miri/
helpers.rs

1use std::num::NonZero;
2use std::sync::Mutex;
3use std::time::Duration;
4use std::{cmp, iter};
5
6use rand::RngCore;
7use rustc_abi::{Align, ExternAbi, FieldIdx, FieldsShape, Size, Variants};
8use rustc_apfloat::Float;
9use rustc_hash::FxHashSet;
10use rustc_hir::Safety;
11use rustc_hir::def::{DefKind, Namespace};
12use rustc_hir::def_id::{CRATE_DEF_INDEX, CrateNum, DefId, LOCAL_CRATE};
13use rustc_index::IndexVec;
14use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
15use rustc_middle::middle::dependency_format::Linkage;
16use rustc_middle::middle::exported_symbols::ExportedSymbol;
17use rustc_middle::ty::layout::{LayoutOf, MaybeResult, TyAndLayout};
18use rustc_middle::ty::{self, IntTy, Ty, TyCtxt, UintTy};
19use rustc_session::config::CrateType;
20use rustc_span::{Span, Symbol};
21use rustc_symbol_mangling::mangle_internal_symbol;
22use rustc_target::spec::Os;
23
24use crate::*;
25
26/// Gets an instance for a path.
27///
28/// A `None` namespace indicates we are looking for a module.
29fn try_resolve_did(tcx: TyCtxt<'_>, path: &[&str], namespace: Option<Namespace>) -> Option<DefId> {
30    let _trace = enter_trace_span!("try_resolve_did", ?path);
31
32    /// Yield all children of the given item, that have the given name.
33    fn find_children<'tcx: 'a, 'a>(
34        tcx: TyCtxt<'tcx>,
35        item: DefId,
36        name: &'a str,
37    ) -> impl Iterator<Item = DefId> + 'a {
38        let name = Symbol::intern(name);
39        tcx.module_children(item)
40            .iter()
41            .filter(move |item| item.ident.name == name)
42            .map(move |item| item.res.def_id())
43    }
44
45    // Take apart the path: leading crate, a sequence of modules, and potentially a final item.
46    let (&crate_name, path) = path.split_first().expect("paths must have at least one segment");
47    let (modules, item) = if let Some(namespace) = namespace {
48        let (&item_name, modules) =
49            path.split_last().expect("non-module paths must have at least 2 segments");
50        (modules, Some((item_name, namespace)))
51    } else {
52        (path, None)
53    };
54
55    // There may be more than one crate with this name. We try them all.
56    // (This is particularly relevant when running `std` tests as then there are two `std` crates:
57    // the one in the sysroot and the one locally built by `cargo test`.)
58    // FIXME: can we prefer the one from the sysroot?
59    'crates: for krate in
60        tcx.crates(()).iter().filter(|&&krate| tcx.crate_name(krate).as_str() == crate_name)
61    {
62        let mut cur_item = DefId { krate: *krate, index: CRATE_DEF_INDEX };
63        // Go over the modules.
64        for &segment in modules {
65            let Some(next_item) = find_children(tcx, cur_item, segment)
66                .find(|item| tcx.def_kind(item) == DefKind::Mod)
67            else {
68                continue 'crates;
69            };
70            cur_item = next_item;
71        }
72        // Finally, look up the desired item in this module, if any.
73        match item {
74            Some((item_name, namespace)) => {
75                let Some(item) = find_children(tcx, cur_item, item_name)
76                    .find(|item| tcx.def_kind(item).ns() == Some(namespace))
77                else {
78                    continue 'crates;
79                };
80                return Some(item);
81            }
82            None => {
83                // Just return the module.
84                return Some(cur_item);
85            }
86        }
87    }
88    // Item not found in any of the crates with the right name.
89    None
90}
91
92/// Gets an instance for a path; fails gracefully if the path does not exist.
93pub fn try_resolve_path<'tcx>(
94    tcx: TyCtxt<'tcx>,
95    path: &[&str],
96    namespace: Namespace,
97) -> Option<ty::Instance<'tcx>> {
98    let did = try_resolve_did(tcx, path, Some(namespace))?;
99    Some(ty::Instance::mono(tcx, did))
100}
101
102/// Gets an instance for a path.
103#[track_caller]
104pub fn resolve_path<'tcx>(
105    tcx: TyCtxt<'tcx>,
106    path: &[&str],
107    namespace: Namespace,
108) -> ty::Instance<'tcx> {
109    try_resolve_path(tcx, path, namespace)
110        .unwrap_or_else(|| panic!("failed to find required Rust item: {path:?}"))
111}
112
113/// Gets the layout of a type at a path.
114#[track_caller]
115pub fn path_ty_layout<'tcx>(cx: &impl LayoutOf<'tcx>, path: &[&str]) -> TyAndLayout<'tcx> {
116    let ty = resolve_path(cx.tcx(), path, Namespace::TypeNS).ty(cx.tcx(), cx.typing_env());
117    cx.layout_of(ty).to_result().ok().unwrap()
118}
119
120/// Call `f` for each exported symbol.
121pub fn iter_exported_symbols<'tcx>(
122    tcx: TyCtxt<'tcx>,
123    mut f: impl FnMut(CrateNum, DefId) -> InterpResult<'tcx>,
124) -> InterpResult<'tcx> {
125    // First, the symbols in the local crate. We can't use `exported_symbols` here as that
126    // skips `#[used]` statics (since `reachable_set` skips them in binary crates).
127    // So we walk all HIR items ourselves instead.
128    let crate_items = tcx.hir_crate_items(());
129    for def_id in crate_items.definitions() {
130        let exported = tcx.def_kind(def_id).has_codegen_attrs() && {
131            let codegen_attrs = tcx.codegen_fn_attrs(def_id);
132            codegen_attrs.contains_extern_indicator()
133                || codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_COMPILER)
134                || codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER)
135        };
136        if exported {
137            f(LOCAL_CRATE, def_id.into())?;
138        }
139    }
140
141    // Next, all our dependencies.
142    // `dependency_formats` includes all the transitive informations needed to link a crate,
143    // which is what we need here since we need to dig out `exported_symbols` from all transitive
144    // dependencies.
145    let dependency_formats = tcx.dependency_formats(());
146    // Find the dependencies of the executable we are running.
