_bug};
use rustc_session::Limit;
use rustc_span::Span;
use rustc_target::callconv::FnAbi;
use rustc_trait_selection::traits::ObligationCtxt;
use tracing::{debug, instrument, trace};

use super::{
    Frame, FrameInfo, GlobalId, InterpErrorInfo, InterpErrorKind, InterpResult, MPlaceTy, Machine,
    MemPlaceMeta, Memory, OpTy, Place, PlaceTy, PointerArithmetic, Projectable, Provenance,
    err_inval, interp_ok, throw_inval, throw_ub, throw_ub_custom,
};
use crate::{ReportErrorExt, fluent_generated as fluent, util};

pub struct InterpCx<'tcx, M: Machine<'tcx>> {
    /// Stores the `Machine` instance.
    ///
    /// Note: the stack is provided by the machine.
    pub machine: M,

    /// The results of the type checker, from rustc.
    /// The span in this is the "root" of the evaluation, i.e., the const
    /// we are evaluating (if this is CTFE).
    pub tcx: TyCtxtAt<'tcx>,

    /// The current context in case we're evaluating in a
    /// polymorphic context. This always uses `ty::TypingMode::PostAnalysis`.
    pub(super) typing_env: ty::TypingEnv<'tcx>,

    /// The virtual memory system.
    pub memory: Memory<'tcx, M>,

    /// The recursion limit (cached from `tcx.recursion_limit(())`)
    pub recursion_limit: Limit,
}

impl<'tcx, M: Machine<'tcx>> HasDataLayout for InterpCx<'tcx, M> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}

impl<'tcx, M> layout::HasTyCtxt<'tcx> for InterpCx<'tcx, M>
where
    M: Machine<'tcx>,
{
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        *self.tcx
    }
}

impl<'tcx, M> layout::HasTypingEnv<'tcx> for InterpCx<'tcx, M>
where
    M: Machine<'tcx>,
{
    fn typing_env(&self) -> ty::TypingEnv<'tcx> {
        self.typing_env
    }
}

impl<'tcx, M: Machine<'tcx>> LayoutOfHelpers<'tcx> for InterpCx<'tcx, M> {
    type LayoutOfResult = Result<TyAndLayout<'tcx>, InterpErrorKind<'tcx>>;

    #[inline]
    fn layout_tcx_at_span(&self) -> Span {
        // Using the cheap root span for performance.
        self.tcx.span
    }

    #[inline]
    fn handle_layout_err(
        &self,
        err: LayoutError<'tcx>,
        _: Span,
        _: Ty<'tcx>,
    ) -> InterpErrorKind<'tcx> {
        err_inval!(Layout(err))
    }
}

impl<'tcx, M: Machine<'tcx>> FnAbiOfHelpers<'tcx> for InterpCx<'tcx, M> {
    type FnAbiOfResult = Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, InterpErrorKind<'tcx>>;

    fn handle_fn_abi_err(
        &self,
        err: FnAbiError<'tcx>,
        _span: Span,
        _fn_abi_request: FnAbiRequest<'tcx>,
    ) -> InterpErrorKind<'tcx> {
        match err {
            FnAbiError::Layout(err) => err_inval!(Layout(err)),
            FnAbiError::AdjustForForeignAbi(err) => {
                err_inval!(FnAbiAdjustForForeignAbi(err))
            }
        }
    }
}

/// Test if it is valid for a MIR assignment to assign `src`-typed place to `dest`-typed value.
/// This test should be symmetric, as it is primarily about layout compatibility.
pub(super) fn mir_assign_valid_types<'tcx>(
    tcx: TyCtxt<'tcx>,
    typing_env: TypingEnv<'tcx>,
    src: TyAndLayout<'tcx>,
    dest: TyAndLayout<'tcx>,
) -> bool {
    // Type-changing assignments can happen when subtyping is used. While
    // all normal lifetimes are erased, higher-ranked types with their
    // late-bound lifetimes are still around and can lead to type
    // differences.
    if util::relate_types(tcx, typing_env, Variance::Covariant, src.ty, dest.ty) {
        // Make sure the layout is equal, too -- just to be safe. Miri really
        // needs layout equality. For performance reason we skip this check when
        // the types are equal. Equal types *can* have different layouts when
        // enum downcast is involved (as enum variants carry the type of the
        // enum), but those should never occur in assignments.
        if cfg!(debug_assertions) || src.ty != dest.ty {
            assert_eq!(src.layout, dest.layout);
        }
        true
    } else {
        false
    }
}

