rustc_parse/parser/path.rs
1use std::mem;
2
3use ast::token::IdentIsRaw;
4use rustc_ast::ptr::P;
5use rustc_ast::token::{self, Delimiter, MetaVarKind, Token, TokenKind};
6use rustc_ast::{
7 self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
8 AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
9 Path, PathSegment, QSelf,
10};
11use rustc_errors::{Applicability, Diag, PResult};
12use rustc_span::{BytePos, Ident, Span, kw, sym};
13use thin_vec::ThinVec;
14use tracing::debug;
15
16use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
17use super::{Parser, Restrictions, TokenType};
18use crate::errors::{self, PathSingleColon, PathTripleColon};
19use crate::exp;
20use crate::parser::{CommaRecoveryMode, RecoverColon, RecoverComma};
21
22/// Specifies how to parse a path.
23#[derive(Copy, Clone, PartialEq)]
24pub(super) enum PathStyle {
25 /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
26 /// with something else. For example, in expressions `segment < ....` can be interpreted
27 /// as a comparison and `segment ( ....` can be interpreted as a function call.
28 /// In all such contexts the non-path interpretation is preferred by default for practical
29 /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
30 /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
31 ///
32 /// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
33 /// we encounter it.
34 Expr,
35 /// The same as `Expr`, but may be followed by a `:`.
36 /// For example, this code:
37 /// ```rust
38 /// struct S;
39 ///
40 /// let S: S;
41 /// // ^ Followed by a `:`
42 /// ```
43 Pat,
44 /// In other contexts, notably in types, no ambiguity exists and paths can be written
45 /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
46 /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
47 Type,
48 /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
49 /// visibilities or attributes.
50 /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
51 /// (paths in "mod" contexts have to be checked later for absence of generic arguments
52 /// anyway, due to macros), but it is used to avoid weird suggestions about expected
53 /// tokens when something goes wrong.
54 Mod,
55}
56
57impl PathStyle {
58 fn has_generic_ambiguity(&self) -> bool {
59 matches!(self, Self::Expr | Self::Pat)
60 }
61}
62
63impl<'a> Parser<'a> {
64 /// Parses a qualified path.
65 /// Assumes that the leading `<` has been parsed already.
66 ///
67 /// `qualified_path = <type [as trait_ref]>::path`
68 ///
69 /// # Examples
70 /// `<T>::default`
71 /// `<T as U>::a`
72 /// `<T as U>::F::a<S>` (without disambiguator)
73 /// `<T as U>::F::a::<S>` (with disambiguator)
74 pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (P<QSelf>, Path)> {
75 let lo = self.prev_token.span;
76 let ty = self.parse_ty()?;
77
78 // `path` will contain the prefix of the path up to the `>`,
79 // if any (e.g., `U` in the `<T as U>::*` examples
80 // above). `path_span` has the span of that path, or an empty
81 // span in the case of something like `<T>::Bar`.
82 let (mut path, path_span);
83 if self.eat_keyword(exp!(As)) {
84 let path_lo = self.token.span;
85 path = self.parse_path(PathStyle::Type)?;
86 path_span = path_lo.to(self.prev_token.span);
87 } else {
88 path_span = self.token.span.to(self.token.span);
89 path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
90 }
91
92 // See doc comment for `unmatched_angle_bracket_count`.
93 self.expect(exp!(Gt))?;
94 if self.unmatched_angle_bracket_count > 0 {
95 self.unmatched_angle_bracket_count -= 1;
96 debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
97 }
98
99 let is_import_coupler = self.is_import_coupler();
100 if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
101 self.expect(exp!(PathSep))?;
102 }
103
104 let qself = P(QSelf { ty, path_span, position: path.segments.len() });
105 if !is_import_coupler {
106 self.parse_path_segments(&mut path.segments, style, None)?;
107 }
108
109 Ok((
110 qself,
111 Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
112 ))
113 }
114
115 /// Recover from an invalid single colon, when the user likely meant a qualified path.
116 /// We avoid emitting this if not followed by an identifier, as our assumption that the user
117 /// intended this to be a qualified path may not be correct.
