1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
use super::abi::AbiBuilderMethods;
use super::asm::AsmBuilderMethods;
use super::consts::ConstMethods;
use super::coverageinfo::CoverageInfoBuilderMethods;
use super::debuginfo::DebugInfoBuilderMethods;
use super::intrinsic::IntrinsicCallMethods;
use super::misc::MiscMethods;
use super::type_::{ArgAbiMethods, BaseTypeMethods};
use super::{HasCodegen, StaticBuilderMethods};

use crate::common::{
    AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
};
use crate::mir::operand::OperandRef;
use crate::mir::place::PlaceRef;
use crate::MemFlags;

use rustc_apfloat::{ieee, Float, Round, Status};
use rustc_middle::ty::layout::{HasParamEnv, TyAndLayout};
use rustc_middle::ty::Ty;
use rustc_span::Span;
use rustc_target::abi::{Abi, Align, Scalar, Size, WrappingRange};
use rustc_target::spec::HasTargetSpec;

#[derive(Copy, Clone)]
pub enum OverflowOp {
    Add,
    Sub,
    Mul,
}

pub trait BuilderMethods<'a, 'tcx>:
    HasCodegen<'tcx>
    + CoverageInfoBuilderMethods<'tcx>
    + DebugInfoBuilderMethods
    + ArgAbiMethods<'tcx>
    + AbiBuilderMethods<'tcx>
    + IntrinsicCallMethods<'tcx>
    + AsmBuilderMethods<'tcx>
    + StaticBuilderMethods
    + HasParamEnv<'tcx>
    + HasTargetSpec
{
    fn build(cx: &'a Self::CodegenCx, llbb: Self::BasicBlock) -> Self;

    fn cx(&self) -> &Self::CodegenCx;
    fn llbb(&self) -> Self::BasicBlock;

    fn set_span(&mut self, span: Span);

    // FIXME(eddyb) replace uses of this with `append_sibling_block`.
    fn append_block(cx: &'a Self::CodegenCx, llfn: Self::Function, name: &str) -> Self::BasicBlock;

    fn append_sibling_block(&mut self, name: &str) -> Self::BasicBlock;

    fn switch_to_block(&mut self, llbb: Self::BasicBlock);

    fn ret_void(&mut self);
    fn ret(&mut self, v: Self::Value);
    fn br(&mut self, dest: Self::BasicBlock);
    fn cond_br(
        &mut self,
        cond: Self::Value,
        then_llbb: Self::BasicBlock,
        else_llbb: Self::BasicBlock,
    );
    fn switch(
        &mut self,
        v: Self::Value,
        else_llbb: Self::BasicBlock,
        cases: impl ExactSizeIterator<Item = (u128, Self::BasicBlock)>,
    );
    fn invoke(
        &mut self,
        llty: Self::Type,
        llfn: Self::Value,
        args: &[Self::Value],
        then: Self::BasicBlock,
        catch: Self::BasicBlock,
        funclet: Option<&Self::Funclet>,
    ) -> Self::Value;
    fn unreachable(&mut self);

    fn add(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fadd(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fadd_fast(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn sub(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fsub(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fsub_fast(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn mul(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fmul(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fmul_fast(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn udiv(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn exactudiv(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn sdiv(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn exactsdiv(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fdiv(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fdiv_fast(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn urem(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn srem(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn frem(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn frem_fast(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn shl(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn lshr(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn ashr(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn unchecked_sadd(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn unchecked_uadd(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn unchecked_ssub(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn unchecked_usub(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn unchecked_smul(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn unchecked_umul(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn and(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn or(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn xor(&mut self, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn neg(&mut self, v: Self::Value) -> Self::Value;
    fn fneg(&mut self, v: Self::Value) -> Self::Value;
    fn not(&mut self, v: Self::Value) -> Self::Value;

    fn checked_binop(
        &mut self,
        oop: OverflowOp,
        ty: Ty<'_>,
        lhs: Self::Value,
        rhs: Self::Value,
    ) -> (Self::Value, Self::Value);

    fn from_immediate(&mut self, val: Self::Value) -> Self::Value;
    fn to_immediate(&mut self, val: Self::Value, layout: TyAndLayout<'_>) -> Self::Value {
        if let Abi::Scalar(scalar) = layout.abi {
            self.to_immediate_scalar(val, scalar)
        } else {
            val
        }
    }
    fn to_immediate_scalar(&mut self, val: Self::Value, scalar: Scalar) -> Self::Value;