/// Use the already known layout if given (but sanity check in debug mode),
/// or compute the layout.
#[cfg_attr(not(debug_assertions), inline(always))]
pub(super) fn from_known_layout<'tcx>(
    tcx: TyCtxtAt<'tcx>,
    typing_env: TypingEnv<'tcx>,
    known_layout: Option<TyAndLayout<'tcx>>,
    compute: impl FnOnce() -> InterpResult<'tcx, TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
    match known_layout {
        None => compute(),
        Some(known_layout) => {
            if cfg!(debug_assertions) {
                let check_layout = compute()?;
                if !mir_assign_valid_types(tcx.tcx, typing_env, check_layout, known_layout) {
                    span_bug!(
                        tcx.span,
                        "expected type differs from actual type.\nexpected: {}\nactual: {}",
                        known_layout.ty,
                        check_layout.ty,
                    );
                }
            }
            interp_ok(known_layout)
        }
    }
}

/// Turn the given error into a human-readable string. Expects the string to be printed, so if
/// `RUSTC_CTFE_BACKTRACE` is set this will show a backtrace of the rustc internals that
/// triggered the error.
///
/// This is NOT the preferred way to render an error; use `report` from `const_eval` instead.
/// However, this is useful when error messages appear in ICEs.
pub fn format_interp_error<'tcx>(dcx: DiagCtxtHandle<'_>, e: InterpErrorInfo<'tcx>) -> String {
    let (e, backtrace) = e.into_parts();
    backtrace.print_backtrace();
    // FIXME(fee1-dead), HACK: we want to use the error as title therefore we can just extract the
    // label and arguments from the InterpError.
    #[allow(rustc::untranslatable_diagnostic)]
    let mut diag = dcx.struct_allow("");
    let msg = e.diagnostic_message();
    e.add_args(&mut diag);
    let s = dcx.eagerly_translate_to_string(msg, diag.args.iter());
    diag.cancel();
    s
}

impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    pub fn new(
        tcx: TyCtxt<'tcx>,
        root_span: Span,
        typing_env: ty::TypingEnv<'tcx>,
        machine: M,
    ) -> Self {
        // Const eval always happens in post analysis mode in order to be able to use the hidden types of
        // opaque types. This is needed for trivial things like `size_of`, but also for using associated
        // types that are not specified in the opaque type. We also use MIR bodies whose opaque types have
        // already been revealed, so we'd be able to at least partially observe the hidden types anyways.
        debug_assert_matches!(typing_env.typing_mode, ty::TypingMode::PostAnalysis);
        InterpCx {
            machine,
            tcx: tcx.at(root_span),
            typing_env,
            memory: Memory::new(),
            recursion_limit: tcx.recursion_limit(),
        }
    }

    /// Returns the span of the currently executed statement/terminator.
    /// This is the span typically used for error reporting.
    #[inline(always)]
    pub fn cur_span(&self) -> Span {
        // This deliberately does *not* honor `requires_caller_location` since it is used for much
        // more than just panics.
        self.stack().last().map_or(self.tcx.span, |f| f.current_span())
    }

    pub(crate) fn stack(&self) -> &[Frame<'tcx, M::Provenance, M::FrameExtra>] {
        M::stack(self)
    }

    #[inline(always)]
    pub(crate) fn stack_mut(&mut self) -> &mut Vec<Frame<'tcx, M::Provenance, M::FrameExtra>> {
        M::stack_mut(self)
    }

    #[inline(always)]
    pub fn frame_idx(&self) -> usize {
        let stack = self.stack();
        assert!(!stack.is_empty());
        stack.len() - 1
    }