118 ///
119 /// ```ignore (diagnostics)
120 /// <Bar as Baz<T>>:Qux
121 /// ^ help: use double colon
122 /// ```
123 fn recover_colon_before_qpath_proj(&mut self) -> bool {
124 if !self.check_noexpect(&TokenKind::Colon)
125 || self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
126 {
127 return false;
128 }
129
130 self.bump(); // colon
131
132 self.dcx()
133 .struct_span_err(
134 self.prev_token.span,
135 "found single colon before projection in qualified path",
136 )
137 .with_span_suggestion(
138 self.prev_token.span,
139 "use double colon",
140 "::",
141 Applicability::MachineApplicable,
142 )
143 .emit();
144
145 true
146 }
147
148 pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
149 self.parse_path_inner(style, None)
150 }
151
152 /// Parses simple paths.
153 ///
154 /// `path = [::] segment+`
155 /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
156 ///
157 /// # Examples
158 /// `a::b::C<D>` (without disambiguator)
159 /// `a::b::C::<D>` (with disambiguator)
160 /// `Fn(Args)` (without disambiguator)
161 /// `Fn::(Args)` (with disambiguator)
162 pub(super) fn parse_path_inner(
163 &mut self,
164 style: PathStyle,
165 ty_generics: Option<&Generics>,
166 ) -> PResult<'a, Path> {
167 let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
168 // Ensure generic arguments don't end up in attribute paths, such as:
169 //
170 // macro_rules! m {
171 // ($p:path) => { #[$p] struct S; }
172 // }
173 //
174 // m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
175 //
176 if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
177 {
178 let span = path
179 .segments
180 .iter()
181 .filter_map(|segment| segment.args.as_ref())
182 .map(|arg| arg.span())
183 .collect::<Vec<_>>();
184 parser.dcx().emit_err(errors::GenericsInPath { span });
185 // Ignore these arguments to prevent unexpected behaviors.
186 let segments = path
187 .segments
188 .iter()
189 .map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
190 .collect();
191 Path { segments, ..path }
192 } else {
193 path
194 }
195 };
196
197 if let Some(path) =
198 self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
199 {
200 return Ok(reject_generics_if_mod_style(self, path));
201 }
202
203 // If we have a `ty` metavar in the form of a path, reparse it directly as a path, instead
204 // of reparsing it as a `ty` and then extracting the path.
205 if let Some(path) = self.eat_metavar_seq(MetaVarKind::Ty { is_path: true }, |this| {
206 this.parse_path(PathStyle::Type)
207 }) {
208 return Ok(reject_generics_if_mod_style(self, path));
209 }
210
211 let lo = self.token.span;
212 let mut segments = ThinVec::new();
213 let mod_sep_ctxt = self.token.span.ctxt();
214 if self.eat_path_sep() {
215 segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
216 }
217 self.parse_path_segments(&mut segments, style, ty_generics)?;
218 Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
219 }
220
221 pub(super) fn parse_path_segments(
222 &mut self,
223 segments: &mut ThinVec<PathSegment>,
224 style: PathStyle,
225 ty_generics: Option<&Generics>,
226 ) -> PResult<'a, ()> {
227 loop {
228 let segment = self.parse_path_segment(style, ty_generics)?;
229 if style.has_generic_ambiguity() {
230 // In order to check for trailing angle brackets, we must have finished
231 // recursing (`parse_path_segment` can indirectly call this function),
232 // that is, the next token must be the highlighted part of the below example:
233 //
234 // `Foo::<Bar as Baz<T>>::Qux`
235 // ^ here
236 //
237 // As opposed to the below highlight (if we had only finished the first
238 // recursion):
239 //
240 // `Foo::<Bar as Baz<T>>::Qux`
241 // ^ here
242 //
243 // `PathStyle::Expr` is only provided at the root invocation and never in
244 // `parse_path_segment` to recurse and therefore can be checked to maintain
245 // this invariant.