147    let dependency_format = dependency_formats
148        .get(&CrateType::Executable)
149        .expect("interpreting a non-executable crate");
150    for cnum in dependency_format
151        .iter_enumerated()
152        .filter_map(|(num, &linkage)| (linkage != Linkage::NotLinked).then_some(num))
153    {
154        if cnum == LOCAL_CRATE {
155            continue; // Already handled above
156        }
157
158        // We can ignore `_export_info` here: we are a Rust crate, and everything is exported
159        // from a Rust crate.
160        for &(symbol, _export_info) in tcx.exported_non_generic_symbols(cnum) {
161            if let ExportedSymbol::NonGeneric(def_id) = symbol {
162                f(cnum, def_id)?;
163            }
164        }
165    }
166    interp_ok(())
167}
168
169/// Convert a softfloat type to its corresponding hostfloat type.
170pub trait ToHost {
171    type HostFloat;
172    fn to_host(self) -> Self::HostFloat;
173}
174
175/// Convert a hostfloat type to its corresponding softfloat type.
176pub trait ToSoft {
177    type SoftFloat;
178    fn to_soft(self) -> Self::SoftFloat;
179}
180
181impl ToHost for rustc_apfloat::ieee::Double {
182    type HostFloat = f64;
183
184    fn to_host(self) -> Self::HostFloat {
185        f64::from_bits(self.to_bits().try_into().unwrap())
186    }
187}
188
189impl ToSoft for f64 {
190    type SoftFloat = rustc_apfloat::ieee::Double;
191
192    fn to_soft(self) -> Self::SoftFloat {
193        Float::from_bits(self.to_bits().into())
194    }
195}
196
197impl ToHost for rustc_apfloat::ieee::Single {
198    type HostFloat = f32;
199
200    fn to_host(self) -> Self::HostFloat {
201        f32::from_bits(self.to_bits().try_into().unwrap())
202    }
203}
204
205impl ToSoft for f32 {
206    type SoftFloat = rustc_apfloat::ieee::Single;
207
208    fn to_soft(self) -> Self::SoftFloat {
209        Float::from_bits(self.to_bits().into())
210    }
211}
212
213impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
214pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
215    /// Checks if the given crate/module exists.
216    fn have_module(&self, path: &[&str]) -> bool {
217        try_resolve_did(*self.eval_context_ref().tcx, path, None).is_some()
218    }
219
220    /// Evaluates the scalar at the specified path.
221    fn eval_path(&self, path: &[&str]) -> MPlaceTy<'tcx> {
222        let this = self.eval_context_ref();
223        let instance = resolve_path(*this.tcx, path, Namespace::ValueNS);
224        // We don't give a span -- this isn't actually used directly by the program anyway.
225        this.eval_global(instance).unwrap_or_else(|err| {
226            panic!("failed to evaluate required Rust item: {path:?}\n{err:?}")
227        })
228    }
229    fn eval_path_scalar(&self, path: &[&str]) -> Scalar {
230        let this = self.eval_context_ref();
231        let val = this.eval_path(path);
232        this.read_scalar(&val)
233            .unwrap_or_else(|err| panic!("failed to read required Rust item: {path:?}\n{err:?}"))
234    }
235
236    /// Helper function to get a `libc` constant as a `Scalar`.
237    fn eval_libc(&self, name: &str) -> Scalar {
238        if self.eval_context_ref().tcx.sess.target.os == Os::Windows {
239            panic!(
240                "`libc` crate is not reliably available on Windows targets; Miri should not use it there"
241            );
242        }
243        self.eval_path_scalar(&["libc", name])
244    }
245
246    /// Helper function to get a `libc` constant as an `i32`.
247    fn eval_libc_i32(&self, name: &str) -> i32 {
248        // TODO: Cache the result.
249        self.eval_libc(name).to_i32().unwrap_or_else(|_err| {
250            panic!("required libc item has unexpected type (not `i32`): {name}")
251        })
252    }
253
254    /// Helper function to get a `libc` constant as an `u32`.
255    fn eval_libc_u32(&self, name: &str) -> u32 {
256        // TODO: Cache the result.
257        self.eval_libc(name).to_u32().unwrap_or_else(|_err| {
258            panic!("required libc item has unexpected type (not `u32`): {name}")
259        })
260    }
261
262    /// Helper function to get a `libc` constant as an `u64`.
263    fn eval_libc_u64(&self, name: &str) -> u64 {
264        // TODO: Cache the result.
265        self.eval_libc(name).to_u64().unwrap_or_else(|_err| {
266            panic!("required libc item has unexpected type (not `u64`): {name}")
267        })
268    }
269
270    /// Helper function to get a `windows` constant as a `Scalar`.
271    fn eval_windows(&self, module: &str, name: &str) -> Scalar {
272        self.eval_context_ref().eval_path_scalar(&["std", "sys", "pal", "windows", module, name])
273    }
274
275    /// Helper function to get a `windows` constant as a `u32`.
276    fn eval_windows_u32(&self, module: &str, name: &str) -> u32 {
277        // TODO: Cache the result.
278        self.eval_windows(module, name).to_u32().unwrap_or_else(|_err| {
279            panic!("required Windows item has unexpected type (not `u32`): {module}::{name}")
280        })
281    }
282
283    /// Helper function to get a `windows` constant as a `u64`.
284    fn eval_windows_u64(&self, module: &str, name: &str) -> u64 {
285        // TODO: Cache the result.
286        self.eval_windows(module, name).to_u64().unwrap_or_else(|_err| {
287            panic!("required Windows item has unexpected type (not `u64`): {module}::{name}")
288        })
289    }
290
291    /// Helper function to get the `TyAndLayout` of a `libc` type
292    fn libc_ty_layout(&self, name: &str) -> TyAndLayout<'tcx> {
293        let this = self.eval_context_ref();
294        if this.tcx.sess.target.os == Os::Windows {
295            panic!(
296                "`libc` crate is not reliably available on Windows targets; Miri should not use it there"
297            );
298        }
299        path_ty_layout(this, &["libc", name])
300    }
301
302    /// Helper function to get the `TyAndLayout` of a `windows` type
303    fn windows_ty_layout(&self, name: &str) -> TyAndLayout<'tcx> {
304        let this = self.eval_context_ref();
305        path_ty_layout(this, &["std", "sys", "pal", "windows", "c", name])
306    }
307
308    /// Helper function to get `TyAndLayout` of an array that consists of `libc` type.
