miri/
helpers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
use std::collections::BTreeSet;
use std::num::NonZero;
use std::sync::Mutex;
use std::time::Duration;
use std::{cmp, iter};

use rand::RngCore;
use rustc_abi::{Align, ExternAbi, FieldIdx, FieldsShape, Size, Variants};
use rustc_apfloat::Float;
use rustc_apfloat::ieee::{Double, Half, Quad, Single};
use rustc_hir::Safety;
use rustc_hir::def::{DefKind, Namespace};
use rustc_hir::def_id::{CRATE_DEF_INDEX, CrateNum, DefId, LOCAL_CRATE};
use rustc_index::IndexVec;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::middle::dependency_format::Linkage;
use rustc_middle::middle::exported_symbols::ExportedSymbol;
use rustc_middle::ty::layout::{FnAbiOf, LayoutOf, MaybeResult, TyAndLayout};
use rustc_middle::ty::{self, FloatTy, IntTy, Ty, TyCtxt, UintTy};
use rustc_session::config::CrateType;
use rustc_span::{Span, Symbol};

use crate::*;

/// Indicates which kind of access is being performed.
#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
pub enum AccessKind {
    Read,
    Write,
}

/// Gets an instance for a path.
///
/// A `None` namespace indicates we are looking for a module.
fn try_resolve_did(tcx: TyCtxt<'_>, path: &[&str], namespace: Option<Namespace>) -> Option<DefId> {
    /// Yield all children of the given item, that have the given name.
    fn find_children<'tcx: 'a, 'a>(
        tcx: TyCtxt<'tcx>,
        item: DefId,
        name: &'a str,
    ) -> impl Iterator<Item = DefId> + 'a {
        tcx.module_children(item)
            .iter()
            .filter(move |item| item.ident.name.as_str() == name)
            .map(move |item| item.res.def_id())
    }

    // Take apart the path: leading crate, a sequence of modules, and potentially a final item.
    let (&crate_name, path) = path.split_first().expect("paths must have at least one segment");
    let (modules, item) = if let Some(namespace) = namespace {
        let (&item_name, modules) =
            path.split_last().expect("non-module paths must have at least 2 segments");
        (modules, Some((item_name, namespace)))
    } else {
        (path, None)
    };

    // There may be more than one crate with this name. We try them all.
    // (This is particularly relevant when running `std` tests as then there are two `std` crates:
    // the one in the sysroot and the one locally built by `cargo test`.)
    // FIXME: can we prefer the one from the sysroot?
    'crates: for krate in
        tcx.crates(()).iter().filter(|&&krate| tcx.crate_name(krate).as_str() == crate_name)
    {
        let mut cur_item = DefId { krate: *krate, index: CRATE_DEF_INDEX };
        // Go over the modules.
        for &segment in modules {
            let Some(next_item) = find_children(tcx, cur_item, segment)
                .find(|item| tcx.def_kind(item) == DefKind::Mod)
            else {
                continue 'crates;
            };
            cur_item = next_item;
        }
        // Finally, look up the desired item in this module, if any.
        match item {
            Some((item_name, namespace)) => {
                let Some(item) = find_children(tcx, cur_item, item_name)
                    .find(|item| tcx.def_kind(item).ns() == Some(namespace))
                else {
                    continue 'crates;
                };
                return Some(item);
            }
            None => {
                // Just return the module.
                return Some(cur_item);
            }
        }
    }
    // Item not found in any of the crates with the right name.
    None
}

/// Gets an instance for a path; fails gracefully if the path does not exist.
pub fn try_resolve_path<'tcx>(
    tcx: TyCtxt<'tcx>,
    path: &[&str],
    namespace: Namespace,
) -> Option<ty::Instance<'tcx>> {
    let did = try_resolve_did(tcx, path, Some(namespace))?;
    Some(ty::Instance::mono(tcx, did))
}

/// Gets an instance for a path.
#[track_caller]
pub fn resolve_path<'tcx>(
    tcx: TyCtxt<'tcx>,
    path: &[&str],
    namespace: Namespace,
) -> ty::Instance<'tcx> {
    try_resolve_path(tcx, path, namespace)
        .unwrap_or_else(|| panic!("failed to find required Rust item: {path:?}"))
}

/// Gets the layout of a type at a path.
#[track_caller]
pub fn path_ty_layout<'tcx>(cx: &impl LayoutOf<'tcx>, path: &[&str]) -> TyAndLayout<'tcx> {
    let ty = resolve_path(cx.tcx(), path, Namespace::TypeNS).ty(cx.tcx(), cx.typing_env());
    cx.layout_of(ty).to_result().ok().unwrap()
}

/// Call `f` for each exported symbol.
pub fn iter_exported_symbols<'tcx>(
    tcx: TyCtxt<'tcx>,
    mut f: impl FnMut(CrateNum, DefId) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
    // First, the symbols in the local crate. We can't use `exported_symbols` here as that
    // skips `#[used]` statics (since `reachable_set` skips them in binary crates).
    // So we walk all HIR items ourselves instead.
    let crate_items = tcx.hir_crate_items(());
    for def_id in crate_items.definitions() {
        let exported = tcx.def_kind(def_id).has_codegen_attrs() && {
            let codegen_attrs = tcx.codegen_fn_attrs(def_id);
            codegen_attrs.contains_extern_indicator()
                || codegen_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
                || codegen_attrs.flags.contains(CodegenFnAttrFlags::USED)
                || codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER)
        };
        if exported {
            f(LOCAL_CRATE, def_id.into())?;
        }
    }

    // Next, all our dependencies.
    // `dependency_formats` includes all the transitive informations needed to link a crate,
    // which is what we need here since we need to dig out `exported_symbols` from all transitive
    // dependencies.
    let dependency_formats = tcx.dependency_formats(());
    // Find the dependencies of the executable we are running.
    let dependency_format = dependency_formats
        .iter()
        .find(|(crate_type, _)| *crate_type == CrateType::Executable)
        .expect("interpreting a non-executable crate");
    for cnum in dependency_format.1.iter().enumerate().filter_map(|(num, &linkage)| {
        // We add 1 to the number because that's what rustc also does everywhere it
        // calls `CrateNum::new`...
        #[expect(clippy::arithmetic_side_effects)]
        (linkage != Linkage::NotLinked).then_some(CrateNum::new(num + 1))
    }) {
        // We can ignore `_export_info` here: we are a Rust crate, and everything is exported
        // from a Rust crate.
        for &(symbol, _export_info) in tcx.exported_symbols(cnum) {
            if let ExportedSymbol::NonGeneric(def_id) = symbol {
                f(cnum, def_id)?;
            }
        }
    }
    interp_ok(())
}