246 self.check_trailing_angle_brackets(&segment, &[exp!(PathSep)]);
247 }
248 segments.push(segment);
249
250 if self.is_import_coupler() || !self.eat_path_sep() {
251 let ok_for_recovery = self.may_recover()
252 && match style {
253 PathStyle::Expr => true,
254 PathStyle::Type if let Some((ident, _)) = self.prev_token.ident() => {
255 self.token == token::Colon
256 && ident.as_str().chars().all(|c| c.is_lowercase())
257 && self.token.span.lo() == self.prev_token.span.hi()
258 && self
259 .look_ahead(1, |token| self.token.span.hi() == token.span.lo())
260 }
261 _ => false,
262 };
263 if ok_for_recovery
264 && self.token == token::Colon
265 && self.look_ahead(1, |token| token.is_ident() && !token.is_reserved_ident())
266 {
267 // Emit a special error message for `a::b:c` to help users
268 // otherwise, `a: c` might have meant to introduce a new binding
269 if self.token.span.lo() == self.prev_token.span.hi()
270 && self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
271 {
272 self.bump(); // bump past the colon
273 self.dcx().emit_err(PathSingleColon {
274 span: self.prev_token.span,
275 suggestion: self.prev_token.span.shrink_to_hi(),
276 type_ascription: self.psess.unstable_features.is_nightly_build(),
277 });
278 }
279 continue;
280 }
281
282 return Ok(());
283 }
284 }
285 }
286
287 /// Eat `::` or, potentially, `:::`.
288 #[must_use]
289 pub(super) fn eat_path_sep(&mut self) -> bool {
290 let result = self.eat(exp!(PathSep));
291 if result && self.may_recover() {
292 if self.eat_noexpect(&token::Colon) {
293 self.dcx().emit_err(PathTripleColon { span: self.prev_token.span });
294 }
295 }
296 result
297 }
298
299 pub(super) fn parse_path_segment(
300 &mut self,
301 style: PathStyle,
302 ty_generics: Option<&Generics>,
303 ) -> PResult<'a, PathSegment> {
304 let ident = self.parse_path_segment_ident()?;
305 let is_args_start = |token: &Token| {
306 matches!(
307 token.kind,
308 token::Lt | token::Shl | token::OpenDelim(Delimiter::Parenthesis) | token::LArrow
309 )
310 };
311 let check_args_start = |this: &mut Self| {
312 this.expected_token_types.insert(TokenType::Lt);
313 this.expected_token_types.insert(TokenType::OpenParen);
314 is_args_start(&this.token)
315 };
316
317 Ok(
318 if style == PathStyle::Type && check_args_start(self)
319 || style != PathStyle::Mod && self.check_path_sep_and_look_ahead(is_args_start)
320 {
321 // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
322 // it isn't, then we reset the unmatched angle bracket count as we're about to start
323 // parsing a new path.
324 if style == PathStyle::Expr {
325 self.unmatched_angle_bracket_count = 0;
326 }
327
328 // Generic arguments are found - `<`, `(`, `::<` or `::(`.
329 // First, eat `::` if it exists.
330 let _ = self.eat_path_sep();
331
332 let lo = self.token.span;
333 let args = if self.eat_lt() {
334 // `<'a, T, A = U>`
335 let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
336 style,
337 lo,
338 ty_generics,
339 )?;
340 self.expect_gt().map_err(|mut err| {
341 // Try to recover a `:` into a `::`
342 if self.token == token::Colon
343 && self.look_ahead(1, |token| {
344 token.is_ident() && !token.is_reserved_ident()
345 })
346 {
347 err.cancel();
348 err = self.dcx().create_err(PathSingleColon {
349 span: self.token.span,
350 suggestion: self.prev_token.span.shrink_to_hi(),
351 type_ascription: self.psess.unstable_features.is_nightly_build(),
352 });
353 }
354 // Attempt to find places where a missing `>` might belong.
355 else if let Some(arg) = args
356 .iter()
357 .rev()
358 .find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
359 {
360 err.span_suggestion_verbose(
361 arg.span().shrink_to_hi(),
362 "you might have meant to end the type parameters here",
363 ">",
364 Applicability::MaybeIncorrect,
365 );
366 }
367 err
368 })?;
369 let span = lo.to(self.prev_token.span);
370 AngleBracketedArgs { args, span }.into()
371 } else if self.token == token::OpenDelim(Delimiter::Parenthesis)
372 // FIXME(return_type_notation): Could also recover `...` here.
