Skip to main content

rustc_codegen_ssa/
base.rs

1use std::cmp;
2use std::collections::BTreeSet;
3use std::sync::Arc;
4use std::time::{Duration, Instant};
5
6use itertools::Itertools;
7use rustc_abi::FIRST_VARIANT;
8use rustc_ast::expand::allocator::{
9    ALLOC_ERROR_HANDLER, ALLOCATOR_METHODS, AllocatorKind, AllocatorMethod, AllocatorMethodInput,
10    AllocatorTy,
11};
12use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
13use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
14use rustc_data_structures::sync::{IntoDynSyncSend, par_map};
15use rustc_data_structures::unord::UnordMap;
16use rustc_hir::attrs::{AttributeKind, DebuggerVisualizerType, OptimizeAttr};
17use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LOCAL_CRATE};
18use rustc_hir::lang_items::LangItem;
19use rustc_hir::{ItemId, Target, find_attr};
20use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
21use rustc_middle::middle::debugger_visualizer::DebuggerVisualizerFile;
22use rustc_middle::middle::dependency_format::Dependencies;
23use rustc_middle::middle::exported_symbols::{self, SymbolExportKind};
24use rustc_middle::middle::lang_items;
25use rustc_middle::mir::BinOp;
26use rustc_middle::mir::interpret::ErrorHandled;
27use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem, MonoItemPartitions};
28use rustc_middle::query::Providers;
29use rustc_middle::ty::layout::{HasTyCtxt, HasTypingEnv, LayoutOf, TyAndLayout};
30use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
31use rustc_middle::{bug, span_bug};
32use rustc_session::Session;
33use rustc_session::config::{self, CrateType, EntryFnType};
34use rustc_span::{DUMMY_SP, Symbol};
35use rustc_symbol_mangling::mangle_internal_symbol;
36use rustc_target::spec::{Arch, Os};
37use rustc_trait_selection::infer::{BoundRegionConversionTime, TyCtxtInferExt};
38use rustc_trait_selection::traits::{ObligationCause, ObligationCtxt};
39use tracing::{debug, info};
40
41use crate::assert_module_sources::CguReuse;
42use crate::back::link::are_upstream_rust_objects_already_included;
43use crate::back::write::{
44    ComputedLtoType, OngoingCodegen, compute_per_cgu_lto_type, start_async_codegen,
45    submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm,
46};
47use crate::common::{self, IntPredicate, RealPredicate, TypeKind};
48use crate::meth::load_vtable;
49use crate::mir::operand::OperandValue;
50use crate::mir::place::PlaceRef;
51use crate::traits::*;
52use crate::{CachedModuleCodegen, CodegenLintLevels, CrateInfo, ModuleCodegen, errors, meth, mir};
53
54pub(crate) fn bin_op_to_icmp_predicate(op: BinOp, signed: bool) -> IntPredicate {
55    match (op, signed) {
56        (BinOp::Eq, _) => IntPredicate::IntEQ,
57        (BinOp::Ne, _) => IntPredicate::IntNE,
58        (BinOp::Lt, true) => IntPredicate::IntSLT,
59        (BinOp::Lt, false) => IntPredicate::IntULT,
60        (BinOp::Le, true) => IntPredicate::IntSLE,
61        (BinOp::Le, false) => IntPredicate::IntULE,
62        (BinOp::Gt, true) => IntPredicate::IntSGT,
63        (BinOp::Gt, false) => IntPredicate::IntUGT,
64        (BinOp::Ge, true) => IntPredicate::IntSGE,
65        (BinOp::Ge, false) => IntPredicate::IntUGE,
66        op => ::rustc_middle::util::bug::bug_fmt(format_args!("bin_op_to_icmp_predicate: expected comparison operator, found {0:?}",
        op))bug!("bin_op_to_icmp_predicate: expected comparison operator, found {:?}", op),
67    }
68}
69
70pub(crate) fn bin_op_to_fcmp_predicate(op: BinOp) -> RealPredicate {
71    match op {
72        BinOp::Eq => RealPredicate::RealOEQ,
73        BinOp::Ne => RealPredicate::RealUNE,
74        BinOp::Lt => RealPredicate::RealOLT,
75        BinOp::Le => RealPredicate::RealOLE,
76        BinOp::Gt => RealPredicate::RealOGT,
77        BinOp::Ge => RealPredicate::RealOGE,
78        op => ::rustc_middle::util::bug::bug_fmt(format_args!("bin_op_to_fcmp_predicate: expected comparison operator, found {0:?}",
        op))bug!("bin_op_to_fcmp_predicate: expected comparison operator, found {:?}", op),
79    }
80}
81
82pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
83    bx: &mut Bx,
84    lhs: Bx::Value,
85    rhs: Bx::Value,
86    t: Ty<'tcx>,
87    ret_ty: Bx::Type,
88    op: BinOp,
89) -> Bx::Value {
90    let signed = match t.kind() {
91        ty::Float(_) => {
92            let cmp = bin_op_to_fcmp_predicate(op);
93            let cmp = bx.fcmp(cmp, lhs, rhs);
94            return bx.sext(cmp, ret_ty);
95        }
96        ty::Uint(_) => false,
97        ty::Int(_) => true,
98        _ => ::rustc_middle::util::bug::bug_fmt(format_args!("compare_simd_types: invalid SIMD type"))bug!("compare_simd_types: invalid SIMD type"),
99    };
100
101    let cmp = bin_op_to_icmp_predicate(op, signed);
102    let cmp = bx.icmp(cmp, lhs, rhs);
103    // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
104    // to get the correctly sized type. This will compile to a single instruction
105    // once the IR is converted to assembly if the SIMD instruction is supported
106    // by the target architecture.
107    bx.sext(cmp, ret_ty)
108}
109
110/// Codegen takes advantage of the additional assumption, where if the
111/// principal trait def id of what's being casted doesn't change,
112/// then we don't need to adjust the vtable at all. This
113/// corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
114/// requires that `A = B`; we don't allow *upcasting* objects
115/// between the same trait with different args. If we, for
116/// some reason, were to relax the `Unsize` trait, it could become
117/// unsound, so let's validate here that the trait refs are subtypes.