309    fn libc_array_ty_layout(&self, name: &str, size: u64) -> TyAndLayout<'tcx> {
310        let this = self.eval_context_ref();
311        let elem_ty_layout = this.libc_ty_layout(name);
312        let array_ty = Ty::new_array(*this.tcx, elem_ty_layout.ty, size);
313        this.layout_of(array_ty).unwrap()
314    }
315
316    /// Project to the given *named* field (which must be a struct or union type).
317    fn try_project_field_named<P: Projectable<'tcx, Provenance>>(
318        &self,
319        base: &P,
320        name: &str,
321    ) -> InterpResult<'tcx, Option<P>> {
322        let this = self.eval_context_ref();
323        let adt = base.layout().ty.ty_adt_def().unwrap();
324        for (idx, field) in adt.non_enum_variant().fields.iter_enumerated() {
325            if field.name.as_str() == name {
326                return interp_ok(Some(this.project_field(base, idx)?));
327            }
328        }
329        interp_ok(None)
330    }
331
332    /// Project to the given *named* field (which must be a struct or union type).
333    fn project_field_named<P: Projectable<'tcx, Provenance>>(
334        &self,
335        base: &P,
336        name: &str,
337    ) -> InterpResult<'tcx, P> {
338        interp_ok(
339            self.try_project_field_named(base, name)?
340                .unwrap_or_else(|| bug!("no field named {} in type {}", name, base.layout().ty)),
341        )
342    }
343
344    /// Write an int of the appropriate size to `dest`. The target type may be signed or unsigned,
345    /// we try to do the right thing anyway. `i128` can fit all integer types except for `u128` so
346    /// this method is fine for almost all integer types.
347    fn write_int(
348        &mut self,
349        i: impl Into<i128>,
350        dest: &impl Writeable<'tcx, Provenance>,
351    ) -> InterpResult<'tcx> {
352        assert!(
353            dest.layout().backend_repr.is_scalar(),
354            "write_int on non-scalar type {}",
355            dest.layout().ty
356        );
357        let val = if dest.layout().backend_repr.is_signed() {
358            Scalar::from_int(i, dest.layout().size)
359        } else {
360            // `unwrap` can only fail here if `i` is negative
361            Scalar::from_uint(u128::try_from(i.into()).unwrap(), dest.layout().size)
362        };
363        self.eval_context_mut().write_scalar(val, dest)
364    }
365
366    /// Write the first N fields of the given place.
367    fn write_int_fields(
368        &mut self,
369        values: &[i128],
370        dest: &impl Writeable<'tcx, Provenance>,
371    ) -> InterpResult<'tcx> {
372        let this = self.eval_context_mut();
373        for (idx, &val) in values.iter().enumerate() {
374            let idx = FieldIdx::from_usize(idx);
375            let field = this.project_field(dest, idx)?;
376            this.write_int(val, &field)?;
377        }
378        interp_ok(())
379    }
380
381    /// Write the given fields of the given place.
382    fn write_int_fields_named(
383        &mut self,
384        values: &[(&str, i128)],
385        dest: &impl Writeable<'tcx, Provenance>,
386    ) -> InterpResult<'tcx> {
387        let this = self.eval_context_mut();
388        for &(name, val) in values.iter() {
389            let field = this.project_field_named(dest, name)?;
390            this.write_int(val, &field)?;
391        }
392        interp_ok(())
393    }
394
395    /// Write a 0 of the appropriate size to `dest`.
396    fn write_null(&mut self, dest: &impl Writeable<'tcx, Provenance>) -> InterpResult<'tcx> {
397        self.write_int(0, dest)
398    }
399
400    /// Test if this pointer equals 0.
401    fn ptr_is_null(&self, ptr: Pointer) -> InterpResult<'tcx, bool> {
402        interp_ok(ptr.addr().bytes() == 0)
403    }
404
405    /// Generate some random bytes, and write them to `dest`.
406    fn gen_random(&mut self, ptr: Pointer, len: u64) -> InterpResult<'tcx> {
407        // Some programs pass in a null pointer and a length of 0
408        // to their platform's random-generation function (e.g. getrandom())
409        // on Linux. For compatibility with these programs, we don't perform
410        // any additional checks - it's okay if the pointer is invalid,
411        // since we wouldn't actually be writing to it.
412        if len == 0 {
413            return interp_ok(());
414        }
415        let this = self.eval_context_mut();
416
417        let mut data = vec![0; usize::try_from(len).unwrap()];
418
419        if this.machine.communicate() {
420            // Fill the buffer using the host's rng.
421            getrandom::fill(&mut data)
422                .map_err(|err| err_unsup_format!("host getrandom failed: {}", err))?;
423        } else {
424            let rng = this.machine.rng.get_mut();
425            rng.fill_bytes(&mut data);
426        }
427
428        this.write_bytes_ptr(ptr, data.iter().copied())
429    }
430
431    /// Call a function: Push the stack frame and pass the arguments.
432    /// For now, arguments must be scalars (so that the caller does not have to know the layout).
433    ///
434    /// If you do not provide a return place, a dangling zero-sized place will be created
435    /// for your convenience. This is only valid if the return type is `()`.
436    fn call_function(
437        &mut self,
438        f: ty::Instance<'tcx>,
439        caller_abi: ExternAbi,
440        args: &[ImmTy<'tcx>],
441        dest: Option<&MPlaceTy<'tcx>>,
442        cont: ReturnContinuation,
443    ) -> InterpResult<'tcx> {
444        let this = self.eval_context_mut();
445
446        // Get MIR.
447        let mir = this.load_mir(f.def, None)?;
448        let dest = match dest {
449            Some(dest) => dest.clone(),
450            None => MPlaceTy::fake_alloc_zst(this.machine.layouts.unit),
451        };
452
453        // Construct a function pointer type representing the caller perspective.
454        let sig = this.tcx.mk_fn_sig(
455            args.iter().map(|a| a.layout.ty),
456            dest.layout.ty,
457            /*c_variadic*/ false,
458            Safety::Safe,
459            caller_abi,
460        );
461        let caller_fn_abi = this.fn_abi_of_fn_ptr(ty::Binder::dummy(sig), ty::List::empty())?;
462
463        // This will also show proper errors if there is any ABI mismatch.