373 && self.look_ahead(1, |t| *t == token::DotDot)
374 {
375 self.bump(); // (
376 self.bump(); // ..
377 self.expect(exp!(CloseParen))?;
378 let span = lo.to(self.prev_token.span);
379
380 self.psess.gated_spans.gate(sym::return_type_notation, span);
381
382 let prev_lo = self.prev_token.span.shrink_to_hi();
383 if self.eat_noexpect(&token::RArrow) {
384 let lo = self.prev_token.span;
385 let ty = self.parse_ty()?;
386 let span = lo.to(ty.span);
387 let suggestion = prev_lo.to(ty.span);
388 self.dcx()
389 .emit_err(errors::BadReturnTypeNotationOutput { span, suggestion });
390 }
391
392 P(ast::GenericArgs::ParenthesizedElided(span))
393 } else {
394 // `(T, U) -> R`
395
396 let prev_token_before_parsing = self.prev_token.clone();
397 let token_before_parsing = self.token.clone();
398 let mut snapshot = None;
399 if self.may_recover()
400 && prev_token_before_parsing == token::PathSep
401 && (style == PathStyle::Expr && self.token.can_begin_expr()
402 || style == PathStyle::Pat
403 && self.token.can_begin_pattern(token::NtPatKind::PatParam {
404 inferred: false,
405 }))
406 {
407 snapshot = Some(self.create_snapshot_for_diagnostic());
408 }
409
410 let (inputs, _) = match self.parse_paren_comma_seq(|p| p.parse_ty()) {
411 Ok(output) => output,
412 Err(mut error) if prev_token_before_parsing == token::PathSep => {
413 error.span_label(
414 prev_token_before_parsing.span.to(token_before_parsing.span),
415 "while parsing this parenthesized list of type arguments starting here",
416 );
417
418 if let Some(mut snapshot) = snapshot {
419 snapshot.recover_fn_call_leading_path_sep(
420 style,
421 prev_token_before_parsing,
422 &mut error,
423 )
424 }
425
426 return Err(error);
427 }
428 Err(error) => return Err(error),
429 };
430 let inputs_span = lo.to(self.prev_token.span);
431 let output =
432 self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
433 let span = ident.span.to(self.prev_token.span);
434 ParenthesizedArgs { span, inputs, inputs_span, output }.into()
435 };
436
437 PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
438 } else {
439 // Generic arguments are not found.
440 PathSegment::from_ident(ident)
441 },
442 )
443 }
444
445 pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
446 match self.token.ident() {
447 Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
448 self.bump();
449 Ok(ident)
450 }
451 _ => self.parse_ident(),
452 }
453 }
454
455 /// Recover `$path::(...)` as `$path(...)`.
456 ///
457 /// ```ignore (diagnostics)
458 /// foo::(420, "bar")
459 /// ^^ remove extra separator to make the function call
460 /// // or
461 /// match x {
462 /// Foo::(420, "bar") => { ... },
463 /// ^^ remove extra separator to turn this into tuple struct pattern
464 /// _ => { ... },
465 /// }
466 /// ```
467 fn recover_fn_call_leading_path_sep(
468 &mut self,
469 style: PathStyle,
470 prev_token_before_parsing: Token,
471 error: &mut Diag<'_>,
472 ) {
473 match style {
474 PathStyle::Expr
475 if let Ok(_) = self
476 .parse_paren_comma_seq(|p| p.parse_expr())
477 .map_err(|error| error.cancel()) => {}
478 PathStyle::Pat
479 if let Ok(_) = self
480 .parse_paren_comma_seq(|p| {
481 p.parse_pat_allow_top_guard(
482 None,
483 RecoverComma::No,
484 RecoverColon::No,
485 CommaRecoveryMode::LikelyTuple,
486 )
487 })
488 .map_err(|error| error.cancel()) => {}
489 _ => {
490 return;
491 }
492 }
493
494 if let token::PathSep | token::RArrow = self.token.kind {
495 return;
496 }
497
498 error.span_suggestion_verbose(
499 prev_token_before_parsing.span,
500 format!(
501 "consider removing the `::` here to {}",
502 match style {
503 PathStyle::Expr => "call the expression",
504 PathStyle::Pat => "turn this into a tuple struct pattern",
505 _ => {
506 return;
507 }
508 }
509 ),
510 "",
511 Applicability::MaybeIncorrect,
512 );
513 }
514
515 /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
516 /// For the purposes of understanding the parsing logic of generic arguments, this function
517 /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
518 /// had the correct amount of leading angle brackets.