    fn alloca(&mut self, ty: Self::Type, align: Align) -> Self::Value;
    fn dynamic_alloca(&mut self, ty: Self::Type, align: Align) -> Self::Value;
    fn array_alloca(&mut self, ty: Self::Type, len: Self::Value, align: Align) -> Self::Value;

    fn load(&mut self, ty: Self::Type, ptr: Self::Value, align: Align) -> Self::Value;
    fn volatile_load(&mut self, ty: Self::Type, ptr: Self::Value) -> Self::Value;
    fn atomic_load(
        &mut self,
        ty: Self::Type,
        ptr: Self::Value,
        order: AtomicOrdering,
        size: Size,
    ) -> Self::Value;
    fn load_operand(&mut self, place: PlaceRef<'tcx, Self::Value>)
    -> OperandRef<'tcx, Self::Value>;

    /// Called for Rvalue::Repeat when the elem is neither a ZST nor optimizable using memset.
    fn write_operand_repeatedly(
        self,
        elem: OperandRef<'tcx, Self::Value>,
        count: u64,
        dest: PlaceRef<'tcx, Self::Value>,
    ) -> Self;

    fn range_metadata(&mut self, load: Self::Value, range: WrappingRange);
    fn nonnull_metadata(&mut self, load: Self::Value);
    fn type_metadata(&mut self, function: Self::Function, typeid: String);
    fn typeid_metadata(&mut self, typeid: String) -> Self::Value;

    fn store(&mut self, val: Self::Value, ptr: Self::Value, align: Align) -> Self::Value;
    fn store_with_flags(
        &mut self,
        val: Self::Value,
        ptr: Self::Value,
        align: Align,
        flags: MemFlags,
    ) -> Self::Value;
    fn atomic_store(
        &mut self,
        val: Self::Value,
        ptr: Self::Value,
        order: AtomicOrdering,
        size: Size,
    );

    fn gep(&mut self, ty: Self::Type, ptr: Self::Value, indices: &[Self::Value]) -> Self::Value;
    fn inbounds_gep(
        &mut self,
        ty: Self::Type,
        ptr: Self::Value,
        indices: &[Self::Value],
    ) -> Self::Value;
    fn struct_gep(&mut self, ty: Self::Type, ptr: Self::Value, idx: u64) -> Self::Value;

    fn trunc(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn sext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn fptoui_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Option<Self::Value>;
    fn fptosi_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Option<Self::Value>;
    fn fptoui(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn fptosi(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn uitofp(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn sitofp(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn fptrunc(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn fpext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn ptrtoint(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn inttoptr(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn bitcast(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
    fn intcast(&mut self, val: Self::Value, dest_ty: Self::Type, is_signed: bool) -> Self::Value;
    fn pointercast(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;

    fn cast_float_to_int(
        &mut self,
        signed: bool,
        x: Self::Value,
        dest_ty: Self::Type,
    ) -> Self::Value {
        let in_ty = self.cx().val_ty(x);
        let (float_ty, int_ty) = if self.cx().type_kind(dest_ty) == TypeKind::Vector
            && self.cx().type_kind(in_ty) == TypeKind::Vector
        {
            (self.cx().element_type(in_ty), self.cx().element_type(dest_ty))
        } else {
            (in_ty, dest_ty)
        };
        assert!(matches!(self.cx().type_kind(float_ty), TypeKind::Float | TypeKind::Double));
        assert_eq!(self.cx().type_kind(int_ty), TypeKind::Integer);

        if let Some(false) = self.cx().sess().opts.debugging_opts.saturating_float_casts {
            return if signed { self.fptosi(x, dest_ty) } else { self.fptoui(x, dest_ty) };
        }

        let try_sat_result =
            if signed { self.fptosi_sat(x, dest_ty) } else { self.fptoui_sat(x, dest_ty) };
        if let Some(try_sat_result) = try_sat_result {
            return try_sat_result;
        }