/// Convert a softfloat type to its corresponding hostfloat type.
pub trait ToHost {
    type HostFloat;
    fn to_host(self) -> Self::HostFloat;
}

/// Convert a hostfloat type to its corresponding softfloat type.
pub trait ToSoft {
    type SoftFloat;
    fn to_soft(self) -> Self::SoftFloat;
}

impl ToHost for rustc_apfloat::ieee::Double {
    type HostFloat = f64;

    fn to_host(self) -> Self::HostFloat {
        f64::from_bits(self.to_bits().try_into().unwrap())
    }
}

impl ToSoft for f64 {
    type SoftFloat = rustc_apfloat::ieee::Double;

    fn to_soft(self) -> Self::SoftFloat {
        Float::from_bits(self.to_bits().into())
    }
}

impl ToHost for rustc_apfloat::ieee::Single {
    type HostFloat = f32;

    fn to_host(self) -> Self::HostFloat {
        f32::from_bits(self.to_bits().try_into().unwrap())
    }
}

impl ToSoft for f32 {
    type SoftFloat = rustc_apfloat::ieee::Single;

    fn to_soft(self) -> Self::SoftFloat {
        Float::from_bits(self.to_bits().into())
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// Checks if the given crate/module exists.
    fn have_module(&self, path: &[&str]) -> bool {
        try_resolve_did(*self.eval_context_ref().tcx, path, None).is_some()
    }

    /// Evaluates the scalar at the specified path.
    fn eval_path(&self, path: &[&str]) -> MPlaceTy<'tcx> {
        let this = self.eval_context_ref();
        let instance = resolve_path(*this.tcx, path, Namespace::ValueNS);
        // We don't give a span -- this isn't actually used directly by the program anyway.
        this.eval_global(instance).unwrap_or_else(|err| {
            panic!("failed to evaluate required Rust item: {path:?}\n{err:?}")
        })
    }
    fn eval_path_scalar(&self, path: &[&str]) -> Scalar {
        let this = self.eval_context_ref();
        let val = this.eval_path(path);
        this.read_scalar(&val)
            .unwrap_or_else(|err| panic!("failed to read required Rust item: {path:?}\n{err:?}"))
    }

    /// Helper function to get a `libc` constant as a `Scalar`.
    fn eval_libc(&self, name: &str) -> Scalar {
        if self.eval_context_ref().tcx.sess.target.os == "windows" {
            panic!(
                "`libc` crate is not reliably available on Windows targets; Miri should not use it there"
            );
        }
        self.eval_path_scalar(&["libc", name])
    }

    /// Helper function to get a `libc` constant as an `i32`.
    fn eval_libc_i32(&self, name: &str) -> i32 {
        // TODO: Cache the result.
        self.eval_libc(name).to_i32().unwrap_or_else(|_err| {
            panic!("required libc item has unexpected type (not `i32`): {name}")
        })
    }

    /// Helper function to get a `libc` constant as an `u32`.
    fn eval_libc_u32(&self, name: &str) -> u32 {
        // TODO: Cache the result.
        self.eval_libc(name).to_u32().unwrap_or_else(|_err| {
            panic!("required libc item has unexpected type (not `u32`): {name}")
        })
    }

    /// Helper function to get a `windows` constant as a `Scalar`.
    fn eval_windows(&self, module: &str, name: &str) -> Scalar {
        self.eval_context_ref().eval_path_scalar(&["std", "sys", "pal", "windows", module, name])
    }

    /// Helper function to get a `windows` constant as a `u32`.
    fn eval_windows_u32(&self, module: &str, name: &str) -> u32 {
        // TODO: Cache the result.
        self.eval_windows(module, name).to_u32().unwrap_or_else(|_err| {
            panic!("required Windows item has unexpected type (not `u32`): {module}::{name}")
        })
    }

    /// Helper function to get a `windows` constant as a `u64`.
    fn eval_windows_u64(&self, module: &str, name: &str) -> u64 {
        // TODO: Cache the result.
        self.eval_windows(module, name).to_u64().unwrap_or_else(|_err| {
            panic!("required Windows item has unexpected type (not `u64`): {module}::{name}")
        })
    }

    /// Helper function to get the `TyAndLayout` of a `libc` type
    fn libc_ty_layout(&self, name: &str) -> TyAndLayout<'tcx> {
        let this = self.eval_context_ref();
        if this.tcx.sess.target.os == "windows" {
            panic!(
                "`libc` crate is not reliably available on Windows targets; Miri should not use it there"
            );
        }
        path_ty_layout(this, &["libc", name])
    }

    /// Helper function to get the `TyAndLayout` of a `windows` type
    fn windows_ty_layout(&self, name: &str) -> TyAndLayout<'tcx> {
        let this = self.eval_context_ref();
        path_ty_layout(this, &["std", "sys", "pal", "windows", "c", name])
    }

    /// Helper function to get `TyAndLayout` of an array that consists of `libc` type.
    fn libc_array_ty_layout(&self, name: &str, size: u64) -> TyAndLayout<'tcx> {
        let this = self.eval_context_ref();
        let elem_ty_layout = this.libc_ty_layout(name);
        let array_ty = Ty::new_array(*this.tcx, elem_ty_layout.ty, size);
        this.layout_of(array_ty).unwrap()
    }

    /// Project to the given *named* field (which must be a struct or union type).
    fn project_field_named<P: Projectable<'tcx, Provenance>>(
        &self,
        base: &P,
        name: &str,
    ) -> InterpResult<'tcx, P> {
        let this = self.eval_context_ref();
        let adt = base.layout().ty.ty_adt_def().unwrap();
        for (idx, field) in adt.non_enum_variant().fields.iter().enumerate() {
            if field.name.as_str() == name {
                return this.project_field(base, idx);
            }
        }
        bug!("No field named {} in type {}", name, base.layout().ty);
    }