519 ///
520 /// ```ignore (diagnostics)
521 /// bar::<<<<T as Foo>::Output>();
522 /// ^^ help: remove extra angle brackets
523 /// ```
524 fn parse_angle_args_with_leading_angle_bracket_recovery(
525 &mut self,
526 style: PathStyle,
527 lo: Span,
528 ty_generics: Option<&Generics>,
529 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
530 // We need to detect whether there are extra leading left angle brackets and produce an
531 // appropriate error and suggestion. This cannot be implemented by looking ahead at
532 // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
533 // then there won't be matching `>` tokens to find.
534 //
535 // To explain how this detection works, consider the following example:
536 //
537 // ```ignore (diagnostics)
538 // bar::<<<<T as Foo>::Output>();
539 // ^^ help: remove extra angle brackets
540 // ```
541 //
542 // Parsing of the left angle brackets starts in this function. We start by parsing the
543 // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
544 // `eat_lt`):
545 //
546 // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
547 // *Unmatched count:* 1
548 // *`parse_path_segment` calls deep:* 0
549 //
550 // This has the effect of recursing as this function is called if a `<` character
551 // is found within the expected generic arguments:
552 //
553 // *Upcoming tokens:* `<<<T as Foo>::Output>;`
554 // *Unmatched count:* 2
555 // *`parse_path_segment` calls deep:* 1
556 //
557 // Eventually we will have recursed until having consumed all of the `<` tokens and
558 // this will be reflected in the count:
559 //
560 // *Upcoming tokens:* `T as Foo>::Output>;`
561 // *Unmatched count:* 4
562 // `parse_path_segment` calls deep:* 3
563 //
564 // The parser will continue until reaching the first `>` - this will decrement the
565 // unmatched angle bracket count and return to the parent invocation of this function
566 // having succeeded in parsing:
567 //
568 // *Upcoming tokens:* `::Output>;`
569 // *Unmatched count:* 3
570 // *`parse_path_segment` calls deep:* 2
571 //
572 // This will continue until the next `>` character which will also return successfully
573 // to the parent invocation of this function and decrement the count:
574 //
575 // *Upcoming tokens:* `;`
576 // *Unmatched count:* 2
577 // *`parse_path_segment` calls deep:* 1
578 //
579 // At this point, this function will expect to find another matching `>` character but
580 // won't be able to and will return an error. This will continue all the way up the
581 // call stack until the first invocation:
582 //
583 // *Upcoming tokens:* `;`
584 // *Unmatched count:* 2
585 // *`parse_path_segment` calls deep:* 0
586 //
587 // In doing this, we have managed to work out how many unmatched leading left angle
588 // brackets there are, but we cannot recover as the unmatched angle brackets have
589 // already been consumed. To remedy this, we keep a snapshot of the parser state
590 // before we do the above. We can then inspect whether we ended up with a parsing error
591 // and unmatched left angle brackets and if so, restore the parser state before we
592 // consumed any `<` characters to emit an error and consume the erroneous tokens to
593 // recover by attempting to parse again.
594 //
595 // In practice, the recursion of this function is indirect and there will be other
596 // locations that consume some `<` characters - as long as we update the count when
597 // this happens, it isn't an issue.
598
599 let is_first_invocation = style == PathStyle::Expr;
600 // Take a snapshot before attempting to parse - we can restore this later.