        let int_width = self.cx().int_width(int_ty);
        let float_width = self.cx().float_width(float_ty);
        // LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the
        // destination integer type after rounding towards zero. This `undef` value can cause UB in
        // safe code (see issue #10184), so we implement a saturating conversion on top of it:
        // Semantically, the mathematical value of the input is rounded towards zero to the next
        // mathematical integer, and then the result is clamped into the range of the destination
        // integer type. Positive and negative infinity are mapped to the maximum and minimum value of
        // the destination integer type. NaN is mapped to 0.
        //
        // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
        // a value representable in int_ty.
        // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
        // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
        // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
        // representable. Note that this only works if float_ty's exponent range is sufficiently large.
        // f16 or 256 bit integers would break this property. Right now the smallest float type is f32
        // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
        // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
        // we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
        // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
        let int_max = |signed: bool, int_width: u64| -> u128 {
            let shift_amount = 128 - int_width;
            if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount }
        };
        let int_min = |signed: bool, int_width: u64| -> i128 {
            if signed { i128::MIN >> (128 - int_width) } else { 0 }
        };

        let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
            let rounded_min =
                ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
            assert_eq!(rounded_min.status, Status::OK);
            let rounded_max =
                ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
            assert!(rounded_max.value.is_finite());
            (rounded_min.value.to_bits(), rounded_max.value.to_bits())
        };
        let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
            let rounded_min =
                ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
            assert_eq!(rounded_min.status, Status::OK);
            let rounded_max =
                ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
            assert!(rounded_max.value.is_finite());
            (rounded_min.value.to_bits(), rounded_max.value.to_bits())
        };
        // To implement saturation, we perform the following steps:
        //
        // 1. Cast x to an integer with fpto[su]i. This may result in undef.
        // 2. Compare x to f_min and f_max, and use the comparison results to select:
        //  a) int_ty::MIN if x < f_min or x is NaN
        //  b) int_ty::MAX if x > f_max
        //  c) the result of fpto[su]i otherwise
        // 3. If x is NaN, return 0.0, otherwise return the result of step 2.
        //
        // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
        // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
        // undef does not introduce any non-determinism either.
        // More importantly, the above procedure correctly implements saturating conversion.
        // Proof (sketch):
        // If x is NaN, 0 is returned by definition.
        // Otherwise, x is finite or infinite and thus can be compared with f_min and f_max.
        // This yields three cases to consider:
        // (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
        //     saturating conversion for inputs in that range.
        // (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded
        //     (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
        //     than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX
        //     is correct.
        // (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
        //     int_ty::MIN and therefore the return value of int_ty::MIN is correct.
        // QED.

        let float_bits_to_llval = |bx: &mut Self, bits| {
            let bits_llval = match float_width {
                32 => bx.cx().const_u32(bits as u32),
                64 => bx.cx().const_u64(bits as u64),
                n => bug!("unsupported float width {}", n),
            };
            bx.bitcast(bits_llval, float_ty)
        };
        let (f_min, f_max) = match float_width {
            32 => compute_clamp_bounds_single(signed, int_width),
            64 => compute_clamp_bounds_double(signed, int_width),
            n => bug!("unsupported float width {}", n),
        };
        let f_min = float_bits_to_llval(self, f_min);
        let f_max = float_bits_to_llval(self, f_max);
        let int_max = self.cx().const_uint_big(int_ty, int_max(signed, int_width));
        let int_min = self.cx().const_uint_big(int_ty, int_min(signed, int_width) as u128);
        let zero = self.cx().const_uint(int_ty, 0);

        // If we're working with vectors, constants must be "splatted": the constant is duplicated
        // into each lane of the vector.  The algorithm stays the same, we are just using the
        // same constant across all lanes.
        let maybe_splat = |bx: &mut Self, val| {
            if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
                bx.vector_splat(bx.vector_length(dest_ty), val)
            } else {
                val
            }
        };
        let f_min = maybe_splat(self, f_min);
        let f_max = maybe_splat(self, f_max);
        let int_max = maybe_splat(self, int_max);
        let int_min = maybe_splat(self, int_min);
        let zero = maybe_splat(self, zero);

        // Step 1 ...
        let fptosui_result = if signed { self.fptosi(x, dest_ty) } else { self.fptoui(x, dest_ty) };
        let less_or_nan = self.fcmp(RealPredicate::RealULT, x, f_min);
        let greater = self.fcmp(RealPredicate::RealOGT, x, f_max);