118pub fn validate_trivial_unsize<'tcx>(
119    tcx: TyCtxt<'tcx>,
120    source_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
121    target_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
122) -> bool {
123    match (source_data.principal(), target_data.principal()) {
124        (Some(hr_source_principal), Some(hr_target_principal)) => {
125            let (infcx, param_env) =
126                tcx.infer_ctxt().build_with_typing_env(ty::TypingEnv::fully_monomorphized());
127            let universe = infcx.universe();
128            let ocx = ObligationCtxt::new(&infcx);
129            infcx.enter_forall(hr_target_principal, |target_principal| {
130                let source_principal = infcx.instantiate_binder_with_fresh_vars(
131                    DUMMY_SP,
132                    BoundRegionConversionTime::HigherRankedType,
133                    hr_source_principal,
134                );
135                let Ok(()) = ocx.eq(
136                    &ObligationCause::dummy(),
137                    param_env,
138                    target_principal,
139                    source_principal,
140                ) else {
141                    return false;
142                };
143                if !ocx.evaluate_obligations_error_on_ambiguity().is_empty() {
144                    return false;
145                }
146                infcx.leak_check(universe, None).is_ok()
147            })
148        }
149        (_, None) => true,
150        _ => false,
151    }
152}
153
154/// Retrieves the information we are losing (making dynamic) in an unsizing
155/// adjustment.
156///
157/// The `old_info` argument is a bit odd. It is intended for use in an upcast,
158/// where the new vtable for an object will be derived from the old one.
159fn unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
160    bx: &mut Bx,
161    source: Ty<'tcx>,
162    target: Ty<'tcx>,
163    old_info: Option<Bx::Value>,
164) -> Bx::Value {
165    let cx = bx.cx();
166    let (source, target) =
167        cx.tcx().struct_lockstep_tails_for_codegen(source, target, bx.typing_env());
168    match (source.kind(), target.kind()) {
169        (&ty::Array(_, len), &ty::Slice(_)) => cx.const_usize(
170            len.try_to_target_usize(cx.tcx()).expect("expected monomorphic const in codegen"),
171        ),
172        (&ty::Dynamic(data_a, _), &ty::Dynamic(data_b, _)) => {
173            let old_info =
174                old_info.expect("unsized_info: missing old info for trait upcasting coercion");
175            let b_principal_def_id = data_b.principal_def_id();
176            if data_a.principal_def_id() == b_principal_def_id || b_principal_def_id.is_none() {
177                // Codegen takes advantage of the additional assumption, where if the
178                // principal trait def id of what's being casted doesn't change,
179                // then we don't need to adjust the vtable at all. This
180                // corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
181                // requires that `A = B`; we don't allow *upcasting* objects
182                // between the same trait with different args. If we, for
183                // some reason, were to relax the `Unsize` trait, it could become
184                // unsound, so let's assert here that the trait refs are *equal*.
185                if true {
    if !validate_trivial_unsize(cx.tcx(), data_a, data_b) {
        {
            ::core::panicking::panic_fmt(format_args!("NOP unsize vtable changed principal trait ref: {0} -> {1}",
                    data_a, data_b));
        }
    };
};debug_assert!(
186                    validate_trivial_unsize(cx.tcx(), data_a, data_b),
187                    "NOP unsize vtable changed principal trait ref: {data_a} -> {data_b}"
188                );
189
190                // A NOP cast that doesn't actually change anything, let's avoid any
191                // unnecessary work. This relies on the assumption that if the principal
192                // traits are equal, then the associated type bounds (`dyn Trait<Assoc=T>`)
193                // are also equal, which is ensured by the fact that normalization is
194                // a function and we do not allow overlapping impls.
195                return old_info;
196            }
197
198            // trait upcasting coercion
199
200            let vptr_entry_idx = cx.tcx().supertrait_vtable_slot((source, target));
201
202            if let Some(entry_idx) = vptr_entry_idx {
203                let ptr_size = bx.data_layout().pointer_size();
204                let vtable_byte_offset = u64::try_from(entry_idx).unwrap() * ptr_size.bytes();
205                load_vtable(bx, old_info, bx.type_ptr(), vtable_byte_offset, source, true)
206            } else {
207                old_info
208            }
209        }
210        (_, ty::Dynamic(data, _)) => meth::get_vtable(
211            cx,
212            source,
213            data.principal()
214                .map(|principal| bx.tcx().instantiate_bound_regions_with_erased(principal)),
215        ),
216        _ => ::rustc_middle::util::bug::bug_fmt(format_args!("unsized_info: invalid unsizing {0:?} -> {1:?}",
        source, target))bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
217    }
218}
219
220/// Coerces `src` to `dst_ty`. `src_ty` must be a pointer.
221pub(crate) fn unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
222    bx: &mut Bx,
223    src: Bx::Value,
224    src_ty: Ty<'tcx>,
225    dst_ty: Ty<'tcx>,
226    old_info: Option<Bx::Value>,
227) -> (Bx::Value, Bx::Value) {
228    {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/base.rs:228",
                        "rustc_codegen_ssa::base", ::tracing::Level::DEBUG,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/base.rs"),
                        ::tracing_core::__macro_support::Option::Some(228u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::base"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("unsize_ptr: {0:?} => {1:?}",
                                                    src_ty, dst_ty) as &dyn Value))])
            });
    } else { ; }
};debug!("unsize_ptr: {:?} => {:?}", src_ty, dst_ty);
229    match (src_ty.kind(), dst_ty.kind()) {
230        (&ty::Pat(a, _), &ty::Pat(b, _)) => unsize_ptr(bx, src, a, b, old_info),
231        (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(b, _))
232        | (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => {
233            match (&bx.cx().type_is_sized(a), &old_info.is_none()) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(bx.cx().type_is_sized(a), old_info.is_none());
234            (src, unsized_info(bx, a, b, old_info))
235        }
236        (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
237            match (&def_a, &def_b) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(def_a, def_b); // implies same number of fields
238            let src_layout = bx.cx().layout_of(src_ty);
239            let dst_layout = bx.cx().layout_of(dst_ty);
240            if src_ty == dst_ty {
241                return (src, old_info.unwrap());
242            }
243            let mut result = None;
244            for i in 0..src_layout.fields.count() {
245                let src_f = src_layout.field(bx.cx(), i);
246                if src_f.is_1zst() {
247                    // We are looking for the one non-1-ZST field; this is not it.