601 let snapshot = is_first_invocation.then(|| self.clone());
602
603 self.angle_bracket_nesting += 1;
604 debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
605 match self.parse_angle_args(ty_generics) {
606 Ok(args) => {
607 self.angle_bracket_nesting -= 1;
608 Ok(args)
609 }
610 Err(e) if self.angle_bracket_nesting > 10 => {
611 self.angle_bracket_nesting -= 1;
612 // When encountering severely malformed code where there are several levels of
613 // nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
614 // behavior by bailing out earlier (#117080).
615 e.emit().raise_fatal();
616 }
617 Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
618 self.angle_bracket_nesting -= 1;
619
620 // Swap `self` with our backup of the parser state before attempting to parse
621 // generic arguments.
622 let snapshot = mem::replace(self, snapshot.unwrap());
623
624 // Eat the unmatched angle brackets.
625 let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
626 .fold(true, |a, _| a && self.eat_lt());
627
628 if !all_angle_brackets {
629 // If there are other tokens in between the extraneous `<`s, we cannot simply
630 // suggest to remove them. This check also prevents us from accidentally ending
631 // up in the middle of a multibyte character (issue #84104).
632 let _ = mem::replace(self, snapshot);
633 Err(e)
634 } else {
635 // Cancel error from being unable to find `>`. We know the error
636 // must have been this due to a non-zero unmatched angle bracket
637 // count.
638 e.cancel();
639
640 debug!(
641 "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
642 snapshot.count={:?}",
643 snapshot.unmatched_angle_bracket_count,
644 );
645
646 // Make a span over ${unmatched angle bracket count} characters.
647 // This is safe because `all_angle_brackets` ensures that there are only `<`s,
648 // i.e. no multibyte characters, in this range.
649 let span = lo
650 .with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
651 self.dcx().emit_err(errors::UnmatchedAngle {
652 span,
653 plural: snapshot.unmatched_angle_bracket_count > 1,
654 });
655
656 // Try again without unmatched angle bracket characters.
657 self.parse_angle_args(ty_generics)
658 }
659 }
660 Err(e) => {
661 self.angle_bracket_nesting -= 1;
662 Err(e)
663 }
664 }
665 }
666
667 /// Parses (possibly empty) list of generic arguments / associated item constraints,
668 /// possibly including trailing comma.
669 pub(super) fn parse_angle_args(
670 &mut self,
671 ty_generics: Option<&Generics>,
672 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
673 let mut args = ThinVec::new();
674 while let Some(arg) = self.parse_angle_arg(ty_generics)? {
675 args.push(arg);
676 if !self.eat(exp!(Comma)) {
677 if self.check_noexpect(&TokenKind::Semi)
678 && self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
679 {
680 // Add `>` to the list of expected tokens.
681 self.check(exp!(Gt));
682 // Handle `,` to `;` substitution
683 let mut err = self.unexpected().unwrap_err();
684 self.bump();
685 err.span_suggestion_verbose(
686 self.prev_token.span.until(self.token.span),
687 "use a comma to separate type parameters",
688 ", ",
689 Applicability::MachineApplicable,
690 );
691 err.emit();
692 continue;
693 }
694 if !self.token.kind.should_end_const_arg()
695 && self.handle_ambiguous_unbraced_const_arg(&mut args)?
696 {
697 // We've managed to (partially) recover, so continue trying to parse
698 // arguments.
699 continue;
700 }
701 break;
702 }
703 }
704 Ok(args)
705 }
706
707 /// Parses a single argument in the angle arguments `<...>` of a path segment.
708 fn parse_angle_arg(
709 &mut self,
710 ty_generics: Option<&Generics>,
711 ) -> PResult<'a, Option<AngleBracketedArg>> {
712 let lo = self.token.span;
713 let arg = self.parse_generic_arg(ty_generics)?;
714 match arg {
715 Some(arg) => {
716 // we are using noexpect here because we first want to find out if either `=` or `:`
717 // is present and then use that info to push the other token onto the tokens list
718 let separated =
719 self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
720 if separated && (self.check(exp!(Colon)) | self.check(exp!(Eq))) {
721 let arg_span = arg.span();
722 let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
723 Ok(ident_gen_args) => ident_gen_args,
724 Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
725 };
726 if binder {
727 // FIXME(compiler-errors): this could be improved by suggesting lifting
728 // this up to the trait, at least before this becomes real syntax.
