rustc_const_eval/const_eval/
eval_queries.rs

1use std::sync::atomic::Ordering::Relaxed;
2
3use either::{Left, Right};
4use rustc_abi::{self as abi, BackendRepr};
5use rustc_errors::E0080;
6use rustc_hir::def::DefKind;
7use rustc_middle::mir::interpret::{AllocId, ErrorHandled, InterpErrorInfo, ReportedErrorInfo};
8use rustc_middle::mir::{self, ConstAlloc, ConstValue};
9use rustc_middle::query::TyCtxtAt;
10use rustc_middle::ty::layout::{HasTypingEnv, TyAndLayout};
11use rustc_middle::ty::print::with_no_trimmed_paths;
12use rustc_middle::ty::{self, Ty, TyCtxt};
13use rustc_middle::{bug, throw_inval};
14use rustc_span::def_id::LocalDefId;
15use rustc_span::{DUMMY_SP, Span};
16use tracing::{debug, instrument, trace};
17
18use super::{CanAccessMutGlobal, CompileTimeInterpCx, CompileTimeMachine};
19use crate::const_eval::CheckAlignment;
20use crate::interpret::{
21    CtfeValidationMode, GlobalId, Immediate, InternError, InternKind, InterpCx, InterpErrorKind,
22    InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, ReturnContinuation, create_static_alloc,
23    intern_const_alloc_recursive, interp_ok, throw_exhaust,
24};
25use crate::{CTRL_C_RECEIVED, errors};
26
27fn setup_for_eval<'tcx>(
28    ecx: &mut CompileTimeInterpCx<'tcx>,
29    cid: GlobalId<'tcx>,
30    layout: TyAndLayout<'tcx>,
31) -> InterpResult<'tcx, (InternKind, MPlaceTy<'tcx>)> {
32    let tcx = *ecx.tcx;
33    assert!(
34        cid.promoted.is_some()
35            || matches!(
36                ecx.tcx.def_kind(cid.instance.def_id()),
37                DefKind::Const
38                    | DefKind::Static { .. }
39                    | DefKind::ConstParam
40                    | DefKind::AnonConst
41                    | DefKind::InlineConst
42                    | DefKind::AssocConst
43            ),
44        "Unexpected DefKind: {:?}",
45        ecx.tcx.def_kind(cid.instance.def_id())
46    );
47    assert!(layout.is_sized());
48
49    let intern_kind = if cid.promoted.is_some() {
50        InternKind::Promoted
51    } else {
52        match tcx.static_mutability(cid.instance.def_id()) {
53            Some(m) => InternKind::Static(m),
54            None => InternKind::Constant,
55        }
56    };
57
58    let return_place = if let InternKind::Static(_) = intern_kind {
59        create_static_alloc(ecx, cid.instance.def_id().expect_local(), layout)
60    } else {
61        ecx.allocate(layout, MemoryKind::Stack)
62    };
63
64    return_place.map(|ret| (intern_kind, ret))
65}
66
67#[instrument(level = "trace", skip(ecx, body))]
68fn eval_body_using_ecx<'tcx, R: InterpretationResult<'tcx>>(
69    ecx: &mut CompileTimeInterpCx<'tcx>,
70    cid: GlobalId<'tcx>,
71    body: &'tcx mir::Body<'tcx>,
72) -> InterpResult<'tcx, R> {
73    let tcx = *ecx.tcx;
74    let layout = ecx.layout_of(body.bound_return_ty().instantiate(tcx, cid.instance.args))?;
75    let (intern_kind, ret) = setup_for_eval(ecx, cid, layout)?;
76
77    trace!(
78        "eval_body_using_ecx: pushing stack frame for global: {}{}",
79        with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())),
80        cid.promoted.map_or_else(String::new, |p| format!("::{p:?}"))
81    );
82
83    // This can't use `init_stack_frame` since `body` is not a function,
84    // so computing its ABI would fail. It's also not worth it since there are no arguments to pass.
85    ecx.push_stack_frame_raw(
86        cid.instance,
87        body,
88        &ret.clone().into(),
89        ReturnContinuation::Stop { cleanup: false },
90    )?;
91    ecx.storage_live_for_always_live_locals()?;
92
93    // The main interpreter loop.