    /// Search if `base` (which must be a struct or union type) contains the `name` field.
    fn projectable_has_field<P: Projectable<'tcx, Provenance>>(
        &self,
        base: &P,
        name: &str,
    ) -> bool {
        let adt = base.layout().ty.ty_adt_def().unwrap();
        for field in adt.non_enum_variant().fields.iter() {
            if field.name.as_str() == name {
                return true;
            }
        }
        false
    }

    /// Write an int of the appropriate size to `dest`. The target type may be signed or unsigned,
    /// we try to do the right thing anyway. `i128` can fit all integer types except for `u128` so
    /// this method is fine for almost all integer types.
    fn write_int(
        &mut self,
        i: impl Into<i128>,
        dest: &impl Writeable<'tcx, Provenance>,
    ) -> InterpResult<'tcx> {
        assert!(
            dest.layout().backend_repr.is_scalar(),
            "write_int on non-scalar type {}",
            dest.layout().ty
        );
        let val = if dest.layout().backend_repr.is_signed() {
            Scalar::from_int(i, dest.layout().size)
        } else {
            // `unwrap` can only fail here if `i` is negative
            Scalar::from_uint(u128::try_from(i.into()).unwrap(), dest.layout().size)
        };
        self.eval_context_mut().write_scalar(val, dest)
    }

    /// Write the first N fields of the given place.
    fn write_int_fields(
        &mut self,
        values: &[i128],
        dest: &impl Writeable<'tcx, Provenance>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        for (idx, &val) in values.iter().enumerate() {
            let field = this.project_field(dest, idx)?;
            this.write_int(val, &field)?;
        }
        interp_ok(())
    }

    /// Write the given fields of the given place.
    fn write_int_fields_named(
        &mut self,
        values: &[(&str, i128)],
        dest: &impl Writeable<'tcx, Provenance>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        for &(name, val) in values.iter() {
            let field = this.project_field_named(dest, name)?;
            this.write_int(val, &field)?;
        }
        interp_ok(())
    }

    /// Write a 0 of the appropriate size to `dest`.
    fn write_null(&mut self, dest: &impl Writeable<'tcx, Provenance>) -> InterpResult<'tcx> {
        self.write_int(0, dest)
    }

    /// Test if this pointer equals 0.
    fn ptr_is_null(&self, ptr: Pointer) -> InterpResult<'tcx, bool> {
        interp_ok(ptr.addr().bytes() == 0)
    }

    /// Generate some random bytes, and write them to `dest`.
    fn gen_random(&mut self, ptr: Pointer, len: u64) -> InterpResult<'tcx> {
        // Some programs pass in a null pointer and a length of 0
        // to their platform's random-generation function (e.g. getrandom())
        // on Linux. For compatibility with these programs, we don't perform
        // any additional checks - it's okay if the pointer is invalid,
        // since we wouldn't actually be writing to it.
        if len == 0 {
            return interp_ok(());
        }
        let this = self.eval_context_mut();

        let mut data = vec![0; usize::try_from(len).unwrap()];

        if this.machine.communicate() {
            // Fill the buffer using the host's rng.
            getrandom::getrandom(&mut data)
                .map_err(|err| err_unsup_format!("host getrandom failed: {}", err))?;
        } else {
            let rng = this.machine.rng.get_mut();
            rng.fill_bytes(&mut data);
        }

        this.write_bytes_ptr(ptr, data.iter().copied())
    }

    /// Call a function: Push the stack frame and pass the arguments.
    /// For now, arguments must be scalars (so that the caller does not have to know the layout).
    ///
    /// If you do not provide a return place, a dangling zero-sized place will be created
    /// for your convenience.
    fn call_function(
        &mut self,
        f: ty::Instance<'tcx>,
        caller_abi: ExternAbi,
        args: &[ImmTy<'tcx>],
        dest: Option<&MPlaceTy<'tcx>>,
        stack_pop: StackPopCleanup,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        // Get MIR.
        let mir = this.load_mir(f.def, None)?;
        let dest = match dest {
            Some(dest) => dest.clone(),
            None => MPlaceTy::fake_alloc_zst(this.layout_of(mir.return_ty())?),
        };

        // Construct a function pointer type representing the caller perspective.
        let sig = this.tcx.mk_fn_sig(
            args.iter().map(|a| a.layout.ty),
            dest.layout.ty,
            /*c_variadic*/ false,
            Safety::Safe,
            caller_abi,
        );
        let caller_fn_abi = this.fn_abi_of_fn_ptr(ty::Binder::dummy(sig), ty::List::empty())?;

        this.init_stack_frame(
            f,
            mir,
            caller_fn_abi,
            &args.iter().map(|a| FnArg::Copy(a.clone().into())).collect::<Vec<_>>(),
            /*with_caller_location*/ false,
            &dest,
            stack_pop,
        )
    }