464        this.init_stack_frame(
465            f,
466            mir,
467            caller_fn_abi,
468            &args.iter().map(|a| FnArg::Copy(a.clone().into())).collect::<Vec<_>>(),
469            /*with_caller_location*/ false,
470            &dest.into(),
471            cont,
472        )
473    }
474
475    /// Call a function in an "empty" thread.
476    fn call_thread_root_function(
477        &mut self,
478        f: ty::Instance<'tcx>,
479        caller_abi: ExternAbi,
480        args: &[ImmTy<'tcx>],
481        dest: Option<&MPlaceTy<'tcx>>,
482        span: Span,
483    ) -> InterpResult<'tcx> {
484        let this = self.eval_context_mut();
485        assert!(this.active_thread_stack().is_empty());
486        assert!(this.active_thread_ref().origin_span.is_dummy());
487        this.active_thread_mut().origin_span = span;
488        this.call_function(f, caller_abi, args, dest, ReturnContinuation::Stop { cleanup: true })
489    }
490
491    /// Visits the memory covered by `place`, sensitive to freezing: the 2nd parameter
492    /// of `action` will be true if this is frozen, false if this is in an `UnsafeCell`.
493    /// The range is relative to `place`.
494    fn visit_freeze_sensitive(
495        &self,
496        place: &MPlaceTy<'tcx>,
497        size: Size,
498        mut action: impl FnMut(AllocRange, bool) -> InterpResult<'tcx>,
499    ) -> InterpResult<'tcx> {
500        let this = self.eval_context_ref();
501        trace!("visit_frozen(place={:?}, size={:?})", *place, size);
502        debug_assert_eq!(
503            size,
504            this.size_and_align_of_val(place)?
505                .map(|(size, _)| size)
506                .unwrap_or_else(|| place.layout.size)
507        );
508        // Store how far we proceeded into the place so far. Everything to the left of
509        // this offset has already been handled, in the sense that the frozen parts
510        // have had `action` called on them.
511        let start_addr = place.ptr().addr();
512        let mut cur_addr = start_addr;
513        // Called when we detected an `UnsafeCell` at the given offset and size.
514        // Calls `action` and advances `cur_ptr`.
515        let mut unsafe_cell_action = |unsafe_cell_ptr: &Pointer, unsafe_cell_size: Size| {
516            // We assume that we are given the fields in increasing offset order,
517            // and nothing else changes.
518            let unsafe_cell_addr = unsafe_cell_ptr.addr();
519            assert!(unsafe_cell_addr >= cur_addr);
520            let frozen_size = unsafe_cell_addr - cur_addr;
521            // Everything between the cur_ptr and this `UnsafeCell` is frozen.
522            if frozen_size != Size::ZERO {
523                action(alloc_range(cur_addr - start_addr, frozen_size), /*frozen*/ true)?;
524            }
525            cur_addr += frozen_size;
526            // This `UnsafeCell` is NOT frozen.
527            if unsafe_cell_size != Size::ZERO {
528                action(
529                    alloc_range(cur_addr - start_addr, unsafe_cell_size),
530                    /*frozen*/ false,
531                )?;
532            }
533            cur_addr += unsafe_cell_size;
534            // Done
535            interp_ok(())
536        };
537        // Run a visitor
538        {
539            let mut visitor = UnsafeCellVisitor {
540                ecx: this,
541                unsafe_cell_action: |place| {
542                    trace!("unsafe_cell_action on {:?}", place.ptr());
543                    // We need a size to go on.
544                    let unsafe_cell_size = this
545                        .size_and_align_of_val(place)?
546                        .map(|(size, _)| size)
547                        // for extern types, just cover what we can
548                        .unwrap_or_else(|| place.layout.size);
549                    // Now handle this `UnsafeCell`, unless it is empty.
550                    if unsafe_cell_size != Size::ZERO {
551                        unsafe_cell_action(&place.ptr(), unsafe_cell_size)
552                    } else {
553                        interp_ok(())
554                    }
555                },
556            };
557            visitor.visit_value(place)?;
558        }
559        // The part between the end_ptr and the end of the place is also frozen.
560        // So pretend there is a 0-sized `UnsafeCell` at the end.
561        unsafe_cell_action(&place.ptr().wrapping_offset(size, this), Size::ZERO)?;
562        // Done!
563        return interp_ok(());
564
565        /// Visiting the memory covered by a `MemPlace`, being aware of
566        /// whether we are inside an `UnsafeCell` or not.
567        struct UnsafeCellVisitor<'ecx, 'tcx, F>
568        where
569            F: FnMut(&MPlaceTy<'tcx>) -> InterpResult<'tcx>,
570        {
571            ecx: &'ecx MiriInterpCx<'tcx>,
572            unsafe_cell_action: F,
573        }
574
575        impl<'ecx, 'tcx, F> ValueVisitor<'tcx, MiriMachine<'tcx>> for UnsafeCellVisitor<'ecx, 'tcx, F>
576        where
577            F: FnMut(&MPlaceTy<'tcx>) -> InterpResult<'tcx>,
578        {
579            type V = MPlaceTy<'tcx>;
580
581            #[inline(always)]
582            fn ecx(&self) -> &MiriInterpCx<'tcx> {
583                self.ecx
584            }
585
586            fn aggregate_field_iter(
587                memory_index: &IndexVec<FieldIdx, u32>,
588            ) -> impl Iterator<Item = FieldIdx> + 'static {
589                let inverse_memory_index = memory_index.invert_bijective_mapping();
590                inverse_memory_index.into_iter()
591            }
592
593            // Hook to detect `UnsafeCell`.
594            fn visit_value(&mut self, v: &MPlaceTy<'tcx>) -> InterpResult<'tcx> {
595                trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
596                let is_unsafe_cell = match v.layout.ty.kind() {
597                    ty::Adt(adt, _) =>
598                        Some(adt.did()) == self.ecx.tcx.lang_items().unsafe_cell_type(),
599                    _ => false,
600                };
601                if is_unsafe_cell {
602                    // We do not have to recurse further, this is an `UnsafeCell`.
603                    (self.unsafe_cell_action)(v)
604                } else if self.ecx.type_is_freeze(v.layout.ty) {
605                    // This is `Freeze`, there cannot be an `UnsafeCell`
606                    interp_ok(())
607                } else if matches!(v.layout.fields, FieldsShape::Union(..)) {
608                    // A (non-frozen) union. We fall back to whatever the type says.