248                    continue;
249                }
250
251                match (&src_layout.fields.offset(i).bytes(), &0) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(src_layout.fields.offset(i).bytes(), 0);
252                match (&dst_layout.fields.offset(i).bytes(), &0) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
253                match (&src_layout.size, &src_f.size) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(src_layout.size, src_f.size);
254
255                let dst_f = dst_layout.field(bx.cx(), i);
256                match (&src_f.ty, &dst_f.ty) {
    (left_val, right_val) => {
        if *left_val == *right_val {
            let kind = ::core::panicking::AssertKind::Ne;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_ne!(src_f.ty, dst_f.ty);
257                match (&result, &None) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(result, None);
258                result = Some(unsize_ptr(bx, src, src_f.ty, dst_f.ty, old_info));
259            }
260            result.unwrap()
261        }
262        _ => ::rustc_middle::util::bug::bug_fmt(format_args!("unsize_ptr: called on bad types"))bug!("unsize_ptr: called on bad types"),
263    }
264}
265
266/// Coerces `src`, which is a reference to a value of type `src_ty`,
267/// to a value of type `dst_ty`, and stores the result in `dst`.
268pub(crate) fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
269    bx: &mut Bx,
270    src: PlaceRef<'tcx, Bx::Value>,
271    dst: PlaceRef<'tcx, Bx::Value>,
272) {
273    let src_ty = src.layout.ty;
274    let dst_ty = dst.layout.ty;
275    match (src_ty.kind(), dst_ty.kind()) {
276        (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
277            let (base, info) = match bx.load_operand(src).val {
278                OperandValue::Pair(base, info) => unsize_ptr(bx, base, src_ty, dst_ty, Some(info)),
279                OperandValue::Immediate(base) => unsize_ptr(bx, base, src_ty, dst_ty, None),
280                OperandValue::Ref(..) | OperandValue::ZeroSized => ::rustc_middle::util::bug::bug_fmt(format_args!("impossible case reached"))bug!(),
281            };
282            OperandValue::Pair(base, info).store(bx, dst);
283        }
284
285        (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
286            match (&def_a, &def_b) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(def_a, def_b); // implies same number of fields
287
288            for i in def_a.variant(FIRST_VARIANT).fields.indices() {
289                let src_f = src.project_field(bx, i.as_usize());
290                let dst_f = dst.project_field(bx, i.as_usize());
291
292                if dst_f.layout.is_zst() {
293                    // No data here, nothing to copy/coerce.
294                    continue;
295                }
296
297                if src_f.layout.ty == dst_f.layout.ty {
298                    bx.typed_place_copy(dst_f.val, src_f.val, src_f.layout);
299                } else {
300                    coerce_unsized_into(bx, src_f, dst_f);
301                }
302            }
303        }
304        _ => ::rustc_middle::util::bug::bug_fmt(format_args!("coerce_unsized_into: invalid coercion {0:?} -> {1:?}",
        src_ty, dst_ty))bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
305    }
306}
307
308/// Returns `rhs` sufficiently masked, truncated, and/or extended so that it can be used to shift
309/// `lhs`: it has the same size as `lhs`, and the value, when interpreted unsigned (no matter its
310/// type), will not exceed the size of `lhs`.
311///
312/// Shifts in MIR are all allowed to have mismatched LHS & RHS types, and signed RHS.
313/// The shift methods in `BuilderMethods`, however, are fully homogeneous
314/// (both parameters and the return type are all the same size) and assume an unsigned RHS.
315///
316/// If `is_unchecked` is false, this masks the RHS to ensure it stays in-bounds,
317/// as the `BuilderMethods` shifts are UB for out-of-bounds shift amounts.
318/// For 32- and 64-bit types, this matches the semantics
319/// of Java. (See related discussion on #1877 and #10183.)
320///
321/// If `is_unchecked` is true, this does no masking, and adds sufficient `assume`
322/// calls or operation flags to preserve as much freedom to optimize as possible.
323pub(crate) fn build_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
324    bx: &mut Bx,
325    lhs: Bx::Value,
326    mut rhs: Bx::Value,
327    is_unchecked: bool,
328) -> Bx::Value {
329    // Shifts may have any size int on the rhs
330    let mut rhs_llty = bx.cx().val_ty(rhs);
331    let mut lhs_llty = bx.cx().val_ty(lhs);
332
333    let mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, false);
334    if !is_unchecked {
335        rhs = bx.and(rhs, mask);
336    }
337
338    if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
339        rhs_llty = bx.cx().element_type(rhs_llty)
340    }
341    if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
342        lhs_llty = bx.cx().element_type(lhs_llty)
343    }
344    let rhs_sz = bx.cx().int_width(rhs_llty);
345    let lhs_sz = bx.cx().int_width(lhs_llty);
346    if lhs_sz < rhs_sz {
347        if is_unchecked { bx.unchecked_utrunc(rhs, lhs_llty) } else { bx.trunc(rhs, lhs_llty) }
348    } else if lhs_sz > rhs_sz {
349        // We zero-extend even if the RHS is signed. So e.g. `(x: i32) << -1i8` will zero-extend the
350        // RHS to `255i32`. But then we mask the shift amount to be within the size of the LHS
351        // anyway so the result is `31` as it should be. All the extra bits introduced by zext
352        // are masked off so their value does not matter.
353        // FIXME: if we ever support 512bit integers, this will be wrong! For such large integers,
354        // the extra bits introduced by zext are *not* all masked away any more.
355        if !(lhs_sz <= 256) {
    ::core::panicking::panic("assertion failed: lhs_sz <= 256")
};assert!(lhs_sz <= 256);
356        bx.zext(rhs, lhs_llty)
357    } else {
358        rhs
359    }
360}
361
362// Returns `true` if this session's target will use native wasm
363// exceptions. This means that the VM does the unwinding for
364// us
365pub fn wants_wasm_eh(sess: &Session) -> bool {
366    sess.target.is_like_wasm
367        && (sess.target.os != Os::Emscripten || sess.opts.unstable_opts.emscripten_wasm_eh)
368}
369
370/// Returns `true` if this session's target will use SEH-based unwinding.
371///
372/// This is only true for MSVC targets, and even then the 64-bit MSVC target
373/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
374/// 64-bit MinGW) instead of "full SEH".
375pub fn wants_msvc_seh(sess: &Session) -> bool {
376    sess.target.is_like_msvc
377}
378
379/// Returns `true` if this session's target requires the new exception
380/// handling LLVM IR instructions (catchpad / cleanuppad / ... instead
381/// of landingpad)
382pub(crate) fn wants_new_eh_instructions(sess: &Session) -> bool {
383    wants_wasm_eh(sess) || wants_msvc_seh(sess)
384}
385
386pub(crate) fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
387    cx: &'a Bx::CodegenCx,
388    instance: Instance<'tcx>,
389) {
390    // this is an info! to allow collecting monomorphization statistics
391    // and to allow finding the last function before LLVM aborts from
392    // release builds.