    /// Visits the memory covered by `place`, sensitive to freezing: the 2nd parameter
    /// of `action` will be true if this is frozen, false if this is in an `UnsafeCell`.
    /// The range is relative to `place`.
    fn visit_freeze_sensitive(
        &self,
        place: &MPlaceTy<'tcx>,
        size: Size,
        mut action: impl FnMut(AllocRange, bool) -> InterpResult<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_ref();
        trace!("visit_frozen(place={:?}, size={:?})", *place, size);
        debug_assert_eq!(
            size,
            this.size_and_align_of_mplace(place)?
                .map(|(size, _)| size)
                .unwrap_or_else(|| place.layout.size)
        );
        // Store how far we proceeded into the place so far. Everything to the left of
        // this offset has already been handled, in the sense that the frozen parts
        // have had `action` called on them.
        let start_addr = place.ptr().addr();
        let mut cur_addr = start_addr;
        // Called when we detected an `UnsafeCell` at the given offset and size.
        // Calls `action` and advances `cur_ptr`.
        let mut unsafe_cell_action = |unsafe_cell_ptr: &Pointer, unsafe_cell_size: Size| {
            // We assume that we are given the fields in increasing offset order,
            // and nothing else changes.
            let unsafe_cell_addr = unsafe_cell_ptr.addr();
            assert!(unsafe_cell_addr >= cur_addr);
            let frozen_size = unsafe_cell_addr - cur_addr;
            // Everything between the cur_ptr and this `UnsafeCell` is frozen.
            if frozen_size != Size::ZERO {
                action(alloc_range(cur_addr - start_addr, frozen_size), /*frozen*/ true)?;
            }
            cur_addr += frozen_size;
            // This `UnsafeCell` is NOT frozen.
            if unsafe_cell_size != Size::ZERO {
                action(
                    alloc_range(cur_addr - start_addr, unsafe_cell_size),
                    /*frozen*/ false,
                )?;
            }
            cur_addr += unsafe_cell_size;
            // Done
            interp_ok(())
        };
        // Run a visitor
        {
            let mut visitor = UnsafeCellVisitor {
                ecx: this,
                unsafe_cell_action: |place| {
                    trace!("unsafe_cell_action on {:?}", place.ptr());
                    // We need a size to go on.
                    let unsafe_cell_size = this
                        .size_and_align_of_mplace(place)?
                        .map(|(size, _)| size)
                        // for extern types, just cover what we can
                        .unwrap_or_else(|| place.layout.size);
                    // Now handle this `UnsafeCell`, unless it is empty.
                    if unsafe_cell_size != Size::ZERO {
                        unsafe_cell_action(&place.ptr(), unsafe_cell_size)
                    } else {
                        interp_ok(())
                    }
                },
            };
            visitor.visit_value(place)?;
        }
        // The part between the end_ptr and the end of the place is also frozen.
        // So pretend there is a 0-sized `UnsafeCell` at the end.
        unsafe_cell_action(&place.ptr().wrapping_offset(size, this), Size::ZERO)?;
        // Done!
        return interp_ok(());

        /// Visiting the memory covered by a `MemPlace`, being aware of
        /// whether we are inside an `UnsafeCell` or not.
        struct UnsafeCellVisitor<'ecx, 'tcx, F>
        where
            F: FnMut(&MPlaceTy<'tcx>) -> InterpResult<'tcx>,
        {
            ecx: &'ecx MiriInterpCx<'tcx>,
            unsafe_cell_action: F,
        }

        impl<'ecx, 'tcx, F> ValueVisitor<'tcx, MiriMachine<'tcx>> for UnsafeCellVisitor<'ecx, 'tcx, F>
        where
            F: FnMut(&MPlaceTy<'tcx>) -> InterpResult<'tcx>,
        {
            type V = MPlaceTy<'tcx>;

            #[inline(always)]
            fn ecx(&self) -> &MiriInterpCx<'tcx> {
                self.ecx
            }

            fn aggregate_field_iter(
                memory_index: &IndexVec<FieldIdx, u32>,
            ) -> impl Iterator<Item = FieldIdx> + 'static {
                let inverse_memory_index = memory_index.invert_bijective_mapping();
                inverse_memory_index.into_iter()
            }

            // Hook to detect `UnsafeCell`.
            fn visit_value(&mut self, v: &MPlaceTy<'tcx>) -> InterpResult<'tcx> {
                trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
                let is_unsafe_cell = match v.layout.ty.kind() {
                    ty::Adt(adt, _) =>
                        Some(adt.did()) == self.ecx.tcx.lang_items().unsafe_cell_type(),
                    _ => false,
                };
                if is_unsafe_cell {
                    // We do not have to recurse further, this is an `UnsafeCell`.
                    (self.unsafe_cell_action)(v)
                } else if self.ecx.type_is_freeze(v.layout.ty) {
                    // This is `Freeze`, there cannot be an `UnsafeCell`
                    interp_ok(())
                } else if matches!(v.layout.fields, FieldsShape::Union(..)) {
                    // A (non-frozen) union. We fall back to whatever the type says.
                    (self.unsafe_cell_action)(v)
                } else if matches!(v.layout.ty.kind(), ty::Dynamic(_, _, ty::DynStar)) {
                    // This needs to read the vtable pointer to proceed type-driven, but we don't
                    // want to reentrantly read from memory here.
                    (self.unsafe_cell_action)(v)
                } else {
                    // We want to not actually read from memory for this visit. So, before
                    // walking this value, we have to make sure it is not a
                    // `Variants::Multiple`.
                    match v.layout.variants {
                        Variants::Multiple { .. } => {
                            // A multi-variant enum, or coroutine, or so.
                            // Treat this like a union: without reading from memory,
                            // we cannot determine the variant we are in. Reading from
                            // memory would be subject to Stacked Borrows rules, leading
                            // to all sorts of "funny" recursion.
                            // We only end up here if the type is *not* freeze, so we just call the
                            // `UnsafeCell` action.
                            (self.unsafe_cell_action)(v)
                        }
                        Variants::Single { .. } => {
                            // Proceed further, try to find where exactly that `UnsafeCell`
                            // is hiding.
                            self.walk_value(v)
                        }
                    }
                }
            }

            fn visit_union(
                &mut self,
                _v: &MPlaceTy<'tcx>,
                _fields: NonZero<usize>,
            ) -> InterpResult<'tcx> {
                bug!("we should have already handled unions in `visit_value`")
            }
        }
    }

    /// Helper function used inside the shims of foreign functions to check that isolation is
    /// disabled. It returns an error using the `name` of the foreign function if this is not the
    /// case.
    fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> {
        if !self.eval_context_ref().machine.communicate() {
            self.reject_in_isolation(name, RejectOpWith::Abort)?;
        }
        interp_ok(())
    }