94    while ecx.step()? {
95        if CTRL_C_RECEIVED.load(Relaxed) {
96            throw_exhaust!(Interrupted);
97        }
98    }
99
100    intern_and_validate(ecx, cid, intern_kind, ret)
101}
102
103#[instrument(level = "trace", skip(ecx))]
104fn eval_trivial_const_using_ecx<'tcx, R: InterpretationResult<'tcx>>(
105    ecx: &mut CompileTimeInterpCx<'tcx>,
106    cid: GlobalId<'tcx>,
107    val: ConstValue,
108    ty: Ty<'tcx>,
109) -> InterpResult<'tcx, R> {
110    let layout = ecx.layout_of(ty)?;
111    let (intern_kind, return_place) = setup_for_eval(ecx, cid, layout)?;
112
113    let opty = ecx.const_val_to_op(val, ty, Some(layout))?;
114    ecx.copy_op(&opty, &return_place)?;
115
116    intern_and_validate(ecx, cid, intern_kind, return_place)
117}
118
119fn intern_and_validate<'tcx, R: InterpretationResult<'tcx>>(
120    ecx: &mut CompileTimeInterpCx<'tcx>,
121    cid: GlobalId<'tcx>,
122    intern_kind: InternKind,
123    ret: MPlaceTy<'tcx>,
124) -> InterpResult<'tcx, R> {
125    // Intern the result
126    let intern_result = intern_const_alloc_recursive(ecx, intern_kind, &ret);
127
128    // Since evaluation had no errors, validate the resulting constant.
129    const_validate_mplace(ecx, &ret, cid)?;
130
131    // Only report this after validation, as validation produces much better diagnostics.
132    // FIXME: ensure validation always reports this and stop making interning care about it.
133
134    match intern_result {
135        Ok(()) => {}
136        Err(InternError::DanglingPointer) => {
137            throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error(
138                ecx.tcx
139                    .dcx()
140                    .emit_err(errors::DanglingPtrInFinal { span: ecx.tcx.span, kind: intern_kind }),
141            )));
142        }
143        Err(InternError::BadMutablePointer) => {
144            throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error(
145                ecx.tcx
146                    .dcx()
147                    .emit_err(errors::MutablePtrInFinal { span: ecx.tcx.span, kind: intern_kind }),
148            )));
149        }
150        Err(InternError::ConstAllocNotGlobal) => {
151            throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error(
152                ecx.tcx.dcx().emit_err(errors::ConstHeapPtrInFinal { span: ecx.tcx.span }),
153            )));
154        }
155        Err(InternError::PartialPointer) => {
156            throw_inval!(AlreadyReported(ReportedErrorInfo::non_const_eval_error(
157                ecx.tcx
158                    .dcx()
159                    .emit_err(errors::PartialPtrInFinal { span: ecx.tcx.span, kind: intern_kind }),
160            )));
161        }
162    }
163
164    interp_ok(R::make_result(ret, ecx))
165}
166
167/// The `InterpCx` is only meant to be used to do field and index projections into constants for
168/// `simd_shuffle` and const patterns in match arms.
169///
170/// This should *not* be used to do any actual interpretation. In particular, alignment checks are
171/// turned off!
172///
173/// The function containing the `match` that is currently being analyzed may have generic bounds
174/// that inform us about the generic bounds of the constant. E.g., using an associated constant
175/// of a function's generic parameter will require knowledge about the bounds on the generic
176/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
177pub(crate) fn mk_eval_cx_to_read_const_val<'tcx>(
178    tcx: TyCtxt<'tcx>,
179    root_span: Span,
180    typing_env: ty::TypingEnv<'tcx>,
181    can_access_mut_global: CanAccessMutGlobal,
182) -> CompileTimeInterpCx<'tcx> {
183    debug!("mk_eval_cx: {:?}", typing_env);
184    InterpCx::new(
185        tcx,
186        root_span,
187        typing_env,
188        CompileTimeMachine::new(can_access_mut_global, CheckAlignment::No),
189    )
190}
191
192/// Create an interpreter context to inspect the given `ConstValue`.
193/// Returns both the context and an `OpTy` that represents the constant.
194pub fn mk_eval_cx_for_const_val<'tcx>(
195    tcx: TyCtxtAt<'tcx>,
196    typing_env: ty::TypingEnv<'tcx>,
197    val: mir::ConstValue,
198    ty: Ty<'tcx>,
199) -> Option<(CompileTimeInterpCx<'tcx>, OpTy<'tcx>)> {
200    let ecx = mk_eval_cx_to_read_const_val(tcx.tcx, tcx.span, typing_env, CanAccessMutGlobal::No);
201    // FIXME: is it a problem to discard the error here?
202    let op = ecx.const_val_to_op(val, ty, None).discard_err()?;
203    Some((ecx, op))
204}
205
206/// This function converts an interpreter value into a MIR constant.