393    {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_codegen_ssa/src/base.rs:393",
                        "rustc_codegen_ssa::base", ::tracing::Level::INFO,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_codegen_ssa/src/base.rs"),
                        ::tracing_core::__macro_support::Option::Some(393u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_codegen_ssa::base"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::INFO <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::INFO <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("codegen_instance({0})",
                                                    instance) as &dyn Value))])
            });
    } else { ; }
};info!("codegen_instance({})", instance);
394
395    mir::codegen_mir::<Bx>(cx, instance);
396}
397
398pub fn codegen_global_asm<'tcx, Cx>(cx: &mut Cx, item_id: ItemId)
399where
400    Cx: LayoutOf<'tcx, LayoutOfResult = TyAndLayout<'tcx>> + AsmCodegenMethods<'tcx>,
401{
402    let item = cx.tcx().hir_item(item_id);
403    if let rustc_hir::ItemKind::GlobalAsm { asm, .. } = item.kind {
404        let operands: Vec<_> = asm
405            .operands
406            .iter()
407            .map(|(op, op_sp)| match *op {
408                rustc_hir::InlineAsmOperand::Const { ref anon_const } => {
409                    match cx.tcx().const_eval_poly(anon_const.def_id.to_def_id()) {
410                        Ok(const_value) => {
411                            let ty =
412                                cx.tcx().typeck_body(anon_const.body).node_type(anon_const.hir_id);
413                            let string = common::asm_const_to_str(
414                                cx.tcx(),
415                                *op_sp,
416                                const_value,
417                                cx.layout_of(ty),
418                            );
419                            GlobalAsmOperandRef::Const { string }
420                        }
421                        Err(ErrorHandled::Reported { .. }) => {
422                            // An error has already been reported and
423                            // compilation is guaranteed to fail if execution
424                            // hits this path. So an empty string instead of
425                            // a stringified constant value will suffice.
426                            GlobalAsmOperandRef::Const { string: String::new() }
427                        }
428                        Err(ErrorHandled::TooGeneric(_)) => {
429                            ::rustc_middle::util::bug::span_bug_fmt(*op_sp,
    format_args!("asm const cannot be resolved; too generic"))span_bug!(*op_sp, "asm const cannot be resolved; too generic")
430                        }
431                    }
432                }
433                rustc_hir::InlineAsmOperand::SymFn { expr } => {
434                    let ty = cx.tcx().typeck(item_id.owner_id).expr_ty(expr);
435                    let instance = match ty.kind() {
436                        &ty::FnDef(def_id, args) => Instance::expect_resolve(
437                            cx.tcx(),
438                            ty::TypingEnv::fully_monomorphized(),
439                            def_id,
440                            args,
441                            expr.span,
442                        ),
443                        _ => ::rustc_middle::util::bug::span_bug_fmt(*op_sp,
    format_args!("asm sym is not a function"))span_bug!(*op_sp, "asm sym is not a function"),
444                    };
445
446                    GlobalAsmOperandRef::SymFn { instance }
447                }
448                rustc_hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
449                    GlobalAsmOperandRef::SymStatic { def_id }
450                }
451                rustc_hir::InlineAsmOperand::In { .. }
452                | rustc_hir::InlineAsmOperand::Out { .. }
453                | rustc_hir::InlineAsmOperand::InOut { .. }
454                | rustc_hir::InlineAsmOperand::SplitInOut { .. }
455                | rustc_hir::InlineAsmOperand::Label { .. } => {
456                    ::rustc_middle::util::bug::span_bug_fmt(*op_sp,
    format_args!("invalid operand type for global_asm!"))span_bug!(*op_sp, "invalid operand type for global_asm!")
457                }
458            })
459            .collect();
460
461        cx.codegen_global_asm(asm.template, &operands, asm.options, asm.line_spans);
462    } else {
463        ::rustc_middle::util::bug::span_bug_fmt(item.span,
    format_args!("Mismatch between hir::Item type and MonoItem type"))span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
464    }
465}
466
467/// Creates the `main` function which will initialize the rust runtime and call
468/// users main function.
469pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
470    cx: &'a Bx::CodegenCx,
471    cgu: &CodegenUnit<'tcx>,
472) -> Option<Bx::Function> {
473    let (main_def_id, entry_type) = cx.tcx().entry_fn(())?;
474    let main_is_local = main_def_id.is_local();
475    let instance = Instance::mono(cx.tcx(), main_def_id);
476
477    if main_is_local {
478        // We want to create the wrapper in the same codegen unit as Rust's main
479        // function.
480        if !cgu.contains_item(&MonoItem::Fn(instance)) {
481            return None;
482        }
483    } else if !cgu.is_primary() {
484        // We want to create the wrapper only when the codegen unit is the primary one
485        return None;
486    }
487
488    let main_llfn = cx.get_fn_addr(instance);
489
490    let entry_fn = create_entry_fn::<Bx>(cx, main_llfn, main_def_id, entry_type);
491    return Some(entry_fn);
492
493    fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
494        cx: &'a Bx::CodegenCx,
495        rust_main: Bx::Value,
496        rust_main_def_id: DefId,
497        entry_type: EntryFnType,
498    ) -> Bx::Function {
499        // The entry function is either `int main(void)` or `int main(int argc, char **argv)`, or
500        // `usize efi_main(void *handle, void *system_table)` depending on the target.
501        let llfty = if cx.sess().target.os == Os::Uefi {
502            cx.type_func(&[cx.type_ptr(), cx.type_ptr()], cx.type_isize())
503        } else if cx.sess().target.main_needs_argc_argv {
504            cx.type_func(&[cx.type_int(), cx.type_ptr()], cx.type_int())
505        } else {
506            cx.type_func(&[], cx.type_int())
507        };
508
509        let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).no_bound_vars().unwrap().output();
510        // Given that `main()` has no arguments,
511        // then its return type cannot have
512        // late-bound regions, since late-bound
513        // regions must appear in the argument
514        // listing.
515        let main_ret_ty = cx
516            .tcx()
517            .normalize_erasing_regions(cx.typing_env(), main_ret_ty.no_bound_vars().unwrap());
518
519        let Some(llfn) = cx.declare_c_main(llfty) else {
520            // FIXME: We should be smart and show a better diagnostic here.