    /// Helper function used inside the shims of foreign functions which reject the op
    /// when isolation is enabled. It is used to print a warning/backtrace about the rejection.
    fn reject_in_isolation(&self, op_name: &str, reject_with: RejectOpWith) -> InterpResult<'tcx> {
        let this = self.eval_context_ref();
        match reject_with {
            RejectOpWith::Abort => isolation_abort_error(op_name),
            RejectOpWith::WarningWithoutBacktrace => {
                // This exists to reduce verbosity; make sure we emit the warning at most once per
                // operation.
                static EMITTED_WARNINGS: Mutex<BTreeSet<String>> = Mutex::new(BTreeSet::new());

                let mut emitted_warnings = EMITTED_WARNINGS.lock().unwrap();
                if !emitted_warnings.contains(op_name) {
                    // First time we are seeing this.
                    emitted_warnings.insert(op_name.to_owned());
                    this.tcx
                        .dcx()
                        .warn(format!("{op_name} was made to return an error due to isolation"));
                }
                interp_ok(())
            }
            RejectOpWith::Warning => {
                this.emit_diagnostic(NonHaltingDiagnostic::RejectedIsolatedOp(op_name.to_string()));
                interp_ok(())
            }
            RejectOpWith::NoWarning => interp_ok(()), // no warning
        }
    }

    /// Helper function used inside the shims of foreign functions to assert that the target OS
    /// is `target_os`. It panics showing a message with the `name` of the foreign function
    /// if this is not the case.
    fn assert_target_os(&self, target_os: &str, name: &str) {
        assert_eq!(
            self.eval_context_ref().tcx.sess.target.os,
            target_os,
            "`{name}` is only available on the `{target_os}` target OS",
        )
    }

    /// Helper function used inside the shims of foreign functions to assert that the target OS
    /// is part of the UNIX family. It panics showing a message with the `name` of the foreign function
    /// if this is not the case.
    fn assert_target_os_is_unix(&self, name: &str) {
        assert!(self.target_os_is_unix(), "`{name}` is only available for unix targets",);
    }

    fn target_os_is_unix(&self) -> bool {
        self.eval_context_ref().tcx.sess.target.families.iter().any(|f| f == "unix")
    }

    /// Dereference a pointer operand to a place using `layout` instead of the pointer's declared type
    fn deref_pointer_as(
        &self,
        op: &impl Projectable<'tcx, Provenance>,
        layout: TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
        let this = self.eval_context_ref();
        let ptr = this.read_pointer(op)?;
        interp_ok(this.ptr_to_mplace(ptr, layout))
    }

    /// Calculates the MPlaceTy given the offset and layout of an access on an operand
    fn deref_pointer_and_offset(
        &self,
        op: &impl Projectable<'tcx, Provenance>,
        offset: u64,
        base_layout: TyAndLayout<'tcx>,
        value_layout: TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
        let this = self.eval_context_ref();
        let op_place = this.deref_pointer_as(op, base_layout)?;
        let offset = Size::from_bytes(offset);

        // Ensure that the access is within bounds.
        assert!(base_layout.size >= offset + value_layout.size);
        let value_place = op_place.offset(offset, value_layout, this)?;
        interp_ok(value_place)
    }

    fn deref_pointer_and_read(
        &self,
        op: &impl Projectable<'tcx, Provenance>,
        offset: u64,
        base_layout: TyAndLayout<'tcx>,
        value_layout: TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_ref();
        let value_place = this.deref_pointer_and_offset(op, offset, base_layout, value_layout)?;
        this.read_scalar(&value_place)
    }

    fn deref_pointer_and_write(
        &mut self,
        op: &impl Projectable<'tcx, Provenance>,
        offset: u64,
        value: impl Into<Scalar>,
        base_layout: TyAndLayout<'tcx>,
        value_layout: TyAndLayout<'tcx>,
    ) -> InterpResult<'tcx, ()> {
        let this = self.eval_context_mut();
        let value_place = this.deref_pointer_and_offset(op, offset, base_layout, value_layout)?;
        this.write_scalar(value, &value_place)
    }

    /// Parse a `timespec` struct and return it as a `std::time::Duration`. It returns `None`
    /// if the value in the `timespec` struct is invalid. Some libc functions will return
    /// `EINVAL` in this case.
    fn read_timespec(&mut self, tp: &MPlaceTy<'tcx>) -> InterpResult<'tcx, Option<Duration>> {
        let this = self.eval_context_mut();
        let seconds_place = this.project_field(tp, 0)?;
        let seconds_scalar = this.read_scalar(&seconds_place)?;
        let seconds = seconds_scalar.to_target_isize(this)?;
        let nanoseconds_place = this.project_field(tp, 1)?;
        let nanoseconds_scalar = this.read_scalar(&nanoseconds_place)?;
        let nanoseconds = nanoseconds_scalar.to_target_isize(this)?;

        interp_ok(
            try {
                // tv_sec must be non-negative.
                let seconds: u64 = seconds.try_into().ok()?;
                // tv_nsec must be non-negative.
                let nanoseconds: u32 = nanoseconds.try_into().ok()?;
                if nanoseconds >= 1_000_000_000 {
                    // tv_nsec must not be greater than 999,999,999.
                    None?
                }
                Duration::new(seconds, nanoseconds)
            },
        )
    }

    /// Read bytes from a byte slice.
    fn read_byte_slice<'a>(&'a self, slice: &ImmTy<'tcx>) -> InterpResult<'tcx, &'a [u8]>
    where
        'tcx: 'a,
    {
        let this = self.eval_context_ref();
        let (ptr, len) = slice.to_scalar_pair();
        let ptr = ptr.to_pointer(this)?;
        let len = len.to_target_usize(this)?;
        let bytes = this.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(len))?;
        interp_ok(bytes)
    }

    /// Read a sequence of bytes until the first null terminator.
    fn read_c_str<'a>(&'a self, ptr: Pointer) -> InterpResult<'tcx, &'a [u8]>
    where
        'tcx: 'a,
    {
        let this = self.eval_context_ref();
        let size1 = Size::from_bytes(1);

        // Step 1: determine the length.
        let mut len = Size::ZERO;
        loop {
            // FIXME: We are re-getting the allocation each time around the loop.
            // Would be nice if we could somehow "extend" an existing AllocRange.
            let alloc = this.get_ptr_alloc(ptr.wrapping_offset(len, this), size1)?.unwrap(); // not a ZST, so we will get a result
            let byte = alloc.read_integer(alloc_range(Size::ZERO, size1))?.to_u8()?;
            if byte == 0 {
                break;
            } else {
                len += size1;
            }
        }