207///
208/// The `for_diagnostics` flag turns the usual rules for returning `ConstValue::Scalar` into a
209/// best-effort attempt. This is not okay for use in const-eval sine it breaks invariants rustc
210/// relies on, but it is okay for diagnostics which will just give up gracefully when they
211/// encounter an `Indirect` they cannot handle.
212#[instrument(skip(ecx), level = "debug")]
213pub(super) fn op_to_const<'tcx>(
214    ecx: &CompileTimeInterpCx<'tcx>,
215    op: &OpTy<'tcx>,
216    for_diagnostics: bool,
217) -> ConstValue {
218    // Handle ZST consistently and early.
219    if op.layout.is_zst() {
220        return ConstValue::ZeroSized;
221    }
222
223    // All scalar types should be stored as `ConstValue::Scalar`. This is needed to make
224    // `ConstValue::try_to_scalar` efficient; we want that to work for *all* constants of scalar
225    // type (it's used throughout the compiler and having it work just on literals is not enough)
226    // and we want it to be fast (i.e., don't go to an `Allocation` and reconstruct the `Scalar`
227    // from its byte-serialized form).
228    let force_as_immediate = match op.layout.backend_repr {
229        BackendRepr::Scalar(abi::Scalar::Initialized { .. }) => true,
230        // We don't *force* `ConstValue::Slice` for `ScalarPair`. This has the advantage that if the
231        // input `op` is a place, then turning it into a `ConstValue` and back into a `OpTy` will
232        // not have to generate any duplicate allocations (we preserve the original `AllocId` in
233        // `ConstValue::Indirect`). It means accessing the contents of a slice can be slow (since
234        // they can be stored as `ConstValue::Indirect`), but that's not relevant since we barely
235        // ever have to do this. (`try_get_slice_bytes_for_diagnostics` exists to provide this
236        // functionality.)
237        _ => false,
238    };
239    let immediate = if force_as_immediate {
240        match ecx.read_immediate(op).report_err() {
241            Ok(imm) => Right(imm),
242            Err(err) => {
243                if for_diagnostics {
244                    // This discard the error, but for diagnostics that's okay.
245                    op.as_mplace_or_imm()
246                } else {
247                    panic!("normalization works on validated constants: {err:?}")
248                }
249            }
250        }
251    } else {
252        op.as_mplace_or_imm()
253    };
254
255    debug!(?immediate);
256
257    match immediate {
258        Left(ref mplace) => {
259            let (prov, offset) =
260                mplace.ptr().into_pointer_or_addr().unwrap().prov_and_relative_offset();
261            let alloc_id = prov.alloc_id();
262            ConstValue::Indirect { alloc_id, offset }
263        }
264        // see comment on `let force_as_immediate` above
265        Right(imm) => match *imm {
266            Immediate::Scalar(x) => ConstValue::Scalar(x),
267            Immediate::ScalarPair(a, b) => {
268                debug!("ScalarPair(a: {:?}, b: {:?})", a, b);
269                // This codepath solely exists for `valtree_to_const_value` to not need to generate
270                // a `ConstValue::Indirect` for wide references, so it is tightly restricted to just
271                // that case.
272                let pointee_ty = imm.layout.ty.builtin_deref(false).unwrap(); // `false` = no raw ptrs
273                debug_assert!(
274                    matches!(
275                        ecx.tcx.struct_tail_for_codegen(pointee_ty, ecx.typing_env()).kind(),
276                        ty::Str | ty::Slice(..),
277                    ),
278                    "`ConstValue::Slice` is for slice-tailed types only, but got {}",
279                    imm.layout.ty,
280                );
281                let msg = "`op_to_const` on an immediate scalar pair must only be used on slice references to the beginning of an actual allocation";
282                let ptr = a.to_pointer(ecx).expect(msg);
283                let (prov, offset) =
284                    ptr.into_pointer_or_addr().expect(msg).prov_and_relative_offset();
285                let alloc_id = prov.alloc_id();
286                assert!(offset == abi::Size::ZERO, "{}", msg);
287                let meta = b.to_target_usize(ecx).expect(msg);
288                ConstValue::Slice { alloc_id, meta }
289            }
290            Immediate::Uninit => bug!("`Uninit` is not a valid value for {}", op.layout.ty),
291        },
292    }
293}
294
295#[instrument(skip(tcx), level = "debug", ret)]
296pub(crate) fn turn_into_const_value<'tcx>(
297    tcx: TyCtxt<'tcx>,
298    constant: ConstAlloc<'tcx>,
299    key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>,
300) -> ConstValue {
301    let cid = key.value;
302    let def_id = cid.instance.def.def_id();
303    let is_static = tcx.is_static(def_id);
304    // This is just accessing an already computed constant, so no need to check alignment here.