    #[inline(always)]
    pub fn frame(&self) -> &Frame<'tcx, M::Provenance, M::FrameExtra> {
        self.stack().last().expect("no call frames exist")
    }

    #[inline(always)]
    pub fn frame_mut(&mut self) -> &mut Frame<'tcx, M::Provenance, M::FrameExtra> {
        self.stack_mut().last_mut().expect("no call frames exist")
    }

    #[inline(always)]
    pub fn body(&self) -> &'tcx mir::Body<'tcx> {
        self.frame().body
    }

    #[inline]
    pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
        ty.is_freeze(*self.tcx, self.typing_env)
    }

    pub fn load_mir(
        &self,
        instance: ty::InstanceKind<'tcx>,
        promoted: Option<mir::Promoted>,
    ) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
        trace!("load mir(instance={:?}, promoted={:?})", instance, promoted);
        let body = if let Some(promoted) = promoted {
            let def = instance.def_id();
            &self.tcx.promoted_mir(def)[promoted]
        } else {
            M::load_mir(self, instance)?
        };
        // do not continue if typeck errors occurred (can only occur in local crate)
        if let Some(err) = body.tainted_by_errors {
            throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error(err)));
        }
        interp_ok(body)
    }

    /// Call this on things you got out of the MIR (so it is as generic as the current
    /// stack frame), to bring it into the proper environment for this interpreter.
    pub(super) fn instantiate_from_current_frame_and_normalize_erasing_regions<
        T: TypeFoldable<TyCtxt<'tcx>>,
    >(
        &self,
        value: T,
    ) -> Result<T, ErrorHandled> {
        self.instantiate_from_frame_and_normalize_erasing_regions(self.frame(), value)
    }

    /// Call this on things you got out of the MIR (so it is as generic as the provided
    /// stack frame), to bring it into the proper environment for this interpreter.
    pub(super) fn instantiate_from_frame_and_normalize_erasing_regions<
        T: TypeFoldable<TyCtxt<'tcx>>,
    >(
        &self,
        frame: &Frame<'tcx, M::Provenance, M::FrameExtra>,
        value: T,
    ) -> Result<T, ErrorHandled> {
        frame
            .instance
            .try_instantiate_mir_and_normalize_erasing_regions(
                *self.tcx,
                self.typing_env,
                ty::EarlyBinder::bind(value),
            )
            .map_err(|_| ErrorHandled::TooGeneric(self.cur_span()))
    }

    /// The `args` are assumed to already be in our interpreter "universe".
    pub(super) fn resolve(
        &self,
        def: DefId,
        args: GenericArgsRef<'tcx>,
    ) -> InterpResult<'tcx, ty::Instance<'tcx>> {
        trace!("resolve: {:?}, {:#?}", def, args);
        trace!("typing_env: {:#?}", self.typing_env);
        trace!("args: {:#?}", args);
        match ty::Instance::try_resolve(*self.tcx, self.typing_env, def, args) {
            Ok(Some(instance)) => interp_ok(instance),
            Ok(None) => throw_inval!(TooGeneric),

            // FIXME(eddyb) this could be a bit more specific than `AlreadyReported`.
            Err(error_guaranteed) => throw_inval!(AlreadyReported(
                ReportedErrorInfo::non_const_eval_error(error_guaranteed)
            )),
        }
    }

    /// Check if the two things are equal in the current param_env, using an infcx to get proper
    /// equality checks.
    #[instrument(level = "trace", skip(self), ret)]
    pub(super) fn eq_in_param_env<T>(&self, a: T, b: T) -> bool
    where
        T: PartialEq + TypeFoldable<TyCtxt<'tcx>> + ToTrace<'tcx>,
    {
        // Fast path: compare directly.
        if a == b {
            return true;
        }
        // Slow path: spin up an inference context to check if these traits are sufficiently equal.
        let (infcx, param_env) = self.tcx.infer_ctxt().build_with_typing_env(self.typing_env);
        let ocx = ObligationCtxt::new(&infcx);
        let cause = ObligationCause::dummy_with_span(self.cur_span());
        // equate the two trait refs after normalization
        let a = ocx.normalize(&cause, param_env, a);
        let b = ocx.normalize(&cause, param_env, b);

        if let Err(terr) = ocx.eq(&cause, param_env, a, b) {
            trace!(?terr);
            return false;
        }

        let errors = ocx.select_all_or_error();
        if !errors.is_empty() {
            trace!(?errors);
            return false;
        }