        // Step 2: We use two comparisons and two selects, with %s1 being the
        // result:
        //     %less_or_nan = fcmp ult %x, %f_min
        //     %greater = fcmp olt %x, %f_max
        //     %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
        //     %s1 = select %greater, int_ty::MAX, %s0
        // Note that %less_or_nan uses an *unordered* comparison. This
        // comparison is true if the operands are not comparable (i.e., if x is
        // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
        // x is NaN.
        //
        // Performance note: Unordered comparison can be lowered to a "flipped"
        // comparison and a negation, and the negation can be merged into the
        // select. Therefore, it not necessarily any more expensive than an
        // ordered ("normal") comparison. Whether these optimizations will be
        // performed is ultimately up to the backend, but at least x86 does
        // perform them.
        let s0 = self.select(less_or_nan, int_min, fptosui_result);
        let s1 = self.select(greater, int_max, s0);

        // Step 3: NaN replacement.
        // For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN.
        // Therefore we only need to execute this step for signed integer types.
        if signed {
            // LLVM has no isNaN predicate, so we use (x == x) instead
            let cmp = self.fcmp(RealPredicate::RealOEQ, x, x);
            self.select(cmp, s1, zero)
        } else {
            s1
        }
    }

    fn icmp(&mut self, op: IntPredicate, lhs: Self::Value, rhs: Self::Value) -> Self::Value;
    fn fcmp(&mut self, op: RealPredicate, lhs: Self::Value, rhs: Self::Value) -> Self::Value;

    fn memcpy(
        &mut self,
        dst: Self::Value,
        dst_align: Align,
        src: Self::Value,
        src_align: Align,
        size: Self::Value,
        flags: MemFlags,
    );
    fn memmove(
        &mut self,
        dst: Self::Value,
        dst_align: Align,
        src: Self::Value,
        src_align: Align,
        size: Self::Value,
        flags: MemFlags,
    );
    fn memset(
        &mut self,
        ptr: Self::Value,
        fill_byte: Self::Value,
        size: Self::Value,
        align: Align,
        flags: MemFlags,
    );

    fn select(
        &mut self,
        cond: Self::Value,
        then_val: Self::Value,
        else_val: Self::Value,
    ) -> Self::Value;

    fn va_arg(&mut self, list: Self::Value, ty: Self::Type) -> Self::Value;
    fn extract_element(&mut self, vec: Self::Value, idx: Self::Value) -> Self::Value;
    fn vector_splat(&mut self, num_elts: usize, elt: Self::Value) -> Self::Value;
    fn extract_value(&mut self, agg_val: Self::Value, idx: u64) -> Self::Value;
    fn insert_value(&mut self, agg_val: Self::Value, elt: Self::Value, idx: u64) -> Self::Value;

    fn set_personality_fn(&mut self, personality: Self::Value);

    // These are used by everyone except msvc
    fn cleanup_landing_pad(&mut self, ty: Self::Type, pers_fn: Self::Value) -> Self::Value;
    fn resume(&mut self, exn: Self::Value);

    // These are used only by msvc
    fn cleanup_pad(&mut self, parent: Option<Self::Value>, args: &[Self::Value]) -> Self::Funclet;
    fn cleanup_ret(&mut self, funclet: &Self::Funclet, unwind: Option<Self::BasicBlock>);
    fn catch_pad(&mut self, parent: Self::Value, args: &[Self::Value]) -> Self::Funclet;
    fn catch_switch(
        &mut self,
        parent: Option<Self::Value>,
        unwind: Option<Self::BasicBlock>,
        handlers: &[Self::BasicBlock],
    ) -> Self::Value;

    fn atomic_cmpxchg(
        &mut self,
        dst: Self::Value,
        cmp: Self::Value,
        src: Self::Value,
        order: AtomicOrdering,
        failure_order: AtomicOrdering,
        weak: bool,
    ) -> Self::Value;
    fn atomic_rmw(
        &mut self,
        op: AtomicRmwBinOp,
        dst: Self::Value,
        src: Self::Value,
        order: AtomicOrdering,
    ) -> Self::Value;
    fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope);
    fn set_invariant_load(&mut self, load: Self::Value);

    /// Called for `StorageLive`
    fn lifetime_start(&mut self, ptr: Self::Value, size: Size);

    /// Called for `StorageDead`
    fn lifetime_end(&mut self, ptr: Self::Value, size: Size);

    fn instrprof_increment(
        &mut self,
        fn_name: Self::Value,
        hash: Self::Value,
        num_counters: Self::Value,
        index: Self::Value,
    );

    fn call(
        &mut self,
        llty: Self::Type,
        llfn: Self::Value,
        args: &[Self::Value],
        funclet: Option<&Self::Funclet>,
    ) -> Self::Value;
    fn zext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;

    fn do_not_inline(&mut self, llret: Self::Value);
}