521            let span = cx.tcx().def_span(rust_main_def_id);
522            cx.tcx().dcx().emit_fatal(errors::MultipleMainFunctions { span });
523        };
524
525        // `main` should respect same config for frame pointer elimination as rest of code
526        cx.set_frame_pointer_type(llfn);
527        cx.apply_target_cpu_attr(llfn);
528
529        let llbb = Bx::append_block(cx, llfn, "top");
530        let mut bx = Bx::build(cx, llbb);
531
532        bx.insert_reference_to_gdb_debug_scripts_section_global();
533
534        let isize_ty = cx.type_isize();
535        let ptr_ty = cx.type_ptr();
536        let (arg_argc, arg_argv) = get_argc_argv(&mut bx);
537
538        let EntryFnType::Main { sigpipe } = entry_type;
539        let (start_fn, start_ty, args, instance) = {
540            let start_def_id = cx.tcx().require_lang_item(LangItem::Start, DUMMY_SP);
541            let start_instance = ty::Instance::expect_resolve(
542                cx.tcx(),
543                cx.typing_env(),
544                start_def_id,
545                cx.tcx().mk_args(&[main_ret_ty.into()]),
546                DUMMY_SP,
547            );
548            let start_fn = cx.get_fn_addr(start_instance);
549
550            let i8_ty = cx.type_i8();
551            let arg_sigpipe = bx.const_u8(sigpipe);
552
553            let start_ty = cx.type_func(&[cx.val_ty(rust_main), isize_ty, ptr_ty, i8_ty], isize_ty);
554            (
555                start_fn,
556                start_ty,
557                <[_]>::into_vec(::alloc::boxed::box_new([rust_main, arg_argc, arg_argv,
                arg_sigpipe]))vec![rust_main, arg_argc, arg_argv, arg_sigpipe],
558                Some(start_instance),
559            )
560        };
561
562        let result = bx.call(start_ty, None, None, start_fn, &args, None, instance);
563        if cx.sess().target.os == Os::Uefi {
564            bx.ret(result);
565        } else {
566            let cast = bx.intcast(result, cx.type_int(), true);
567            bx.ret(cast);
568        }
569
570        llfn
571    }
572}
573
574/// Obtain the `argc` and `argv` values to pass to the rust start function
575/// (i.e., the "start" lang item).
576fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(bx: &mut Bx) -> (Bx::Value, Bx::Value) {
577    if bx.cx().sess().target.os == Os::Uefi {
578        // Params for UEFI
579        let param_handle = bx.get_param(0);
580        let param_system_table = bx.get_param(1);
581        let ptr_size = bx.tcx().data_layout.pointer_size();
582        let ptr_align = bx.tcx().data_layout.pointer_align().abi;
583        let arg_argc = bx.const_int(bx.cx().type_isize(), 2);
584        let arg_argv = bx.alloca(2 * ptr_size, ptr_align);
585        bx.store(param_handle, arg_argv, ptr_align);
586        let arg_argv_el1 = bx.inbounds_ptradd(arg_argv, bx.const_usize(ptr_size.bytes()));
587        bx.store(param_system_table, arg_argv_el1, ptr_align);
588        (arg_argc, arg_argv)
589    } else if bx.cx().sess().target.main_needs_argc_argv {
590        // Params from native `main()` used as args for rust start function
591        let param_argc = bx.get_param(0);
592        let param_argv = bx.get_param(1);
593        let arg_argc = bx.intcast(param_argc, bx.cx().type_isize(), true);
594        let arg_argv = param_argv;
595        (arg_argc, arg_argv)
596    } else {
597        // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
598        let arg_argc = bx.const_int(bx.cx().type_int(), 0);
599        let arg_argv = bx.const_null(bx.cx().type_ptr());
600        (arg_argc, arg_argv)
601    }
602}
603
604/// This function returns all of the debugger visualizers specified for the
605/// current crate as well as all upstream crates transitively that match the
606/// `visualizer_type` specified.
607pub fn collect_debugger_visualizers_transitive(
608    tcx: TyCtxt<'_>,
609    visualizer_type: DebuggerVisualizerType,
610) -> BTreeSet<DebuggerVisualizerFile> {
611    tcx.debugger_visualizers(LOCAL_CRATE)
612        .iter()
613        .chain(
614            tcx.crates(())
615                .iter()
616                .filter(|&cnum| {
617                    let used_crate_source = tcx.used_crate_source(*cnum);
618                    used_crate_source.rlib.is_some() || used_crate_source.rmeta.is_some()
619                })
620                .flat_map(|&cnum| tcx.debugger_visualizers(cnum)),
621        )
622        .filter(|visualizer| visualizer.visualizer_type == visualizer_type)
623        .cloned()
624        .collect::<BTreeSet<_>>()
625}
626
627/// Decide allocator kind to codegen. If `Some(_)` this will be the same as
628/// `tcx.allocator_kind`, but it may be `None` in more cases (e.g. if using
629/// allocator definitions from a dylib dependency).
630pub fn allocator_kind_for_codegen(tcx: TyCtxt<'_>) -> Option<AllocatorKind> {
631    // If the crate doesn't have an `allocator_kind` set then there's definitely
632    // no shim to generate. Otherwise we also check our dependency graph for all
633    // our output crate types. If anything there looks like its a `Dynamic`
634    // linkage for all crate types we may link as, then it's already got an
635    // allocator shim and we'll be using that one instead. If nothing exists
636    // then it's our job to generate the allocator! If crate types disagree
637    // about whether an allocator shim is necessary or not, we generate one
638    // and let needs_allocator_shim_for_linking decide at link time whether or
639    // not to use it for any particular linker invocation.
640    let all_crate_types_any_dynamic_crate = tcx.dependency_formats(()).iter().all(|(_, list)| {
641        use rustc_middle::middle::dependency_format::Linkage;
642        list.iter().any(|&linkage| linkage == Linkage::Dynamic)
643    });
644    if all_crate_types_any_dynamic_crate { None } else { tcx.allocator_kind(()) }
645}
646
647/// Decide if this particular crate type needs an allocator shim linked in.
648/// This may return true even when allocator_kind_for_codegen returns false. In
649/// this case no allocator shim shall be linked.
650pub(crate) fn needs_allocator_shim_for_linking(
651    dependency_formats: &Dependencies,
652    crate_type: CrateType,
653) -> bool {
654    use rustc_middle::middle::dependency_format::Linkage;
655    let any_dynamic_crate =
656        dependency_formats[&crate_type].iter().any(|&linkage| linkage == Linkage::Dynamic);
657    !any_dynamic_crate
658}
659
660pub fn allocator_shim_contents(tcx: TyCtxt<'_>, kind: AllocatorKind) -> Vec<AllocatorMethod> {
661    let mut methods = Vec::new();
662
663    if kind == AllocatorKind::Default {
664        methods.extend(ALLOCATOR_METHODS.into_iter().copied());
665    }
666
667    // If the return value of allocator_kind_for_codegen is Some then
668    // alloc_error_handler_kind must also be Some.