        // All good.
        true
    }

    /// Walks up the callstack from the intrinsic's callsite, searching for the first callsite in a
    /// frame which is not `#[track_caller]`. This matches the `caller_location` intrinsic,
    /// and is primarily intended for the panic machinery.
    pub(crate) fn find_closest_untracked_caller_location(&self) -> Span {
        for frame in self.stack().iter().rev() {
            debug!("find_closest_untracked_caller_location: checking frame {:?}", frame.instance);

            // Assert that the frame we look at is actually executing code currently
            // (`loc` is `Right` when we are unwinding and the frame does not require cleanup).
            let loc = frame.loc.left().unwrap();

            // This could be a non-`Call` terminator (such as `Drop`), or not a terminator at all
            // (such as `box`). Use the normal span by default.
            let mut source_info = *frame.body.source_info(loc);

            // If this is a `Call` terminator, use the `fn_span` instead.
            let block = &frame.body.basic_blocks[loc.block];
            if loc.statement_index == block.statements.len() {
                debug!(
                    "find_closest_untracked_caller_location: got terminator {:?} ({:?})",
                    block.terminator(),
                    block.terminator().kind,
                );
                if let mir::TerminatorKind::Call { fn_span, .. } = block.terminator().kind {
                    source_info.span = fn_span;
                }
            }

            let caller_location = if frame.instance.def.requires_caller_location(*self.tcx) {
                // We use `Err(())` as indication that we should continue up the call stack since
                // this is a `#[track_caller]` function.
                Some(Err(()))
            } else {
                None
            };
            if let Ok(span) =
                frame.body.caller_location_span(source_info, caller_location, *self.tcx, Ok)
            {
                return span;
            }
        }

        span_bug!(self.cur_span(), "no non-`#[track_caller]` frame found")
    }

    /// Returns the actual dynamic size and alignment of the place at the given type.
    /// Only the "meta" (metadata) part of the place matters.
    /// This can fail to provide an answer for extern types.
    pub(super) fn size_and_align_of(
        &self,
        metadata: &MemPlaceMeta<M::Provenance>,
        layout: &TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx, Option<(Size, Align)>> {
        if layout.is_sized() {
            return interp_ok(Some((layout.size, layout.align.abi)));
        }
        match layout.ty.kind() {
            ty::Adt(..) | ty::Tuple(..) => {
                // First get the size of all statically known fields.
                // Don't use type_of::sizing_type_of because that expects t to be sized,
                // and it also rounds up to alignment, which we want to avoid,
                // as the unsized field's alignment could be smaller.
                assert!(!layout.ty.is_simd());
                assert!(layout.fields.count() > 0);
                trace!("DST layout: {:?}", layout);

                let unsized_offset_unadjusted = layout.fields.offset(layout.fields.count() - 1);
                let sized_align = layout.align.abi;

                // Recurse to get the size of the dynamically sized field (must be
                // the last field). Can't have foreign types here, how would we
                // adjust alignment and size for them?
                let field = layout.field(self, layout.fields.count() - 1);
                let Some((unsized_size, mut unsized_align)) =
                    self.size_and_align_of(metadata, &field)?
                else {
                    // A field with an extern type. We don't know the actual dynamic size
                    // or the alignment.
                    return interp_ok(None);
                };

                // # First compute the dynamic alignment

                // Packed type alignment needs to be capped.
                if let ty::Adt(def, _) = layout.ty.kind() {
                    if let Some(packed) = def.repr().pack {
                        unsized_align = unsized_align.min(packed);
                    }
                }

                // Choose max of two known alignments (combined value must
                // be aligned according to more restrictive of the two).
                let full_align = sized_align.max(unsized_align);

                // # Then compute the dynamic size

                let unsized_offset_adjusted = unsized_offset_unadjusted.align_to(unsized_align);
                let full_size = (unsized_offset_adjusted + unsized_size).align_to(full_align);