305    let ecx = mk_eval_cx_to_read_const_val(
306        tcx,
307        tcx.def_span(key.value.instance.def_id()),
308        key.typing_env,
309        CanAccessMutGlobal::from(is_static),
310    );
311
312    let mplace = ecx.raw_const_to_mplace(constant).expect(
313        "can only fail if layout computation failed, \
314        which should have given a good error before ever invoking this function",
315    );
316    assert!(
317        !is_static || cid.promoted.is_some(),
318        "the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
319    );
320
321    // Turn this into a proper constant.
322    op_to_const(&ecx, &mplace.into(), /* for diagnostics */ false)
323}
324
325#[instrument(skip(tcx), level = "debug")]
326pub fn eval_to_const_value_raw_provider<'tcx>(
327    tcx: TyCtxt<'tcx>,
328    key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>,
329) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
330    if let Some((value, _ty)) = tcx.trivial_const(key.value.instance.def_id()) {
331        return Ok(value);
332    }
333    tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
334}
335
336#[instrument(skip(tcx), level = "debug")]
337pub fn eval_static_initializer_provider<'tcx>(
338    tcx: TyCtxt<'tcx>,
339    def_id: LocalDefId,
340) -> ::rustc_middle::mir::interpret::EvalStaticInitializerRawResult<'tcx> {
341    assert!(tcx.is_static(def_id.to_def_id()));
342
343    let instance = ty::Instance::mono(tcx, def_id.to_def_id());
344    let cid = rustc_middle::mir::interpret::GlobalId { instance, promoted: None };
345    eval_in_interpreter(tcx, cid, ty::TypingEnv::fully_monomorphized())
346}
347
348pub trait InterpretationResult<'tcx> {
349    /// This function takes the place where the result of the evaluation is stored
350    /// and prepares it for returning it in the appropriate format needed by the specific
351    /// evaluation query.
352    fn make_result(
353        mplace: MPlaceTy<'tcx>,
354        ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
355    ) -> Self;
356}
357
358impl<'tcx> InterpretationResult<'tcx> for ConstAlloc<'tcx> {
359    fn make_result(
360        mplace: MPlaceTy<'tcx>,
361        _ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
362    ) -> Self {
363        ConstAlloc { alloc_id: mplace.ptr().provenance.unwrap().alloc_id(), ty: mplace.layout.ty }
364    }
365}
366
367#[instrument(skip(tcx), level = "debug")]
368pub fn eval_to_allocation_raw_provider<'tcx>(
369    tcx: TyCtxt<'tcx>,
370    key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>,
371) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
372    // This shouldn't be used for statics, since statics are conceptually places,
373    // not values -- so what we do here could break pointer identity.
374    assert!(key.value.promoted.is_some() || !tcx.is_static(key.value.instance.def_id()));
375    // Const eval always happens in PostAnalysis mode . See the comment in
376    // `InterpCx::new` for more details.
377    debug_assert_eq!(key.typing_env.typing_mode, ty::TypingMode::PostAnalysis);
378    if cfg!(debug_assertions) {
379        // Make sure we format the instance even if we do not print it.
380        // This serves as a regression test against an ICE on printing.
381        // The next two lines concatenated contain some discussion:
382        // https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
383        // subject/anon_const_instance_printing/near/135980032
384        let instance = with_no_trimmed_paths!(key.value.instance.to_string());
385        trace!("const eval: {:?} ({})", key, instance);
386    }
387
388    eval_in_interpreter(tcx, key.value, key.typing_env)
389}
390
391fn eval_in_interpreter<'tcx, R: InterpretationResult<'tcx>>(
392    tcx: TyCtxt<'tcx>,
393    cid: GlobalId<'tcx>,
394    typing_env: ty::TypingEnv<'tcx>,
395) -> Result<R, ErrorHandled> {
396    let def = cid.instance.def.def_id();
397    let is_static = tcx.is_static(def);
398
399    let mut ecx = InterpCx::new(
400        tcx,
401        tcx.def_span(def),
402        typing_env,
403        // Statics (and promoteds inside statics) may access mutable global memory, because unlike consts
404        // they do not have to behave "as if" they were evaluated at runtime.
