1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/// An infrastructure to mechanically analyse proof trees.
///
/// It is unavoidable that this representation is somewhat
/// lossy as it should hide quite a few semantically relevant things,
/// e.g. canonicalization and the order of nested goals.
///
/// @lcnr: However, a lot of the weirdness here is not strictly necessary
/// and could be improved in the future. This is mostly good enough for
/// coherence right now and was annoying to implement, so I am leaving it
/// as is until we start using it for something else.
use std::ops::ControlFlow;

use rustc_infer::infer::InferCtxt;
use rustc_middle::traits::query::NoSolution;
use rustc_middle::traits::solve::{inspect, QueryResult};
use rustc_middle::traits::solve::{Certainty, Goal};
use rustc_middle::ty;

use crate::solve::inspect::ProofTreeBuilder;
use crate::solve::{GenerateProofTree, InferCtxtEvalExt};

pub struct InspectGoal<'a, 'tcx> {
    infcx: &'a InferCtxt<'tcx>,
    depth: usize,
    orig_values: &'a [ty::GenericArg<'tcx>],
    goal: Goal<'tcx, ty::Predicate<'tcx>>,
    evaluation: &'a inspect::GoalEvaluation<'tcx>,
}

pub struct InspectCandidate<'a, 'tcx> {
    goal: &'a InspectGoal<'a, 'tcx>,
    kind: inspect::ProbeKind<'tcx>,
    nested_goals: Vec<inspect::CanonicalState<'tcx, Goal<'tcx, ty::Predicate<'tcx>>>>,
    result: QueryResult<'tcx>,
}

impl<'a, 'tcx> InspectCandidate<'a, 'tcx> {
    pub fn infcx(&self) -> &'a InferCtxt<'tcx> {
        self.goal.infcx
    }

    pub fn kind(&self) -> inspect::ProbeKind<'tcx> {
        self.kind
    }

    pub fn result(&self) -> Result<Certainty, NoSolution> {
        self.result.map(|c| c.value.certainty)
    }

    /// Visit the nested goals of this candidate.
    ///
    /// FIXME(@lcnr): we have to slightly adapt this API
    /// to also use it to compute the most relevant goal
    /// for fulfillment errors. Will do that once we actually
    /// need it.
    pub fn visit_nested<V: ProofTreeVisitor<'tcx>>(
        &self,
        visitor: &mut V,
    ) -> ControlFlow<V::BreakTy> {
        // HACK: An arbitrary cutoff to avoid dealing with overflow and cycles.
        if self.goal.depth <= 10 {
            let infcx = self.goal.infcx;
            infcx.probe(|_| {
                let mut instantiated_goals = vec![];
                for goal in &self.nested_goals {
                    let goal = ProofTreeBuilder::instantiate_canonical_state(
                        infcx,
                        self.goal.goal.param_env,
                        self.goal.orig_values,
                        *goal,
                    );
                    instantiated_goals.push(goal);
                }

                for &goal in &instantiated_goals {
                    let (_, proof_tree) = infcx.evaluate_root_goal(goal, GenerateProofTree::Yes);
                    let proof_tree = proof_tree.unwrap();
                    visitor.visit_goal(&InspectGoal::new(
                        infcx,
                        self.goal.depth + 1,
                        &proof_tree,
                    ))?;
                }

                ControlFlow::Continue(())
            })?;
        }
        ControlFlow::Continue(())
    }
}

impl<'a, 'tcx> InspectGoal<'a, 'tcx> {
    pub fn infcx(&self) -> &'a InferCtxt<'tcx> {
        self.infcx
    }

    pub fn goal(&self) -> Goal<'tcx, ty::Predicate<'tcx>> {
        self.goal
    }

    pub fn result(&self) -> Result<Certainty, NoSolution> {
        self.evaluation.evaluation.result.map(|c| c.value.certainty)
    }