                // Just for our sanitiy's sake, assert that this is equal to what codegen would compute.
                assert_eq!(
                    full_size,
                    (unsized_offset_unadjusted + unsized_size).align_to(full_align)
                );

                // Check if this brought us over the size limit.
                if full_size > self.max_size_of_val() {
                    throw_ub!(InvalidMeta(InvalidMetaKind::TooBig));
                }
                interp_ok(Some((full_size, full_align)))
            }
            ty::Dynamic(expected_trait, _, ty::Dyn) => {
                let vtable = metadata.unwrap_meta().to_pointer(self)?;
                // Read size and align from vtable (already checks size).
                interp_ok(Some(self.get_vtable_size_and_align(vtable, Some(expected_trait))?))
            }

            ty::Slice(_) | ty::Str => {
                let len = metadata.unwrap_meta().to_target_usize(self)?;
                let elem = layout.field(self, 0);

                // Make sure the slice is not too big.
                let size = elem.size.bytes().saturating_mul(len); // we rely on `max_size_of_val` being smaller than `u64::MAX`.
                let size = Size::from_bytes(size);
                if size > self.max_size_of_val() {
                    throw_ub!(InvalidMeta(InvalidMetaKind::SliceTooBig));
                }
                interp_ok(Some((size, elem.align.abi)))
            }

            ty::Foreign(_) => interp_ok(None),

            _ => span_bug!(self.cur_span(), "size_and_align_of::<{}> not supported", layout.ty),
        }
    }
    #[inline]
    pub fn size_and_align_of_mplace(
        &self,
        mplace: &MPlaceTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, Option<(Size, Align)>> {
        self.size_and_align_of(&mplace.meta(), &mplace.layout)
    }

    /// Jump to the given block.
    #[inline]
    pub fn go_to_block(&mut self, target: mir::BasicBlock) {
        self.frame_mut().loc = Left(mir::Location { block: target, statement_index: 0 });
    }

    /// *Return* to the given `target` basic block.
    /// Do *not* use for unwinding! Use `unwind_to_block` instead.
    ///
    /// If `target` is `None`, that indicates the function cannot return, so we raise UB.
    pub fn return_to_block(&mut self, target: Option<mir::BasicBlock>) -> InterpResult<'tcx> {
        if let Some(target) = target {
            self.go_to_block(target);
            interp_ok(())
        } else {
            throw_ub!(Unreachable)
        }
    }

    /// *Unwind* to the given `target` basic block.
    /// Do *not* use for returning! Use `return_to_block` instead.
    ///
    /// If `target` is `UnwindAction::Continue`, that indicates the function does not need cleanup
    /// during unwinding, and we will just keep propagating that upwards.
    ///
    /// If `target` is `UnwindAction::Unreachable`, that indicates the function does not allow
    /// unwinding, and doing so is UB.
    #[cold] // usually we have normal returns, not unwinding
    pub fn unwind_to_block(&mut self, target: mir::UnwindAction) -> InterpResult<'tcx> {
        self.frame_mut().loc = match target {
            mir::UnwindAction::Cleanup(block) => Left(mir::Location { block, statement_index: 0 }),
            mir::UnwindAction::Continue => Right(self.frame_mut().body.span),
            mir::UnwindAction::Unreachable => {
                throw_ub_custom!(fluent::const_eval_unreachable_unwind);
            }
            mir::UnwindAction::Terminate(reason) => {
                self.frame_mut().loc = Right(self.frame_mut().body.span);
                M::unwind_terminate(self, reason)?;
                // This might have pushed a new stack frame, or it terminated execution.
                // Either way, `loc` will not be updated.
                return interp_ok(());
            }
        };
        interp_ok(())
    }