609                    (self.unsafe_cell_action)(v)
610                } else {
611                    // We want to not actually read from memory for this visit. So, before
612                    // walking this value, we have to make sure it is not a
613                    // `Variants::Multiple`.
614                    // FIXME: the current logic here is layout-dependent, so enums with
615                    // multiple variants where all but 1 are uninhabited will be recursed into.
616                    // Is that truly what we want?
617                    match v.layout.variants {
618                        Variants::Multiple { .. } => {
619                            // A multi-variant enum, or coroutine, or so.
620                            // Treat this like a union: without reading from memory,
621                            // we cannot determine the variant we are in. Reading from
622                            // memory would be subject to Stacked Borrows rules, leading
623                            // to all sorts of "funny" recursion.
624                            // We only end up here if the type is *not* freeze, so we just call the
625                            // `UnsafeCell` action.
626                            (self.unsafe_cell_action)(v)
627                        }
628                        Variants::Single { .. } | Variants::Empty => {
629                            // Proceed further, try to find where exactly that `UnsafeCell`
630                            // is hiding.
631                            self.walk_value(v)
632                        }
633                    }
634                }
635            }
636
637            fn visit_union(
638                &mut self,
639                _v: &MPlaceTy<'tcx>,
640                _fields: NonZero<usize>,
641            ) -> InterpResult<'tcx> {
642                bug!("we should have already handled unions in `visit_value`")
643            }
644        }
645    }
646
647    /// Helper function used inside the shims of foreign functions to check that isolation is
648    /// disabled. It returns an error using the `name` of the foreign function if this is not the
649    /// case.
650    fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> {
651        if !self.eval_context_ref().machine.communicate() {
652            self.reject_in_isolation(name, RejectOpWith::Abort)?;
653        }
654        interp_ok(())
655    }
656
657    /// Helper function used inside the shims of foreign functions which reject the op
658    /// when isolation is enabled. It is used to print a warning/backtrace about the rejection.
659    fn reject_in_isolation(&self, op_name: &str, reject_with: RejectOpWith) -> InterpResult<'tcx> {
660        let this = self.eval_context_ref();
661        match reject_with {
662            RejectOpWith::Abort => isolation_abort_error(op_name),
663            RejectOpWith::WarningWithoutBacktrace => {
664                // Deduplicate these warnings *by shim* (not by span)
665                static DEDUP: Mutex<FxHashSet<String>> =
666                    Mutex::new(FxHashSet::with_hasher(rustc_hash::FxBuildHasher));
667                let mut emitted_warnings = DEDUP.lock().unwrap();
668                if !emitted_warnings.contains(op_name) {
669                    // First time we are seeing this.
670                    emitted_warnings.insert(op_name.to_owned());
671                    this.tcx
672                        .dcx()
673                        .warn(format!("{op_name} was made to return an error due to isolation"));
674                }
675
676                interp_ok(())
677            }
678            RejectOpWith::Warning => {
679                this.emit_diagnostic(NonHaltingDiagnostic::RejectedIsolatedOp(op_name.to_string()));
680                interp_ok(())
681            }
682            RejectOpWith::NoWarning => interp_ok(()), // no warning
683        }
684    }
685
686    /// Helper function used inside the shims of foreign functions to assert that the target OS
687    /// is `target_os`. It panics showing a message with the `name` of the foreign function
688    /// if this is not the case.
689    fn assert_target_os(&self, target_os: Os, name: &str) {
690        assert_eq!(
691            self.eval_context_ref().tcx.sess.target.os,
692            target_os,
693            "`{name}` is only available on the `{target_os}` target OS",
694        )
695    }
696
697    /// Helper function used inside shims of foreign functions to check that the target OS
698    /// is one of `target_oses`. It returns an error containing the `name` of the foreign function
699    /// in a message if this is not the case.
700    fn check_target_os(&self, target_oses: &[Os], name: Symbol) -> InterpResult<'tcx> {
701        let target_os = &self.eval_context_ref().tcx.sess.target.os;
702        if !target_oses.contains(target_os) {
703            throw_unsup_format!("`{name}` is not supported on {target_os}");
704        }
705        interp_ok(())
706    }
707
708    /// Helper function used inside the shims of foreign functions to assert that the target OS
709    /// is part of the UNIX family. It panics showing a message with the `name` of the foreign function
710    /// if this is not the case.
711    fn assert_target_os_is_unix(&self, name: &str) {
712        assert!(self.target_os_is_unix(), "`{name}` is only available for unix targets",);
713    }
714
715    fn target_os_is_unix(&self) -> bool {
716        self.eval_context_ref().tcx.sess.target.families.iter().any(|f| f == "unix")
717    }
718
719    /// Dereference a pointer operand to a place using `layout` instead of the pointer's declared type
720    fn deref_pointer_as(
721        &self,
722        op: &impl Projectable<'tcx, Provenance>,
723        layout: TyAndLayout<'tcx>,
724    ) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
725        let this = self.eval_context_ref();
726        let ptr = this.read_pointer(op)?;
727        interp_ok(this.ptr_to_mplace(ptr, layout))
728    }
729
730    /// Calculates the MPlaceTy given the offset and layout of an access on an operand
731    fn deref_pointer_and_offset(
732        &self,
733        op: &impl Projectable<'tcx, Provenance>,
734        offset: u64,
735        base_layout: TyAndLayout<'tcx>,
736        value_layout: TyAndLayout<'tcx>,
737    ) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
738        let this = self.eval_context_ref();
739        let op_place = this.deref_pointer_as(op, base_layout)?;
740        let offset = Size::from_bytes(offset);
741
742        // Ensure that the access is within bounds.
