1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
use crate::infer::canonical::{Canonical, CanonicalQueryResponse};
use crate::traits::ObligationCtxt;
use rustc_hir::def_id::{DefId, CRATE_DEF_ID};
use rustc_infer::traits::Obligation;
use rustc_middle::traits::query::NoSolution;
use rustc_middle::traits::{ObligationCause, ObligationCauseCode};
use rustc_middle::ty::{self, ParamEnvAnd, Ty, TyCtxt, UserArgs, UserSelfTy, UserType};

pub use rustc_middle::traits::query::type_op::AscribeUserType;
use rustc_span::{Span, DUMMY_SP};

impl<'tcx> super::QueryTypeOp<'tcx> for AscribeUserType<'tcx> {
    type QueryResponse = ();

    fn try_fast_path(
        _tcx: TyCtxt<'tcx>,
        _key: &ParamEnvAnd<'tcx, Self>,
    ) -> Option<Self::QueryResponse> {
        None
    }

    fn perform_query(
        tcx: TyCtxt<'tcx>,
        canonicalized: Canonical<'tcx, ParamEnvAnd<'tcx, Self>>,
    ) -> Result<CanonicalQueryResponse<'tcx, ()>, NoSolution> {
        tcx.type_op_ascribe_user_type(canonicalized)
    }

    fn perform_locally_with_next_solver(
        ocx: &ObligationCtxt<'_, 'tcx>,
        key: ParamEnvAnd<'tcx, Self>,
    ) -> Result<Self::QueryResponse, NoSolution> {
        type_op_ascribe_user_type_with_span(ocx, key, None)
    }
}

/// The core of the `type_op_ascribe_user_type` query: for diagnostics purposes in NLL HRTB errors,
/// this query can be re-run to better track the span of the obligation cause, and improve the error
/// message. Do not call directly unless you're in that very specific context.
pub fn type_op_ascribe_user_type_with_span<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    key: ParamEnvAnd<'tcx, AscribeUserType<'tcx>>,
    span: Option<Span>,
) -> Result<(), NoSolution> {
    let (param_env, AscribeUserType { mir_ty, user_ty }) = key.into_parts();
    debug!("type_op_ascribe_user_type: mir_ty={:?} user_ty={:?}", mir_ty, user_ty);
    let span = span.unwrap_or(DUMMY_SP);
    match user_ty {
        UserType::Ty(user_ty) => relate_mir_and_user_ty(ocx, param_env, span, mir_ty, user_ty)?,
        UserType::TypeOf(def_id, user_args) => {
            relate_mir_and_user_args(ocx, param_env, span, mir_ty, def_id, user_args)?
        }
    };
    Ok(())
}

#[instrument(level = "debug", skip(ocx, param_env, span))]
fn relate_mir_and_user_ty<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    span: Span,
    mir_ty: Ty<'tcx>,
    user_ty: Ty<'tcx>,
) -> Result<(), NoSolution> {
    let cause = ObligationCause::dummy_with_span(span);
    ocx.register_obligation(Obligation::new(
        ocx.infcx.tcx,
        cause.clone(),
        param_env,
        ty::ClauseKind::WellFormed(user_ty.into()),
    ));

    let user_ty = ocx.normalize(&cause, param_env, user_ty);
    ocx.eq(&cause, param_env, mir_ty, user_ty)?;

    Ok(())
}

#[instrument(level = "debug", skip(ocx, param_env, span))]
fn relate_mir_and_user_args<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    span: Span,
    mir_ty: Ty<'tcx>,
    def_id: DefId,
    user_args: UserArgs<'tcx>,
) -> Result<(), NoSolution> {
    let UserArgs { user_self_ty, args } = user_args;
    let tcx = ocx.infcx.tcx;
    let cause = ObligationCause::dummy_with_span(span);

    let ty = tcx.type_of(def_id).instantiate(tcx, args);
    let ty = ocx.normalize(&cause, param_env, ty);
    debug!("relate_type_and_user_type: ty of def-id is {:?}", ty);

    ocx.eq(&cause, param_env, mir_ty, ty)?;

    // Prove the predicates coming along with `def_id`.
    //
    // Also, normalize the `instantiated_predicates`
    // because otherwise we wind up with duplicate "type
    // outlives" error messages.
    let instantiated_predicates = tcx.predicates_of(def_id).instantiate(tcx, args);

    debug!(?instantiated_predicates);
    for (instantiated_predicate, predicate_span) in instantiated_predicates {
        let span = if span == DUMMY_SP { predicate_span } else { span };
        let cause = ObligationCause::new(
            span,
            CRATE_DEF_ID,
            ObligationCauseCode::AscribeUserTypeProvePredicate(predicate_span),
        );
        let instantiated_predicate =
            ocx.normalize(&cause.clone(), param_env, instantiated_predicate);

        ocx.register_obligation(Obligation::new(tcx, cause, param_env, instantiated_predicate));
    }

    // Now prove the well-formedness of `def_id` with `args`.
    // Note for some items, proving the WF of `ty` is not sufficient because the
    // well-formedness of an item may depend on the WF of gneneric args not present in the
    // item's type. Currently this is true for associated consts, e.g.:
    // ```rust
    // impl<T> MyTy<T> {
    //     const CONST: () = { /* arbitrary code that depends on T being WF */ };
    // }
    // ```
    for arg in args {
        ocx.register_obligation(Obligation::new(
            tcx,
            cause.clone(),
            param_env,
            ty::ClauseKind::WellFormed(arg),
        ));
    }

    if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty {
        ocx.register_obligation(Obligation::new(
            tcx,
            cause.clone(),
            param_env,
            ty::ClauseKind::WellFormed(self_ty.into()),
        ));

        let self_ty = ocx.normalize(&cause, param_env, self_ty);
        let impl_self_ty = tcx.type_of(impl_def_id).instantiate(tcx, args);
        let impl_self_ty = ocx.normalize(&cause, param_env, impl_self_ty);

        ocx.eq(&cause, param_env, self_ty, impl_self_ty)?;
    }

    Ok(())
}