669    if tcx.alloc_error_handler_kind(()).unwrap() == AllocatorKind::Default {
670        methods.push(AllocatorMethod {
671            name: ALLOC_ERROR_HANDLER,
672            special: None,
673            inputs: &[AllocatorMethodInput { name: "layout", ty: AllocatorTy::Layout }],
674            output: AllocatorTy::Never,
675        });
676    }
677
678    methods
679}
680
681pub fn codegen_crate<B: ExtraBackendMethods>(
682    backend: B,
683    tcx: TyCtxt<'_>,
684    target_cpu: String,
685) -> OngoingCodegen<B> {
686    if tcx.sess.target.need_explicit_cpu && tcx.sess.opts.cg.target_cpu.is_none() {
687        // The target has no default cpu, but none is set explicitly
688        tcx.dcx().emit_fatal(errors::CpuRequired);
689    }
690
691    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
692
693    // Run the monomorphization collector and partition the collected items into
694    // codegen units.
695    let MonoItemPartitions { codegen_units, .. } = tcx.collect_and_partition_mono_items(());
696
697    // Force all codegen_unit queries so they are already either red or green
698    // when compile_codegen_unit accesses them. We are not able to re-execute
699    // the codegen_unit query from just the DepNode, so an unknown color would
700    // lead to having to re-execute compile_codegen_unit, possibly
701    // unnecessarily.
702    if tcx.dep_graph.is_fully_enabled() {
703        for cgu in codegen_units {
704            tcx.ensure_ok().codegen_unit(cgu.name());
705        }
706    }
707
708    // Codegen an allocator shim, if necessary.
709    let allocator_module = if let Some(kind) = allocator_kind_for_codegen(tcx) {
710        let llmod_id =
711            cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
712
713        tcx.sess.time("write_allocator_module", || {
714            let module =
715                backend.codegen_allocator(tcx, &llmod_id, &allocator_shim_contents(tcx, kind));
716            Some(ModuleCodegen::new_allocator(llmod_id, module))
717        })
718    } else {
719        None
720    };
721
722    let ongoing_codegen = start_async_codegen(backend.clone(), tcx, target_cpu, allocator_module);
723
724    // For better throughput during parallel processing by LLVM, we used to sort
725    // CGUs largest to smallest. This would lead to better thread utilization
726    // by, for example, preventing a large CGU from being processed last and
727    // having only one LLVM thread working while the rest remained idle.
728    //
729    // However, this strategy would lead to high memory usage, as it meant the
730    // LLVM-IR for all of the largest CGUs would be resident in memory at once.
731    //
732    // Instead, we can compromise by ordering CGUs such that the largest and
733    // smallest are first, second largest and smallest are next, etc. If there
734    // are large size variations, this can reduce memory usage significantly.
735    let codegen_units: Vec<_> = {
736        let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
737        sorted_cgus.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
738
739        let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
740        first_half.iter().interleave(second_half.iter().rev()).copied().collect()
741    };
742
743    // Calculate the CGU reuse
744    let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
745        codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, cgu)).collect::<Vec<_>>()
746    });
747
748    crate::assert_module_sources::assert_module_sources(tcx, &|cgu_reuse_tracker| {
749        for (i, cgu) in codegen_units.iter().enumerate() {
750            let cgu_reuse = cgu_reuse[i];
751            cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
752        }
753    });
754
755    let mut total_codegen_time = Duration::new(0, 0);
756    let start_rss = tcx.sess.opts.unstable_opts.time_passes.then(|| get_resident_set_size());
757
758    // The non-parallel compiler can only translate codegen units to LLVM IR
759    // on a single thread, leading to a staircase effect where the N LLVM
760    // threads have to wait on the single codegen threads to generate work
761    // for them. The parallel compiler does not have this restriction, so
762    // we can pre-load the LLVM queue in parallel before handing off
763    // coordination to the OnGoingCodegen scheduler.
764    //
765    // This likely is a temporary measure. Once we don't have to support the
766    // non-parallel compiler anymore, we can compile CGUs end-to-end in
767    // parallel and get rid of the complicated scheduling logic.
768    let mut pre_compiled_cgus = if tcx.sess.threads() > 1 {
769        tcx.sess.time("compile_first_CGU_batch", || {
770            // Try to find one CGU to compile per thread.
771            let cgus: Vec<_> = cgu_reuse
772                .iter()
773                .enumerate()
774                .filter(|&(_, reuse)| reuse == &CguReuse::No)
775                .take(tcx.sess.threads())
776                .collect();
777
778            // Compile the found CGUs in parallel.
779            let start_time = Instant::now();
780
781            let pre_compiled_cgus = par_map(cgus, |(i, _)| {
782                let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
783                (i, IntoDynSyncSend(module))
784            });
785
786            total_codegen_time += start_time.elapsed();
787
788            pre_compiled_cgus
789        })
790    } else {
791        FxHashMap::default()
792    };
793
794    for (i, cgu) in codegen_units.iter().enumerate() {
795        ongoing_codegen.wait_for_signal_to_codegen_item();
796        ongoing_codegen.check_for_errors(tcx.sess);
797
798        let cgu_reuse = cgu_reuse[i];
799
800        match cgu_reuse {
801            CguReuse::No => {
802                let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
803                    cgu.0
804                } else {
805                    let start_time = Instant::now();
806                    let module = backend.compile_codegen_unit(tcx, cgu.name());
807                    total_codegen_time += start_time.elapsed();
808                    module
809                };
810                // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
811                // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
812                // compilation hang on post-monomorphization errors.
813                tcx.dcx().abort_if_errors();
814
815                submit_codegened_module_to_llvm(&ongoing_codegen.coordinator, module, cost);
816            }
817            CguReuse::PreLto => {
818                submit_pre_lto_module_to_llvm(
819                    tcx,
820                    &ongoing_codegen.coordinator,
821                    CachedModuleCodegen {
822                        name: cgu.name().to_string(),
823                        source: cgu.previous_work_product(tcx),
824                    },
825                );
826            }
827            CguReuse::PostLto => {
828                submit_post_lto_module_to_llvm(
829                    &ongoing_codegen.coordinator,
830                    CachedModuleCodegen {
831                        name: cgu.name().to_string(),
832                        source: cgu.previous_work_product(tcx),
833                    },
834                );
835            }
836        }
837    }
838
839    ongoing_codegen.codegen_finished(tcx);
840
841    // Since the main thread is sometimes blocked during codegen, we keep track
842    // -Ztime-passes output manually.