729 // e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
730 return Err(self.dcx().struct_span_err(
731 arg_span,
732 "`for<...>` is not allowed on associated type bounds",
733 ));
734 }
735 let kind = if self.eat(exp!(Colon)) {
736 AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
737 } else if self.eat(exp!(Eq)) {
738 self.parse_assoc_equality_term(
739 ident,
740 gen_args.as_ref(),
741 self.prev_token.span,
742 )?
743 } else {
744 unreachable!();
745 };
746
747 let span = lo.to(self.prev_token.span);
748
749 let constraint =
750 AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
751 Ok(Some(AngleBracketedArg::Constraint(constraint)))
752 } else {
753 // we only want to suggest `:` and `=` in contexts where the previous token
754 // is an ident and the current token or the next token is an ident
755 if self.prev_token.is_ident()
756 && (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
757 {
758 self.check(exp!(Colon));
759 self.check(exp!(Eq));
760 }
761 Ok(Some(AngleBracketedArg::Arg(arg)))
762 }
763 }
764 _ => Ok(None),
765 }
766 }
767
768 /// Parse the term to the right of an associated item equality constraint.
769 ///
770 /// That is, parse `$term` in `Item = $term` where `$term` is a type or
771 /// a const expression (wrapped in curly braces if complex).
772 fn parse_assoc_equality_term(
773 &mut self,
774 ident: Ident,
775 gen_args: Option<&GenericArgs>,
776 eq: Span,
777 ) -> PResult<'a, AssocItemConstraintKind> {
778 let arg = self.parse_generic_arg(None)?;
779 let span = ident.span.to(self.prev_token.span);
780 let term = match arg {
781 Some(GenericArg::Type(ty)) => ty.into(),
782 Some(GenericArg::Const(c)) => {
783 self.psess.gated_spans.gate(sym::associated_const_equality, span);
784 c.into()
785 }
786 Some(GenericArg::Lifetime(lt)) => {
787 let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
788 span: lt.ident.span,
789 lifetime: lt.ident,
790 binding_label: span,
791 colon_sugg: gen_args
792 .map_or(ident.span, |args| args.span())
793 .between(lt.ident.span),
794 });
795 self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
796 }
797 None => {
798 let after_eq = eq.shrink_to_hi();
799 let before_next = self.token.span.shrink_to_lo();
800 let mut err = self
801 .dcx()
802 .struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
803 if matches!(self.token.kind, token::Comma | token::Gt) {
804 err.span_suggestion(
805 self.psess.source_map().next_point(eq).to(before_next),
806 "to constrain the associated type, add a type after `=`",
807 " TheType",
808 Applicability::HasPlaceholders,
809 );
810 err.span_suggestion(
811 eq.to(before_next),
812 format!("remove the `=` if `{ident}` is a type"),
813 "",
814 Applicability::MaybeIncorrect,
815 )
816 } else {
817 err.span_label(
818 self.token.span,
819 format!("expected type, found {}", super::token_descr(&self.token)),
820 )
821 };
822 return Err(err);
823 }
824 };
825 Ok(AssocItemConstraintKind::Equality { term })
826 }
827
828 /// We do not permit arbitrary expressions as const arguments. They must be one of:
829 /// - An expression surrounded in `{}`.
830 /// - A literal.
831 /// - A numeric literal prefixed by `-`.
832 /// - A single-segment path.
833 pub(super) fn expr_is_valid_const_arg(&self, expr: &P<rustc_ast::Expr>) -> bool {
834 match &expr.kind {
835 ast::ExprKind::Block(_, _)
836 | ast::ExprKind::Lit(_)
837 | ast::ExprKind::IncludedBytes(..) => true,
838 ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
839 matches!(expr.kind, ast::ExprKind::Lit(_))
840 }
841 // We can only resolve single-segment paths at the moment, because multi-segment paths
842 // require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
843 ast::ExprKind::Path(None, path)
844 if let [segment] = path.segments.as_slice()
845 && segment.args.is_none() =>
846 {
847 true
848 }
849 _ => false,
850 }
851 }
852
853 /// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
854 /// the caller.