405        // For consts however we want to ensure they behave "as if" they were evaluated at runtime,
406        // so we have to reject reading mutable global memory.
407        CompileTimeMachine::new(CanAccessMutGlobal::from(is_static), CheckAlignment::Error),
408    );
409
410    let result = if let Some((value, ty)) = tcx.trivial_const(def) {
411        eval_trivial_const_using_ecx(&mut ecx, cid, value, ty)
412    } else {
413        ecx.load_mir(cid.instance.def, cid.promoted)
414            .and_then(|body| eval_body_using_ecx(&mut ecx, cid, body))
415    };
416    result.report_err().map_err(|error| report_eval_error(&ecx, cid, error))
417}
418
419#[inline(always)]
420fn const_validate_mplace<'tcx>(
421    ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
422    mplace: &MPlaceTy<'tcx>,
423    cid: GlobalId<'tcx>,
424) -> Result<(), ErrorHandled> {
425    let alloc_id = mplace.ptr().provenance.unwrap().alloc_id();
426    let mut ref_tracking = RefTracking::new(mplace.clone());
427    let mut inner = false;
428    while let Some((mplace, path)) = ref_tracking.next() {
429        let mode = match ecx.tcx.static_mutability(cid.instance.def_id()) {
430            _ if cid.promoted.is_some() => CtfeValidationMode::Promoted,
431            Some(mutbl) => CtfeValidationMode::Static { mutbl }, // a `static`
432            None => {
433                // This is a normal `const` (not promoted).
434                // The outermost allocation is always only copied, so having `UnsafeCell` in there
435                // is okay despite them being in immutable memory.
436                CtfeValidationMode::Const { allow_immutable_unsafe_cell: !inner }
437            }
438        };
439        ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)
440            .report_err()
441            // Instead of just reporting the `InterpError` via the usual machinery, we give a more targeted
442            // error about the validation failure.
443            .map_err(|error| report_validation_error(&ecx, cid, error, alloc_id))?;
444        inner = true;
445    }
446
447    Ok(())
448}
449
450#[inline(never)]
451fn report_eval_error<'tcx>(
452    ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>,
453    cid: GlobalId<'tcx>,
454    error: InterpErrorInfo<'tcx>,
455) -> ErrorHandled {
456    let (error, backtrace) = error.into_parts();
457    backtrace.print_backtrace();
458
459    super::report(
460        ecx,
461        error,
462        DUMMY_SP,
463        || super::get_span_and_frames(ecx.tcx, ecx.stack()),
464        |diag, span, frames| {
465            let num_frames = frames.len();
466            // FIXME(oli-obk): figure out how to use structured diagnostics again.
467            diag.code(E0080);
468            diag.span_label(span, crate::fluent_generated::const_eval_error);
469            for frame in frames {
470                diag.subdiagnostic(frame);
471            }
472            // Add after the frame rendering above, as it adds its own `instance` args.
473            diag.arg("instance", with_no_trimmed_paths!(cid.instance.to_string()));
474            diag.arg("num_frames", num_frames);
475        },
476    )
477}
478
479#[inline(never)]
480fn report_validation_error<'tcx>(
481    ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>,
482    cid: GlobalId<'tcx>,
483    error: InterpErrorInfo<'tcx>,
484    alloc_id: AllocId,
485) -> ErrorHandled {
486    if !matches!(error.kind(), InterpErrorKind::UndefinedBehavior(_)) {
487        // Some other error happened during validation, e.g. an unsupported operation.
488        return report_eval_error(ecx, cid, error);
489    }
490
491    let (error, backtrace) = error.into_parts();
492    backtrace.print_backtrace();
493
494    let bytes = ecx.print_alloc_bytes_for_diagnostics(alloc_id);
495    let info = ecx.get_alloc_info(alloc_id);
496    let raw_bytes =
497        errors::RawBytesNote { size: info.size.bytes(), align: info.align.bytes(), bytes };
498
499    crate::const_eval::report(
500        ecx,
501        error,
502        DUMMY_SP,
503        || crate::const_eval::get_span_and_frames(ecx.tcx, ecx.stack()),
504        move |diag, span, frames| {
505            // FIXME(oli-obk): figure out how to use structured diagnostics again.
506            diag.code(E0080);
507            diag.span_label(span, crate::fluent_generated::const_eval_validation_failure);
508            diag.note(crate::fluent_generated::const_eval_validation_failure_note);
509            for frame in frames {
510                diag.subdiagnostic(frame);
511            }
512            diag.subdiagnostic(raw_bytes);
513        },
514    )
515}