    fn candidates_recur(
        &'a self,
        candidates: &mut Vec<InspectCandidate<'a, 'tcx>>,
        nested_goals: &mut Vec<inspect::CanonicalState<'tcx, Goal<'tcx, ty::Predicate<'tcx>>>>,
        probe: &inspect::Probe<'tcx>,
    ) {
        for step in &probe.steps {
            match step {
                &inspect::ProbeStep::AddGoal(_source, goal) => nested_goals.push(goal),
                inspect::ProbeStep::NestedProbe(ref probe) => {
                    // Nested probes have to prove goals added in their parent
                    // but do not leak them, so we truncate the added goals
                    // afterwards.
                    let num_goals = nested_goals.len();
                    self.candidates_recur(candidates, nested_goals, probe);
                    nested_goals.truncate(num_goals);
                }
                inspect::ProbeStep::EvaluateGoals(_)
                | inspect::ProbeStep::CommitIfOkStart
                | inspect::ProbeStep::CommitIfOkSuccess => (),
            }
        }

        match probe.kind {
            inspect::ProbeKind::NormalizedSelfTyAssembly
            | inspect::ProbeKind::UnsizeAssembly
            | inspect::ProbeKind::UpcastProjectionCompatibility
            | inspect::ProbeKind::CommitIfOk => (),
            // We add a candidate for the root evaluation if there
            // is only one way to prove a given goal, e.g. for `WellFormed`.
            //
            // FIXME: This is currently wrong if we don't even try any
            // candidates, e.g. for a trait goal, as in this case `candidates` is
            // actually supposed to be empty.
            inspect::ProbeKind::Root { result } => {
                if candidates.is_empty() {
                    candidates.push(InspectCandidate {
                        goal: self,
                        kind: probe.kind,
                        nested_goals: nested_goals.clone(),
                        result,
                    });
                }
            }
            inspect::ProbeKind::MiscCandidate { name: _, result }
            | inspect::ProbeKind::TraitCandidate { source: _, result } => {
                candidates.push(InspectCandidate {
                    goal: self,
                    kind: probe.kind,
                    nested_goals: nested_goals.clone(),
                    result,
                });
            }
        }
    }

    pub fn candidates(&'a self) -> Vec<InspectCandidate<'a, 'tcx>> {
        let mut candidates = vec![];
        let last_eval_step = match self.evaluation.evaluation.kind {
            inspect::CanonicalGoalEvaluationKind::Overflow
            | inspect::CanonicalGoalEvaluationKind::CycleInStack
            | inspect::CanonicalGoalEvaluationKind::ProvisionalCacheHit => {
                warn!("unexpected root evaluation: {:?}", self.evaluation);
                return vec![];
            }
            inspect::CanonicalGoalEvaluationKind::Evaluation { revisions } => {
                if let Some(last) = revisions.last() {
                    last
                } else {
                    return vec![];
                }
            }
        };

        let mut nested_goals = vec![];
        self.candidates_recur(&mut candidates, &mut nested_goals, &last_eval_step.evaluation);

        candidates
    }

    fn new(
        infcx: &'a InferCtxt<'tcx>,
        depth: usize,
        root: &'a inspect::GoalEvaluation<'tcx>,
    ) -> Self {
        match root.kind {
            inspect::GoalEvaluationKind::Root { ref orig_values } => InspectGoal {
                infcx,
                depth,
                orig_values,
                goal: infcx.resolve_vars_if_possible(root.uncanonicalized_goal),
                evaluation: root,
            },
            inspect::GoalEvaluationKind::Nested { .. } => unreachable!(),
        }
    }
}

/// The public API to interact with proof trees.
pub trait ProofTreeVisitor<'tcx> {
    type BreakTy;

    fn visit_goal(&mut self, goal: &InspectGoal<'_, 'tcx>) -> ControlFlow<Self::BreakTy>;
}

#[extension(pub trait ProofTreeInferCtxtExt<'tcx>)]
impl<'tcx> InferCtxt<'tcx> {
    fn visit_proof_tree<V: ProofTreeVisitor<'tcx>>(
        &self,
        goal: Goal<'tcx, ty::Predicate<'tcx>>,
        visitor: &mut V,
    ) -> ControlFlow<V::BreakTy> {
        self.probe(|_| {
            let (_, proof_tree) = self.evaluate_root_goal(goal, GenerateProofTree::Yes);
            let proof_tree = proof_tree.unwrap();
            visitor.visit_goal(&InspectGoal::new(self, 0, &proof_tree))
        })
    }
}