743        assert!(base_layout.size >= offset + value_layout.size);
744        let value_place = op_place.offset(offset, value_layout, this)?;
745        interp_ok(value_place)
746    }
747
748    fn deref_pointer_and_read(
749        &self,
750        op: &impl Projectable<'tcx, Provenance>,
751        offset: u64,
752        base_layout: TyAndLayout<'tcx>,
753        value_layout: TyAndLayout<'tcx>,
754    ) -> InterpResult<'tcx, Scalar> {
755        let this = self.eval_context_ref();
756        let value_place = this.deref_pointer_and_offset(op, offset, base_layout, value_layout)?;
757        this.read_scalar(&value_place)
758    }
759
760    fn deref_pointer_and_write(
761        &mut self,
762        op: &impl Projectable<'tcx, Provenance>,
763        offset: u64,
764        value: impl Into<Scalar>,
765        base_layout: TyAndLayout<'tcx>,
766        value_layout: TyAndLayout<'tcx>,
767    ) -> InterpResult<'tcx, ()> {
768        let this = self.eval_context_mut();
769        let value_place = this.deref_pointer_and_offset(op, offset, base_layout, value_layout)?;
770        this.write_scalar(value, &value_place)
771    }
772
773    /// Parse a `timespec` struct and return it as a `std::time::Duration`. It returns `None`
774    /// if the value in the `timespec` struct is invalid. Some libc functions will return
775    /// `EINVAL` in this case.
776    fn read_timespec(&mut self, tp: &MPlaceTy<'tcx>) -> InterpResult<'tcx, Option<Duration>> {
777        let this = self.eval_context_mut();
778        let seconds_place = this.project_field(tp, FieldIdx::ZERO)?;
779        let seconds_scalar = this.read_scalar(&seconds_place)?;
780        let seconds = seconds_scalar.to_target_isize(this)?;
781        let nanoseconds_place = this.project_field(tp, FieldIdx::ONE)?;
782        let nanoseconds_scalar = this.read_scalar(&nanoseconds_place)?;
783        let nanoseconds = nanoseconds_scalar.to_target_isize(this)?;
784
785        interp_ok(
786            try {
787                // tv_sec must be non-negative.
788                let seconds: u64 = seconds.try_into().ok()?;
789                // tv_nsec must be non-negative.
790                let nanoseconds: u32 = nanoseconds.try_into().ok()?;
791                if nanoseconds >= 1_000_000_000 {
792                    // tv_nsec must not be greater than 999,999,999.
793                    None?
794                }
795                Duration::new(seconds, nanoseconds)
796            },
797        )
798    }
799
800    /// Read bytes from a byte slice.
801    fn read_byte_slice<'a>(&'a self, slice: &ImmTy<'tcx>) -> InterpResult<'tcx, &'a [u8]>
802    where
803        'tcx: 'a,
804    {
805        let this = self.eval_context_ref();
806        let (ptr, len) = slice.to_scalar_pair();
807        let ptr = ptr.to_pointer(this)?;
808        let len = len.to_target_usize(this)?;
809        let bytes = this.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(len))?;
810        interp_ok(bytes)
811    }
812
813    /// Read a sequence of bytes until the first null terminator.
814    fn read_c_str<'a>(&'a self, ptr: Pointer) -> InterpResult<'tcx, &'a [u8]>
815    where
816        'tcx: 'a,
817    {
818        let this = self.eval_context_ref();
819        let size1 = Size::from_bytes(1);
820
821        // Step 1: determine the length.
822        let mut len = Size::ZERO;
823        loop {
824            // FIXME: We are re-getting the allocation each time around the loop.
825            // Would be nice if we could somehow "extend" an existing AllocRange.
826            let alloc = this.get_ptr_alloc(ptr.wrapping_offset(len, this), size1)?.unwrap(); // not a ZST, so we will get a result
827            let byte = alloc.read_integer(alloc_range(Size::ZERO, size1))?.to_u8()?;
828            if byte == 0 {
829                break;
830            } else {
831                len += size1;
832            }
833        }
834
835        // Step 2: get the bytes.
836        this.read_bytes_ptr_strip_provenance(ptr, len)
837    }
838
839    /// Helper function to write a sequence of bytes with an added null-terminator, which is what
840    /// the Unix APIs usually handle. This function returns `Ok((false, length))` without trying
841    /// to write if `size` is not large enough to fit the contents of `c_str` plus a null
842    /// terminator. It returns `Ok((true, length))` if the writing process was successful. The
843    /// string length returned does include the null terminator.
844    fn write_c_str(
845        &mut self,
846        c_str: &[u8],
847        ptr: Pointer,
848        size: u64,
849    ) -> InterpResult<'tcx, (bool, u64)> {
850        // If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
851        // terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
852        let string_length = u64::try_from(c_str.len()).unwrap();
853        let string_length = string_length.strict_add(1);
854        if size < string_length {
855            return interp_ok((false, string_length));
856        }
857        self.eval_context_mut()
858            .write_bytes_ptr(ptr, c_str.iter().copied().chain(iter::once(0u8)))?;
859        interp_ok((true, string_length))
860    }
861
862    /// Helper function to read a sequence of unsigned integers of the given size and alignment
863    /// until the first null terminator.
864    fn read_c_str_with_char_size<T>(
865        &self,
866        mut ptr: Pointer,
867        size: Size,
868        align: Align,
869    ) -> InterpResult<'tcx, Vec<T>>
870    where
871        T: TryFrom<u128>,
872        <T as TryFrom<u128>>::Error: std::fmt::Debug,
873    {
874        assert_ne!(size, Size::ZERO);
875
876        let this = self.eval_context_ref();
877
878        this.check_ptr_align(ptr, align)?;
879
880        let mut wchars = Vec::new();
881        loop {
882            // FIXME: We are re-getting the allocation each time around the loop.
883            // Would be nice if we could somehow "extend" an existing AllocRange.
884            let alloc = this.get_ptr_alloc(ptr, size)?.unwrap(); // not a ZST, so we will get a result
885            let wchar_int = alloc.read_integer(alloc_range(Size::ZERO, size))?.to_bits(size)?;
886            if wchar_int == 0 {
887                break;
888            } else {
889                wchars.push(wchar_int.try_into().unwrap());
890                ptr = ptr.wrapping_offset(size, this);
891            }
892        }
893
894        interp_ok(wchars)
895    }
896
897    /// Read a sequence of u16 until the first null terminator.