855 pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
856 // Parse const argument.
857 let value = if let token::OpenDelim(Delimiter::Brace) = self.token.kind {
858 self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
859 } else {
860 self.handle_unambiguous_unbraced_const_arg()?
861 };
862 Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
863 }
864
865 /// Parse a generic argument in a path segment.
866 /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
867 pub(super) fn parse_generic_arg(
868 &mut self,
869 ty_generics: Option<&Generics>,
870 ) -> PResult<'a, Option<GenericArg>> {
871 let start = self.token.span;
872 let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
873 // Parse lifetime argument.
874 GenericArg::Lifetime(self.expect_lifetime())
875 } else if self.check_const_arg() {
876 // Parse const argument.
877 GenericArg::Const(self.parse_const_arg()?)
878 } else if self.check_type() {
879 // Parse type argument.
880
881 // Proactively create a parser snapshot enabling us to rewind and try to reparse the
882 // input as a const expression in case we fail to parse a type. If we successfully
883 // do so, we will report an error that it needs to be wrapped in braces.
884 let mut snapshot = None;
885 if self.may_recover() && self.token.can_begin_expr() {
886 snapshot = Some(self.create_snapshot_for_diagnostic());
887 }
888
889 match self.parse_ty() {
890 Ok(ty) => {
891 // Since the type parser recovers from some malformed slice and array types and
892 // successfully returns a type, we need to look for `TyKind::Err`s in the
893 // type to determine if error recovery has occurred and if the input is not a
894 // syntactically valid type after all.
895 if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
896 && let ast::TyKind::Err(_) = inner_ty.kind
897 && let Some(snapshot) = snapshot
898 && let Some(expr) =
899 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
900 {
901 return Ok(Some(
902 self.dummy_const_arg_needs_braces(
903 self.dcx()
904 .struct_span_err(expr.span, "invalid const generic expression"),
905 expr.span,
906 ),
907 ));
908 }
909
910 GenericArg::Type(ty)
911 }
912 Err(err) => {
913 if let Some(snapshot) = snapshot
914 && let Some(expr) =
915 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
916 {
917 return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
918 }
919 // Try to recover from possible `const` arg without braces.
920 return self.recover_const_arg(start, err).map(Some);
921 }
922 }
923 } else if self.token.is_keyword(kw::Const) {
924 return self.recover_const_param_declaration(ty_generics);
925 } else {
926 // Fall back by trying to parse a const-expr expression. If we successfully do so,
927 // then we should report an error that it needs to be wrapped in braces.
928 let snapshot = self.create_snapshot_for_diagnostic();
929 let attrs = self.parse_outer_attributes()?;
930 match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
931 Ok((expr, _)) => {
932 return Ok(Some(self.dummy_const_arg_needs_braces(
933 self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
934 expr.span,
935 )));
936 }
937 Err(err) => {
938 self.restore_snapshot(snapshot);
939 err.cancel();
940 return Ok(None);
941 }
942 }
943 };
944 Ok(Some(arg))
945 }
946
947 /// Given a arg inside of generics, we try to destructure it as if it were the LHS in
948 /// `LHS = ...`, i.e. an associated item binding.
949 /// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
950 /// identifier, and any GAT arguments.
951 fn get_ident_from_generic_arg(
952 &self,
953 gen_arg: &GenericArg,
954 ) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
955 if let GenericArg::Type(ty) = gen_arg {
956 if let ast::TyKind::Path(qself, path) = &ty.kind
957 && qself.is_none()
958 && let [seg] = path.segments.as_slice()
959 {
960 return Ok((false, seg.ident, seg.args.as_deref().cloned()));
961 } else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
962 && let [ast::GenericBound::Trait(trait_ref)] = bounds.as_slice()
963 && trait_ref.modifiers == ast::TraitBoundModifiers::NONE
964 && let [seg] = trait_ref.trait_ref.path.segments.as_slice()
965 {
966 return Ok((true, seg.ident, seg.args.as_deref().cloned()));
967 }
968 }
969 Err(())
970 }
971}