        // Step 2: get the bytes.
        this.read_bytes_ptr_strip_provenance(ptr, len)
    }

    /// Helper function to write a sequence of bytes with an added null-terminator, which is what
    /// the Unix APIs usually handle. This function returns `Ok((false, length))` without trying
    /// to write if `size` is not large enough to fit the contents of `c_str` plus a null
    /// terminator. It returns `Ok((true, length))` if the writing process was successful. The
    /// string length returned does include the null terminator.
    fn write_c_str(
        &mut self,
        c_str: &[u8],
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        // If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
        // terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
        let string_length = u64::try_from(c_str.len()).unwrap();
        let string_length = string_length.strict_add(1);
        if size < string_length {
            return interp_ok((false, string_length));
        }
        self.eval_context_mut()
            .write_bytes_ptr(ptr, c_str.iter().copied().chain(iter::once(0u8)))?;
        interp_ok((true, string_length))
    }

    /// Helper function to read a sequence of unsigned integers of the given size and alignment
    /// until the first null terminator.
    fn read_c_str_with_char_size<T>(
        &self,
        mut ptr: Pointer,
        size: Size,
        align: Align,
    ) -> InterpResult<'tcx, Vec<T>>
    where
        T: TryFrom<u128>,
        <T as TryFrom<u128>>::Error: std::fmt::Debug,
    {
        assert_ne!(size, Size::ZERO);

        let this = self.eval_context_ref();

        this.check_ptr_align(ptr, align)?;

        let mut wchars = Vec::new();
        loop {
            // FIXME: We are re-getting the allocation each time around the loop.
            // Would be nice if we could somehow "extend" an existing AllocRange.
            let alloc = this.get_ptr_alloc(ptr, size)?.unwrap(); // not a ZST, so we will get a result
            let wchar_int = alloc.read_integer(alloc_range(Size::ZERO, size))?.to_bits(size)?;
            if wchar_int == 0 {
                break;
            } else {
                wchars.push(wchar_int.try_into().unwrap());
                ptr = ptr.wrapping_offset(size, this);
            }
        }

        interp_ok(wchars)
    }

    /// Read a sequence of u16 until the first null terminator.
    fn read_wide_str(&self, ptr: Pointer) -> InterpResult<'tcx, Vec<u16>> {
        self.read_c_str_with_char_size(ptr, Size::from_bytes(2), Align::from_bytes(2).unwrap())
    }

    /// Helper function to write a sequence of u16 with an added 0x0000-terminator, which is what
    /// the Windows APIs usually handle. This function returns `Ok((false, length))` without trying
    /// to write if `size` is not large enough to fit the contents of `os_string` plus a null
    /// terminator. It returns `Ok((true, length))` if the writing process was successful. The
    /// string length returned does include the null terminator. Length is measured in units of
    /// `u16.`
    fn write_wide_str(
        &mut self,
        wide_str: &[u16],
        ptr: Pointer,
        size: u64,
    ) -> InterpResult<'tcx, (bool, u64)> {
        // If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required
        // 0x0000 terminator to memory would cause an out-of-bounds access.
        let string_length = u64::try_from(wide_str.len()).unwrap();
        let string_length = string_length.strict_add(1);
        if size < string_length {
            return interp_ok((false, string_length));
        }

        // Store the UTF-16 string.
        let size2 = Size::from_bytes(2);
        let this = self.eval_context_mut();
        this.check_ptr_align(ptr, Align::from_bytes(2).unwrap())?;
        let mut alloc = this.get_ptr_alloc_mut(ptr, size2 * string_length)?.unwrap(); // not a ZST, so we will get a result
        for (offset, wchar) in wide_str.iter().copied().chain(iter::once(0x0000)).enumerate() {
            let offset = u64::try_from(offset).unwrap();
            alloc.write_scalar(alloc_range(size2 * offset, size2), Scalar::from_u16(wchar))?;
        }
        interp_ok((true, string_length))
    }

    /// Read a sequence of wchar_t until the first null terminator.
    /// Always returns a `Vec<u32>` no matter the size of `wchar_t`.
    fn read_wchar_t_str(&self, ptr: Pointer) -> InterpResult<'tcx, Vec<u32>> {
        let this = self.eval_context_ref();
        let wchar_t = if this.tcx.sess.target.os == "windows" {
            // We don't have libc on Windows so we have to hard-code the type ourselves.
            this.machine.layouts.u16
        } else {
            this.libc_ty_layout("wchar_t")
        };
        self.read_c_str_with_char_size(ptr, wchar_t.size, wchar_t.align.abi)
    }

    /// Check that the ABI is what we expect.
    fn check_abi<'a>(&self, abi: ExternAbi, exp_abi: ExternAbi) -> InterpResult<'a, ()> {
        if abi != exp_abi {
            throw_ub_format!(
                "calling a function with ABI {} using caller ABI {}",
                exp_abi.name(),
                abi.name()
            )
        }
        interp_ok(())
    }

    fn frame_in_std(&self) -> bool {
        let this = self.eval_context_ref();
        let frame = this.frame();
        // Make an attempt to get at the instance of the function this is inlined from.
        let instance: Option<_> = try {
            let scope = frame.current_source_info()?.scope;
            let inlined_parent = frame.body().source_scopes[scope].inlined_parent_scope?;
            let source = &frame.body().source_scopes[inlined_parent];
            source.inlined.expect("inlined_parent_scope points to scope without inline info").0
        };
        // Fall back to the instance of the function itself.
        let instance = instance.unwrap_or(frame.instance());
        // Now check the crate it is in. We could try to be clever here and e.g. check if this is
        // the same crate as `start_fn`, but that would not work for running std tests in Miri, so
        // we'd need some more hacks anyway. So we just check the name of the crate. If someone
        // calls their crate `std` then we'll just let them keep the pieces.
        let frame_crate = this.tcx.def_path(instance.def_id()).krate;
        let crate_name = this.tcx.crate_name(frame_crate);
        let crate_name = crate_name.as_str();
        // On miri-test-libstd, the name of the crate is different.
        crate_name == "std" || crate_name == "std_miri_test"
    }