898    fn read_wide_str(&self, ptr: Pointer) -> InterpResult<'tcx, Vec<u16>> {
899        self.read_c_str_with_char_size(ptr, Size::from_bytes(2), Align::from_bytes(2).unwrap())
900    }
901
902    /// Helper function to write a sequence of u16 with an added 0x0000-terminator, which is what
903    /// the Windows APIs usually handle. This function returns `Ok((false, length))` without trying
904    /// to write if `size` is not large enough to fit the contents of `os_string` plus a null
905    /// terminator. It returns `Ok((true, length))` if the writing process was successful. The
906    /// string length returned does include the null terminator. Length is measured in units of
907    /// `u16.`
908    fn write_wide_str(
909        &mut self,
910        wide_str: &[u16],
911        ptr: Pointer,
912        size: u64,
913    ) -> InterpResult<'tcx, (bool, u64)> {
914        // If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required
915        // 0x0000 terminator to memory would cause an out-of-bounds access.
916        let string_length = u64::try_from(wide_str.len()).unwrap();
917        let string_length = string_length.strict_add(1);
918        if size < string_length {
919            return interp_ok((false, string_length));
920        }
921
922        // Store the UTF-16 string.
923        let size2 = Size::from_bytes(2);
924        let this = self.eval_context_mut();
925        this.check_ptr_align(ptr, Align::from_bytes(2).unwrap())?;
926        let mut alloc = this.get_ptr_alloc_mut(ptr, size2 * string_length)?.unwrap(); // not a ZST, so we will get a result
927        for (offset, wchar) in wide_str.iter().copied().chain(iter::once(0x0000)).enumerate() {
928            let offset = u64::try_from(offset).unwrap();
929            alloc.write_scalar(alloc_range(size2 * offset, size2), Scalar::from_u16(wchar))?;
930        }
931        interp_ok((true, string_length))
932    }
933
934    /// Read a sequence of wchar_t until the first null terminator.
935    /// Always returns a `Vec<u32>` no matter the size of `wchar_t`.
936    fn read_wchar_t_str(&self, ptr: Pointer) -> InterpResult<'tcx, Vec<u32>> {
937        let this = self.eval_context_ref();
938        let wchar_t = if this.tcx.sess.target.os == Os::Windows {
939            // We don't have libc on Windows so we have to hard-code the type ourselves.
940            this.machine.layouts.u16
941        } else {
942            this.libc_ty_layout("wchar_t")
943        };
944        self.read_c_str_with_char_size(ptr, wchar_t.size, wchar_t.align.abi)
945    }
946
947    fn frame_in_std(&self) -> bool {
948        let this = self.eval_context_ref();
949        let frame = this.frame();
950        // Make an attempt to get at the instance of the function this is inlined from.
951        let instance: Option<_> = try {
952            let scope = frame.current_source_info()?.scope;
953            let inlined_parent = frame.body().source_scopes[scope].inlined_parent_scope?;
954            let source = &frame.body().source_scopes[inlined_parent];
955            source.inlined.expect("inlined_parent_scope points to scope without inline info").0
956        };
957        // Fall back to the instance of the function itself.
958        let instance = instance.unwrap_or(frame.instance());
959        // Now check the crate it is in. We could try to be clever here and e.g. check if this is
960        // the same crate as `start_fn`, but that would not work for running std tests in Miri, so
961        // we'd need some more hacks anyway. So we just check the name of the crate. If someone
962        // calls their crate `std` then we'll just let them keep the pieces.
963        let frame_crate = this.tcx.def_path(instance.def_id()).krate;
964        let crate_name = this.tcx.crate_name(frame_crate);
965        let crate_name = crate_name.as_str();
966        // On miri-test-libstd, the name of the crate is different.
967        crate_name == "std" || crate_name == "std_miri_test"
968    }
969
970    /// Mark a machine allocation that was just created as immutable.
971    fn mark_immutable(&mut self, mplace: &MPlaceTy<'tcx>) {
972        let this = self.eval_context_mut();
973        // This got just allocated, so there definitely is a pointer here.
974        let provenance = mplace.ptr().into_pointer_or_addr().unwrap().provenance;
975        this.alloc_mark_immutable(provenance.get_alloc_id().unwrap()).unwrap();
976    }
977
978    /// Returns an integer type that is twice wide as `ty`
979    fn get_twice_wide_int_ty(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
980        let this = self.eval_context_ref();
981        match ty.kind() {
982            // Unsigned
983            ty::Uint(UintTy::U8) => this.tcx.types.u16,
984            ty::Uint(UintTy::U16) => this.tcx.types.u32,
985            ty::Uint(UintTy::U32) => this.tcx.types.u64,
986            ty::Uint(UintTy::U64) => this.tcx.types.u128,
987            // Signed
988            ty::Int(IntTy::I8) => this.tcx.types.i16,
989            ty::Int(IntTy::I16) => this.tcx.types.i32,
990            ty::Int(IntTy::I32) => this.tcx.types.i64,
991            ty::Int(IntTy::I64) => this.tcx.types.i128,
992            _ => span_bug!(this.cur_span(), "unexpected type: {ty:?}"),
993        }
994    }
995
996    /// Checks that target feature `target_feature` is enabled.
997    ///
998    /// If not enabled, emits an UB error that states that the feature is
999    /// required by `intrinsic`.
1000    fn expect_target_feature_for_intrinsic(
1001        &self,
1002        intrinsic: Symbol,
1003        target_feature: &str,
1004    ) -> InterpResult<'tcx, ()> {
1005        let this = self.eval_context_ref();
1006        if !this.tcx.sess.unstable_target_features.contains(&Symbol::intern(target_feature)) {
1007            throw_ub_format!(
1008                "attempted to call intrinsic `{intrinsic}` that requires missing target feature {target_feature}"
1009            );
1010        }
1011        interp_ok(())
1012    }
1013
1014    /// Lookup an array of immediates from any linker sections matching the provided predicate,
1015    /// with the spans of where they were found.