    /// Call a query that can return `ErrorHandled`. Should be used for statics and other globals.
    /// (`mir::Const`/`ty::Const` have `eval` methods that can be used directly instead.)
    pub fn ctfe_query<T>(
        &self,
        query: impl FnOnce(TyCtxtAt<'tcx>) -> Result<T, ErrorHandled>,
    ) -> Result<T, ErrorHandled> {
        // Use a precise span for better cycle errors.
        query(self.tcx.at(self.cur_span())).map_err(|err| {
            err.emit_note(*self.tcx);
            err
        })
    }

    pub fn eval_global(
        &self,
        instance: ty::Instance<'tcx>,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
        let gid = GlobalId { instance, promoted: None };
        let val = if self.tcx.is_static(gid.instance.def_id()) {
            let alloc_id = self.tcx.reserve_and_set_static_alloc(gid.instance.def_id());

            let ty = instance.ty(self.tcx.tcx, self.typing_env);
            mir::ConstAlloc { alloc_id, ty }
        } else {
            self.ctfe_query(|tcx| tcx.eval_to_allocation_raw(self.typing_env.as_query_input(gid)))?
        };
        self.raw_const_to_mplace(val)
    }

    pub fn eval_mir_constant(
        &self,
        val: &mir::Const<'tcx>,
        span: Span,
        layout: Option<TyAndLayout<'tcx>>,
    ) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
        M::eval_mir_constant(self, *val, span, layout, |ecx, val, span, layout| {
            let const_val = val.eval(*ecx.tcx, ecx.typing_env, span).map_err(|err| {
                if M::ALL_CONSTS_ARE_PRECHECKED {
                    match err {
                        ErrorHandled::TooGeneric(..) => {},
                        ErrorHandled::Reported(reported, span) => {
                            if reported.is_allowed_in_infallible() {
                                // These errors can just sometimes happen, even when the expression
                                // is nominally "infallible", e.g. when running out of memory
                                // or when some layout could not be computed.
                            } else {
                                // Looks like the const is not captured by `required_consts`, that's bad.
                                span_bug!(span, "interpret const eval failure of {val:?} which is not in required_consts");
                            }
                        }
                    }
                }
                err.emit_note(*ecx.tcx);
                err
            })?;
            ecx.const_val_to_op(const_val, val.ty(), layout)
        })
    }

    #[must_use]
    pub fn dump_place(&self, place: &PlaceTy<'tcx, M::Provenance>) -> PlacePrinter<'_, 'tcx, M> {
        PlacePrinter { ecx: self, place: *place.place() }
    }

    #[must_use]
    pub fn generate_stacktrace(&self) -> Vec<FrameInfo<'tcx>> {
        Frame::generate_stacktrace_from_stack(self.stack())
    }

    pub fn adjust_nan<F1, F2>(&self, f: F2, inputs: &[F1]) -> F2
    where
        F1: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F2>,
        F2: rustc_apfloat::Float,
    {
        if f.is_nan() { M::generate_nan(self, inputs) } else { f }
    }
}

#[doc(hidden)]
/// Helper struct for the `dump_place` function.
pub struct PlacePrinter<'a, 'tcx, M: Machine<'tcx>> {
    ecx: &'a InterpCx<'tcx, M>,
    place: Place<M::Provenance>,
}

impl<'a, 'tcx, M: Machine<'tcx>> std::fmt::Debug for PlacePrinter<'a, 'tcx, M> {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self.place {
            Place::Local { local, offset, locals_addr } => {
                debug_assert_eq!(locals_addr, self.ecx.frame().locals_addr());
                let mut allocs = Vec::new();
                write!(fmt, "{local:?}")?;
                if let Some(offset) = offset {
                    write!(fmt, "+{:#x}", offset.bytes())?;
                }
                write!(fmt, ":")?;

                self.ecx.frame().locals[local].print(&mut allocs, fmt)?;

                write!(fmt, ": {:?}", self.ecx.dump_allocs(allocs.into_iter().flatten().collect()))
            }
            Place::Ptr(mplace) => match mplace.ptr.provenance.and_then(Provenance::get_alloc_id) {
                Some(alloc_id) => {
                    write!(fmt, "by ref {:?}: {:?}", mplace.ptr, self.ecx.dump_alloc(alloc_id))
                }
                ptr => write!(fmt, " integral by ref: {ptr:?}"),
            },
        }
    }
}