    fn check_abi_and_shim_symbol_clash(
        &mut self,
        abi: ExternAbi,
        exp_abi: ExternAbi,
        link_name: Symbol,
    ) -> InterpResult<'tcx, ()> {
        self.check_abi(abi, exp_abi)?;
        if let Some((body, instance)) = self.eval_context_mut().lookup_exported_symbol(link_name)? {
            // If compiler-builtins is providing the symbol, then don't treat it as a clash.
            // We'll use our built-in implementation in `emulate_foreign_item_inner` for increased
            // performance. Note that this means we won't catch any undefined behavior in
            // compiler-builtins when running other crates, but Miri can still be run on
            // compiler-builtins itself (or any crate that uses it as a normal dependency)
            if self.eval_context_ref().tcx.is_compiler_builtins(instance.def_id().krate) {
                return interp_ok(());
            }

            throw_machine_stop!(TerminationInfo::SymbolShimClashing {
                link_name,
                span: body.span.data(),
            })
        }
        interp_ok(())
    }

    fn check_shim<'a, const N: usize>(
        &mut self,
        abi: ExternAbi,
        exp_abi: ExternAbi,
        link_name: Symbol,
        args: &'a [OpTy<'tcx>],
    ) -> InterpResult<'tcx, &'a [OpTy<'tcx>; N]>
    where
        &'a [OpTy<'tcx>; N]: TryFrom<&'a [OpTy<'tcx>]>,
    {
        self.check_abi_and_shim_symbol_clash(abi, exp_abi, link_name)?;
        check_arg_count(args)
    }

    /// Mark a machine allocation that was just created as immutable.
    fn mark_immutable(&mut self, mplace: &MPlaceTy<'tcx>) {
        let this = self.eval_context_mut();
        // This got just allocated, so there definitely is a pointer here.
        let provenance = mplace.ptr().into_pointer_or_addr().unwrap().provenance;
        this.alloc_mark_immutable(provenance.get_alloc_id().unwrap()).unwrap();
    }

    /// Converts `src` from floating point to integer type `dest_ty`
    /// after rounding with mode `round`.
    /// Returns `None` if `f` is NaN or out of range.
    fn float_to_int_checked(
        &self,
        src: &ImmTy<'tcx>,
        cast_to: TyAndLayout<'tcx>,
        round: rustc_apfloat::Round,
    ) -> InterpResult<'tcx, Option<ImmTy<'tcx>>> {
        let this = self.eval_context_ref();

        fn float_to_int_inner<'tcx, F: rustc_apfloat::Float>(
            ecx: &MiriInterpCx<'tcx>,
            src: F,
            cast_to: TyAndLayout<'tcx>,
            round: rustc_apfloat::Round,
        ) -> (Scalar, rustc_apfloat::Status) {
            let int_size = cast_to.layout.size;
            match cast_to.ty.kind() {
                // Unsigned
                ty::Uint(_) => {
                    let res = src.to_u128_r(int_size.bits_usize(), round, &mut false);
                    (Scalar::from_uint(res.value, int_size), res.status)
                }
                // Signed
                ty::Int(_) => {
                    let res = src.to_i128_r(int_size.bits_usize(), round, &mut false);
                    (Scalar::from_int(res.value, int_size), res.status)
                }
                // Nothing else
                _ =>
                    span_bug!(
                        ecx.cur_span(),
                        "attempted float-to-int conversion with non-int output type {}",
                        cast_to.ty,
                    ),
            }
        }

        let ty::Float(fty) = src.layout.ty.kind() else {
            bug!("float_to_int_checked: non-float input type {}", src.layout.ty)
        };

        let (val, status) = match fty {
            FloatTy::F16 =>
                float_to_int_inner::<Half>(this, src.to_scalar().to_f16()?, cast_to, round),
            FloatTy::F32 =>
                float_to_int_inner::<Single>(this, src.to_scalar().to_f32()?, cast_to, round),
            FloatTy::F64 =>
                float_to_int_inner::<Double>(this, src.to_scalar().to_f64()?, cast_to, round),
            FloatTy::F128 =>
                float_to_int_inner::<Quad>(this, src.to_scalar().to_f128()?, cast_to, round),
        };

        if status.intersects(
            rustc_apfloat::Status::INVALID_OP
                | rustc_apfloat::Status::OVERFLOW
                | rustc_apfloat::Status::UNDERFLOW,
        ) {
            // Floating point value is NaN (flagged with INVALID_OP) or outside the range
            // of values of the integer type (flagged with OVERFLOW or UNDERFLOW).
            interp_ok(None)
        } else {
            // Floating point value can be represented by the integer type after rounding.
            // The INEXACT flag is ignored on purpose to allow rounding.
            interp_ok(Some(ImmTy::from_scalar(val, cast_to)))
        }
    }

    /// Returns an integer type that is twice wide as `ty`
    fn get_twice_wide_int_ty(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
        let this = self.eval_context_ref();
        match ty.kind() {
            // Unsigned
            ty::Uint(UintTy::U8) => this.tcx.types.u16,
            ty::Uint(UintTy::U16) => this.tcx.types.u32,
            ty::Uint(UintTy::U32) => this.tcx.types.u64,
            ty::Uint(UintTy::U64) => this.tcx.types.u128,
            // Signed
            ty::Int(IntTy::I8) => this.tcx.types.i16,
            ty::Int(IntTy::I16) => this.tcx.types.i32,
            ty::Int(IntTy::I32) => this.tcx.types.i64,
            ty::Int(IntTy::I64) => this.tcx.types.i128,
            _ => span_bug!(this.cur_span(), "unexpected type: {ty:?}"),
        }
    }

    /// Checks that target feature `target_feature` is enabled.
    ///
    /// If not enabled, emits an UB error that states that the feature is
    /// required by `intrinsic`.
    fn expect_target_feature_for_intrinsic(
        &self,
        intrinsic: Symbol,
        target_feature: &str,
    ) -> InterpResult<'tcx, ()> {
        let this = self.eval_context_ref();
        if !this.tcx.sess.unstable_target_features.contains(&Symbol::intern(target_feature)) {
            throw_ub_format!(
                "attempted to call intrinsic `{intrinsic}` that requires missing target feature {target_feature}"
            );
        }
        interp_ok(())
    }