1016    fn lookup_link_section(
1017        &mut self,
1018        include_name: impl Fn(&str) -> bool,
1019    ) -> InterpResult<'tcx, Vec<(ImmTy<'tcx>, Span)>> {
1020        let this = self.eval_context_mut();
1021        let tcx = this.tcx.tcx;
1022
1023        let mut array = vec![];
1024
1025        iter_exported_symbols(tcx, |_cnum, def_id| {
1026            let attrs = tcx.codegen_fn_attrs(def_id);
1027            let Some(link_section) = attrs.link_section else {
1028                return interp_ok(());
1029            };
1030            if include_name(link_section.as_str()) {
1031                let instance = ty::Instance::mono(tcx, def_id);
1032                let span = tcx.def_span(def_id);
1033                let const_val = this.eval_global(instance).unwrap_or_else(|err| {
1034                    panic!(
1035                        "failed to evaluate static in required link_section: {def_id:?}\n{err:?}"
1036                    )
1037                });
1038                match const_val.layout.ty.kind() {
1039                    ty::FnPtr(..) => {
1040                        array.push((this.read_immediate(&const_val)?, span));
1041                    }
1042                    ty::Array(elem_ty, _) if matches!(elem_ty.kind(), ty::FnPtr(..)) => {
1043                        let mut elems = this.project_array_fields(&const_val)?;
1044                        while let Some((_idx, elem)) = elems.next(this)? {
1045                            array.push((this.read_immediate(&elem)?, span));
1046                        }
1047                    }
1048                    _ =>
1049                        throw_unsup_format!(
1050                            "only function pointers and arrays of function pointers are supported in well-known linker sections"
1051                        ),
1052                }
1053            }
1054            interp_ok(())
1055        })?;
1056
1057        interp_ok(array)
1058    }
1059
1060    fn mangle_internal_symbol<'a>(&'a mut self, name: &'static str) -> &'a str
1061    where
1062        'tcx: 'a,
1063    {
1064        let this = self.eval_context_mut();
1065        let tcx = *this.tcx;
1066        this.machine
1067            .mangle_internal_symbol_cache
1068            .entry(name)
1069            .or_insert_with(|| mangle_internal_symbol(tcx, name))
1070    }
1071}
1072
1073impl<'tcx> MiriMachine<'tcx> {
1074    /// Get the current span in the topmost function which is workspace-local and not
1075    /// `#[track_caller]`.
1076    /// This function is backed by a cache, and can be assumed to be very fast.
1077    /// It will work even when the stack is empty.
1078    pub fn current_user_relevant_span(&self) -> Span {
1079        self.threads.active_thread_ref().current_user_relevant_span()
1080    }
1081
1082    /// Returns the span of the *caller* of the current operation, again
1083    /// walking down the stack to find the closest frame in a local crate, if the caller of the
1084    /// current operation is not in a local crate.
1085    /// This is useful when we are processing something which occurs on function-entry and we want
1086    /// to point at the call to the function, not the function definition generally.
1087    pub fn caller_span(&self) -> Span {
1088        // We need to go down at least to the caller (len - 2), or however
1089        // far we have to go to find a frame in a local crate which is also not #[track_caller].
1090        let frame_idx = self.top_user_relevant_frame().unwrap();
1091        let frame_idx = cmp::min(frame_idx, self.stack().len().saturating_sub(2));
1092        self.stack()[frame_idx].current_span()
1093    }
1094
1095    fn stack(&self) -> &[Frame<'tcx, Provenance, machine::FrameExtra<'tcx>>] {
1096        self.threads.active_thread_stack()
1097    }
1098
1099    fn top_user_relevant_frame(&self) -> Option<usize> {
1100        self.threads.active_thread_ref().top_user_relevant_frame()
1101    }
1102
1103    /// This is the source of truth for the `user_relevance` flag in our `FrameExtra`.
1104    pub fn user_relevance(&self, frame: &Frame<'tcx, Provenance>) -> u8 {
1105        if frame.instance().def.requires_caller_location(self.tcx) {
1106            return 0;
1107        }
1108        if self.is_local(frame.instance()) {
1109            u8::MAX
1110        } else {
1111            // A non-relevant frame, but at least it doesn't require a caller location, so
1112            // better than nothing.
1113            1
1114        }
1115    }
1116}
1117
1118pub fn isolation_abort_error<'tcx>(name: &str) -> InterpResult<'tcx> {
1119    throw_machine_stop!(TerminationInfo::UnsupportedInIsolation(format!(
1120        "{name} not available when isolation is enabled",
1121    )))
1122}
1123
1124pub(crate) fn bool_to_simd_element(b: bool, size: Size) -> Scalar {
1125    // SIMD uses all-1 as pattern for "true". In two's complement,
1126    // -1 has all its bits set to one and `from_int` will truncate or
1127    // sign-extend it to `size` as required.
1128    let val = if b { -1 } else { 0 };
1129    Scalar::from_int(val, size)
1130}
1131
1132/// Check whether an operation that writes to a target buffer was successful.
1133/// Accordingly select return value.
1134/// Local helper function to be used in Windows shims.
1135pub(crate) fn windows_check_buffer_size((success, len): (bool, u64)) -> u32 {
1136    if success {
1137        // If the function succeeds, the return value is the number of characters stored in the target buffer,
1138        // not including the terminating null character.
1139        u32::try_from(len.strict_sub(1)).unwrap()
1140    } else {
1141        // If the target buffer was not large enough to hold the data, the return value is the buffer size, in characters,
1142        // required to hold the string and its terminating null character.
1143        u32::try_from(len).unwrap()
1144    }
1145}
1146
1147/// We don't support 16-bit systems, so let's have ergonomic conversion from `u32` to `usize`.
1148pub trait ToUsize {
1149    fn to_usize(self) -> usize;
1150}
1151
1152impl ToUsize for u32 {
1153    fn to_usize(self) -> usize {
1154        self.try_into().unwrap()
1155    }
1156}
1157
1158/// Similarly, a maximum address size of `u64` is assumed widely here, so let's have ergonomic
1159/// converion from `usize` to `u64`.
1160pub trait ToU64 {
1161    fn to_u64(self) -> u64;
1162}
1163
1164impl ToU64 for usize {
1165    fn to_u64(self) -> u64 {
1166        self.try_into().unwrap()
1167    }
1168}
1169
1170/// Enters a [tracing::info_span] only if the "tracing" feature is enabled, otherwise does nothing.
1171/// This calls [rustc_const_eval::enter_trace_span] with [MiriMachine] as the first argument, which
1172/// will in turn call [MiriMachine::enter_trace_span], which takes care of determining at compile
1173/// time whether to trace or not (and supposedly the call is compiled out if tracing is disabled).
1174/// Look at [rustc_const_eval::enter_trace_span] for complete documentation, examples and tips.
1175#[macro_export]
1176macro_rules! enter_trace_span {
1177    ($($tt:tt)*) => {
1178        rustc_const_eval::enter_trace_span!($crate::MiriMachine<'static>, $($tt)*)
1179    };
1180}