843    if tcx.sess.opts.unstable_opts.time_passes {
844        let end_rss = get_resident_set_size();
845
846        print_time_passes_entry(
847            "codegen_to_LLVM_IR",
848            total_codegen_time,
849            start_rss.unwrap(),
850            end_rss,
851            tcx.sess.opts.unstable_opts.time_passes_format,
852        );
853    }
854
855    ongoing_codegen.check_for_errors(tcx.sess);
856    ongoing_codegen
857}
858
859/// Returns whether a call from the current crate to the [`Instance`] would produce a call
860/// from `compiler_builtins` to a symbol the linker must resolve.
861///
862/// Such calls from `compiler_bultins` are effectively impossible for the linker to handle. Some
863/// linkers will optimize such that dead calls to unresolved symbols are not an error, but this is
864/// not guaranteed. So we used this function in codegen backends to ensure we do not generate any
865/// unlinkable calls.
866///
867/// Note that calls to LLVM intrinsics are uniquely okay because they won't make it to the linker.
868pub fn is_call_from_compiler_builtins_to_upstream_monomorphization<'tcx>(
869    tcx: TyCtxt<'tcx>,
870    instance: Instance<'tcx>,
871) -> bool {
872    fn is_llvm_intrinsic(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
873        if let Some(name) = tcx.codegen_fn_attrs(def_id).symbol_name {
874            name.as_str().starts_with("llvm.")
875        } else {
876            false
877        }
878    }
879
880    let def_id = instance.def_id();
881    !def_id.is_local()
882        && tcx.is_compiler_builtins(LOCAL_CRATE)
883        && !is_llvm_intrinsic(tcx, def_id)
884        && !tcx.should_codegen_locally(instance)
885}
886
887impl CrateInfo {
888    pub fn new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo {
889        let crate_types = tcx.crate_types().to_vec();
890        let exported_symbols = crate_types
891            .iter()
892            .map(|&c| (c, crate::back::linker::exported_symbols(tcx, c)))
893            .collect();
894        let linked_symbols =
895            crate_types.iter().map(|&c| (c, crate::back::linker::linked_symbols(tcx, c))).collect();
896        let local_crate_name = tcx.crate_name(LOCAL_CRATE);
897        let windows_subsystem = {
    'done:
        {
        for i in tcx.get_all_attrs(CRATE_DEF_ID) {
            let i: &rustc_hir::Attribute = i;
            match i {
                rustc_hir::Attribute::Parsed(AttributeKind::WindowsSubsystem(kind,
                    _)) => {
                    break 'done Some(*kind);
                }
                _ => {}
            }
        }
        None
    }
}find_attr!(tcx.get_all_attrs(CRATE_DEF_ID), AttributeKind::WindowsSubsystem(kind, _) => *kind);
898
899        // This list is used when generating the command line to pass through to
900        // system linker. The linker expects undefined symbols on the left of the
901        // command line to be defined in libraries on the right, not the other way
902        // around. For more info, see some comments in the add_used_library function
903        // below.
904        //
905        // In order to get this left-to-right dependency ordering, we use the reverse
906        // postorder of all crates putting the leaves at the rightmost positions.
907        let mut compiler_builtins = None;
908        let mut used_crates: Vec<_> = tcx
909            .postorder_cnums(())
910            .iter()
911            .rev()
912            .copied()
913            .filter(|&cnum| {
914                let link = !tcx.dep_kind(cnum).macros_only();
915                if link && tcx.is_compiler_builtins(cnum) {
916                    compiler_builtins = Some(cnum);
917                    return false;
918                }
919                link
920            })
921            .collect();
922        // `compiler_builtins` are always placed last to ensure that they're linked correctly.
923        used_crates.extend(compiler_builtins);
924
925        let crates = tcx.crates(());
926        let n_crates = crates.len();
927        let mut info = CrateInfo {
928            target_cpu,
929            target_features: tcx.global_backend_features(()).clone(),
930            crate_types,
931            exported_symbols,
932            linked_symbols,
933            local_crate_name,
934            compiler_builtins,
935            profiler_runtime: None,
936            is_no_builtins: Default::default(),
937            native_libraries: Default::default(),
938            used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
939            crate_name: UnordMap::with_capacity(n_crates),
940            used_crates,
941            used_crate_source: UnordMap::with_capacity(n_crates),
942            dependency_formats: Arc::clone(tcx.dependency_formats(())),
943            windows_subsystem,
944            natvis_debugger_visualizers: Default::default(),
945            lint_levels: CodegenLintLevels::from_tcx(tcx),
946            metadata_symbol: exported_symbols::metadata_symbol_name(tcx),
947        };
948
949        info.native_libraries.reserve(n_crates);
950
951        for &cnum in crates.iter() {
952            info.native_libraries
953                .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
954            info.crate_name.insert(cnum, tcx.crate_name(cnum));
955
956            let used_crate_source = tcx.used_crate_source(cnum);
957            info.used_crate_source.insert(cnum, Arc::clone(used_crate_source));
958            if tcx.is_profiler_runtime(cnum) {
959                info.profiler_runtime = Some(cnum);
960            }
961            if tcx.is_no_builtins(cnum) {
962                info.is_no_builtins.insert(cnum);
963            }
964        }
965
966        // Handle circular dependencies in the standard library.
967        // See comment before `add_linked_symbol_object` function for the details.
968        // If global LTO is enabled then almost everything (*) is glued into a single object file,
969        // so this logic is not necessary and can cause issues on some targets (due to weak lang
970        // item symbols being "privatized" to that object file), so we disable it.
971        // (*) Native libs, and `#[compiler_builtins]` and `#[no_builtins]` crates are not glued,
972        // and we assume that they cannot define weak lang items. This is not currently enforced
973        // by the compiler, but that's ok because all this stuff is unstable anyway.
974        let target = &tcx.sess.target;
975        if !are_upstream_rust_objects_already_included(tcx.sess) {
976            let add_prefix = match (target.is_like_windows, &target.arch) {
977                (true, Arch::X86) => |name: String, _: SymbolExportKind| ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("_{0}", name))
    })format!("_{name}"),
978                (true, Arch::Arm64EC) => {
979                    // Only functions are decorated for arm64ec.