    /// Lookup an array of immediates stored as a linker section of name `name`.
    fn lookup_link_section(&mut self, name: &str) -> InterpResult<'tcx, Vec<ImmTy<'tcx>>> {
        let this = self.eval_context_mut();
        let tcx = this.tcx.tcx;

        let mut array = vec![];

        iter_exported_symbols(tcx, |_cnum, def_id| {
            let attrs = tcx.codegen_fn_attrs(def_id);
            let Some(link_section) = attrs.link_section else {
                return interp_ok(());
            };
            if link_section.as_str() == name {
                let instance = ty::Instance::mono(tcx, def_id);
                let const_val = this.eval_global(instance).unwrap_or_else(|err| {
                    panic!(
                        "failed to evaluate static in required link_section: {def_id:?}\n{err:?}"
                    )
                });
                let val = this.read_immediate(&const_val)?;
                array.push(val);
            }
            interp_ok(())
        })?;

        interp_ok(array)
    }
}

impl<'tcx> MiriMachine<'tcx> {
    /// Get the current span in the topmost function which is workspace-local and not
    /// `#[track_caller]`.
    /// This function is backed by a cache, and can be assumed to be very fast.
    /// It will work even when the stack is empty.
    pub fn current_span(&self) -> Span {
        self.threads.active_thread_ref().current_span()
    }

    /// Returns the span of the *caller* of the current operation, again
    /// walking down the stack to find the closest frame in a local crate, if the caller of the
    /// current operation is not in a local crate.
    /// This is useful when we are processing something which occurs on function-entry and we want
    /// to point at the call to the function, not the function definition generally.
    pub fn caller_span(&self) -> Span {
        // We need to go down at least to the caller (len - 2), or however
        // far we have to go to find a frame in a local crate which is also not #[track_caller].
        let frame_idx = self.top_user_relevant_frame().unwrap();
        let frame_idx = cmp::min(frame_idx, self.stack().len().saturating_sub(2));
        self.stack()[frame_idx].current_span()
    }

    fn stack(&self) -> &[Frame<'tcx, Provenance, machine::FrameExtra<'tcx>>] {
        self.threads.active_thread_stack()
    }

    fn top_user_relevant_frame(&self) -> Option<usize> {
        self.threads.active_thread_ref().top_user_relevant_frame()
    }

    /// This is the source of truth for the `is_user_relevant` flag in our `FrameExtra`.
    pub fn is_user_relevant(&self, frame: &Frame<'tcx, Provenance>) -> bool {
        let def_id = frame.instance().def_id();
        (def_id.is_local() || self.local_crates.contains(&def_id.krate))
            && !frame.instance().def.requires_caller_location(self.tcx)
    }
}

/// Check that the number of args is what we expect.
pub fn check_arg_count<'a, 'tcx, const N: usize>(
    args: &'a [OpTy<'tcx>],
) -> InterpResult<'tcx, &'a [OpTy<'tcx>; N]>
where
    &'a [OpTy<'tcx>; N]: TryFrom<&'a [OpTy<'tcx>]>,
{
    if let Ok(ops) = args.try_into() {
        return interp_ok(ops);
    }
    throw_ub_format!("incorrect number of arguments: got {}, expected {}", args.len(), N)
}

/// Check that the number of args is at least the minumim what we expect.
pub fn check_min_arg_count<'a, 'tcx, const N: usize>(
    name: &'a str,
    args: &'a [OpTy<'tcx>],
) -> InterpResult<'tcx, &'a [OpTy<'tcx>; N]> {
    if let Some((ops, _)) = args.split_first_chunk() {
        return interp_ok(ops);
    }
    throw_ub_format!(
        "incorrect number of arguments for `{name}`: got {}, expected at least {}",
        args.len(),
        N
    )
}

pub fn isolation_abort_error<'tcx>(name: &str) -> InterpResult<'tcx> {
    throw_machine_stop!(TerminationInfo::UnsupportedInIsolation(format!(
        "{name} not available when isolation is enabled",
    )))
}

/// Retrieve the list of local crates that should have been passed by cargo-miri in
/// MIRI_LOCAL_CRATES and turn them into `CrateNum`s.
pub fn get_local_crates(tcx: TyCtxt<'_>) -> Vec<CrateNum> {
    // Convert the local crate names from the passed-in config into CrateNums so that they can
    // be looked up quickly during execution
    let local_crate_names = std::env::var("MIRI_LOCAL_CRATES")
        .map(|crates| crates.split(',').map(|krate| krate.to_string()).collect::<Vec<_>>())
        .unwrap_or_default();
    let mut local_crates = Vec::new();
    for &crate_num in tcx.crates(()) {
        let name = tcx.crate_name(crate_num);
        let name = name.as_str();
        if local_crate_names.iter().any(|local_name| local_name == name) {
            local_crates.push(crate_num);
        }
    }
    local_crates
}

pub(crate) fn bool_to_simd_element(b: bool, size: Size) -> Scalar {
    // SIMD uses all-1 as pattern for "true". In two's complement,
    // -1 has all its bits set to one and `from_int` will truncate or
    // sign-extend it to `size` as required.
    let val = if b { -1 } else { 0 };
    Scalar::from_int(val, size)
}

pub(crate) fn simd_element_to_bool(elem: ImmTy<'_>) -> InterpResult<'_, bool> {
    let val = elem.to_scalar().to_int(elem.layout.size)?;
    interp_ok(match val {
        0 => false,
        -1 => true,
        _ => throw_ub_format!("each element of a SIMD mask must be all-0-bits or all-1-bits"),
    })
}

/// Check whether an operation that writes to a target buffer was successful.
/// Accordingly select return value.
/// Local helper function to be used in Windows shims.
pub(crate) fn windows_check_buffer_size((success, len): (bool, u64)) -> u32 {
    if success {
        // If the function succeeds, the return value is the number of characters stored in the target buffer,
        // not including the terminating null character.
        u32::try_from(len.strict_sub(1)).unwrap()
    } else {
        // If the target buffer was not large enough to hold the data, the return value is the buffer size, in characters,
        // required to hold the string and its terminating null character.
        u32::try_from(len).unwrap()
    }
}