980                    |name: String, export_kind: SymbolExportKind| match export_kind {
981                        SymbolExportKind::Text => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("#{0}", name))
    })format!("#{name}"),
982                        _ => name,
983                    }
984                }
985                _ => |name: String, _: SymbolExportKind| name,
986            };
987            let missing_weak_lang_items: FxIndexSet<(Symbol, SymbolExportKind)> = info
988                .used_crates
989                .iter()
990                .flat_map(|&cnum| tcx.missing_lang_items(cnum))
991                .filter(|l| l.is_weak())
992                .filter_map(|&l| {
993                    let name = l.link_name()?;
994                    let export_kind = match l.target() {
995                        Target::Fn => SymbolExportKind::Text,
996                        Target::Static => SymbolExportKind::Data,
997                        _ => ::rustc_middle::util::bug::bug_fmt(format_args!("Don\'t know what the export kind is for lang item of kind {0:?}",
        l.target()))bug!(
998                            "Don't know what the export kind is for lang item of kind {:?}",
999                            l.target()
1000                        ),
1001                    };
1002                    lang_items::required(tcx, l).then_some((name, export_kind))
1003                })
1004                .collect();
1005
1006            // This loop only adds new items to values of the hash map, so the order in which we
1007            // iterate over the values is not important.
1008            #[allow(rustc::potential_query_instability)]
1009            info.linked_symbols
1010                .iter_mut()
1011                .filter(|(crate_type, _)| {
1012                    !#[allow(non_exhaustive_omitted_patterns)] match crate_type {
    CrateType::Rlib | CrateType::StaticLib => true,
    _ => false,
}matches!(crate_type, CrateType::Rlib | CrateType::StaticLib)
1013                })
1014                .for_each(|(_, linked_symbols)| {
1015                    let mut symbols = missing_weak_lang_items
1016                        .iter()
1017                        .map(|(item, export_kind)| {
1018                            (
1019                                add_prefix(
1020                                    mangle_internal_symbol(tcx, item.as_str()),
1021                                    *export_kind,
1022                                ),
1023                                *export_kind,
1024                            )
1025                        })
1026                        .collect::<Vec<_>>();
1027                    symbols.sort_unstable_by(|a, b| a.0.cmp(&b.0));
1028                    linked_symbols.extend(symbols);
1029                });
1030        }
1031
1032        let embed_visualizers = tcx.crate_types().iter().any(|&crate_type| match crate_type {
1033            CrateType::Executable | CrateType::Dylib | CrateType::Cdylib | CrateType::Sdylib => {
1034                // These are crate types for which we invoke the linker and can embed
1035                // NatVis visualizers.
1036                true
1037            }
1038            CrateType::ProcMacro => {
1039                // We could embed NatVis for proc macro crates too (to improve the debugging
1040                // experience for them) but it does not seem like a good default, since
1041                // this is a rare use case and we don't want to slow down the common case.
1042                false
1043            }
1044            CrateType::StaticLib | CrateType::Rlib => {
1045                // We don't invoke the linker for these, so we don't need to collect the NatVis for
1046                // them.
1047                false
1048            }
1049        });
1050
1051        if target.is_like_msvc && embed_visualizers {
1052            info.natvis_debugger_visualizers =
1053                collect_debugger_visualizers_transitive(tcx, DebuggerVisualizerType::Natvis);
1054        }
1055
1056        info
1057    }
1058}
1059
1060pub(crate) fn provide(providers: &mut Providers) {
1061    providers.backend_optimization_level = |tcx, cratenum| {
1062        let for_speed = match tcx.sess.opts.optimize {
1063            // If globally no optimisation is done, #[optimize] has no effect.
1064            //
1065            // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
1066            // pass manager and it is likely that some module-wide passes (such as inliner or
1067            // cross-function constant propagation) would ignore the `optnone` annotation we put
1068            // on the functions, thus necessarily involving these functions into optimisations.
1069            config::OptLevel::No => return config::OptLevel::No,
1070            // If globally optimise-speed is already specified, just use that level.
1071            config::OptLevel::Less => return config::OptLevel::Less,
1072            config::OptLevel::More => return config::OptLevel::More,
1073            config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
1074            // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
1075            // are present).
1076            config::OptLevel::Size => config::OptLevel::More,
1077            config::OptLevel::SizeMin => config::OptLevel::More,
1078        };
1079
1080        let defids = tcx.collect_and_partition_mono_items(cratenum).all_mono_items;
1081
1082        let any_for_speed = defids.items().any(|id| {
1083            let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
1084            #[allow(non_exhaustive_omitted_patterns)] match optimize {
    OptimizeAttr::Speed => true,
    _ => false,
}matches!(optimize, OptimizeAttr::Speed)
1085        });
1086
1087        if any_for_speed {
1088            return for_speed;
1089        }
1090
1091        tcx.sess.opts.optimize
1092    };
1093}
1094
1095pub fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
1096    if !tcx.dep_graph.is_fully_enabled() {
1097        return CguReuse::No;
1098    }
1099
1100    let work_product_id = &cgu.work_product_id();
1101    if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
1102        // We don't have anything cached for this CGU. This can happen
1103        // if the CGU did not exist in the previous session.
1104        return CguReuse::No;
1105    }
1106
1107    // Try to mark the CGU as green. If it we can do so, it means that nothing
1108    // affecting the LLVM module has changed and we can re-use a cached version.
1109    // If we compile with any kind of LTO, this means we can re-use the bitcode
1110    // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
1111    // know that later). If we are not doing LTO, there is only one optimized
1112    // version of each module, so we re-use that.
1113    let dep_node = cgu.codegen_dep_node(tcx);
1114    tcx.dep_graph.assert_dep_node_not_yet_allocated_in_current_session(&dep_node, || {
1115        ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("CompileCodegenUnit dep-node for CGU `{0}` already exists before marking.",
                cgu.name()))
    })format!(
1116            "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
1117            cgu.name()
1118        )
1119    });
1120
1121    if tcx.try_mark_green(&dep_node) {
1122        // We can re-use either the pre- or the post-thinlto state. If no LTO is
1123        // being performed then we can use post-LTO artifacts, otherwise we must
1124        // reuse pre-LTO artifacts
1125        match compute_per_cgu_lto_type(
1126            &tcx.sess.lto(),
1127            tcx.sess.opts.cg.linker_plugin_lto.enabled(),
1128            tcx.crate_types(),
1129        ) {
1130            ComputedLtoType::No => CguReuse::PostLto,
1131            _ => CguReuse::PreLto,
1132        }
1133    } else {
1134        CguReuse::No
1135    }
1136}