rustc_codegen_ssa/
base.rs

1use std::cmp;
2use std::collections::BTreeSet;
3use std::sync::Arc;
4use std::time::{Duration, Instant};
5
6use itertools::Itertools;
7use rustc_abi::FIRST_VARIANT;
8use rustc_ast as ast;
9use rustc_ast::expand::allocator::{
10    ALLOC_ERROR_HANDLER, ALLOCATOR_METHODS, AllocatorKind, AllocatorMethod, AllocatorTy,
11};
12use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
13use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
14use rustc_data_structures::sync::{IntoDynSyncSend, par_map};
15use rustc_data_structures::unord::UnordMap;
16use rustc_hir::attrs::{DebuggerVisualizerType, OptimizeAttr};
17use rustc_hir::def_id::{DefId, LOCAL_CRATE};
18use rustc_hir::lang_items::LangItem;
19use rustc_hir::{ItemId, Target};
20use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
21use rustc_middle::middle::debugger_visualizer::DebuggerVisualizerFile;
22use rustc_middle::middle::dependency_format::Dependencies;
23use rustc_middle::middle::exported_symbols::{self, SymbolExportKind};
24use rustc_middle::middle::lang_items;
25use rustc_middle::mir::BinOp;
26use rustc_middle::mir::interpret::ErrorHandled;
27use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem, MonoItemPartitions};
28use rustc_middle::query::Providers;
29use rustc_middle::ty::layout::{HasTyCtxt, HasTypingEnv, LayoutOf, TyAndLayout};
30use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
31use rustc_middle::{bug, span_bug};
32use rustc_session::Session;
33use rustc_session::config::{self, CrateType, EntryFnType};
34use rustc_span::{DUMMY_SP, Symbol, sym};
35use rustc_symbol_mangling::mangle_internal_symbol;
36use rustc_target::spec::Arch;
37use rustc_trait_selection::infer::{BoundRegionConversionTime, TyCtxtInferExt};
38use rustc_trait_selection::traits::{ObligationCause, ObligationCtxt};
39use tracing::{debug, info};
40
41use crate::assert_module_sources::CguReuse;
42use crate::back::link::are_upstream_rust_objects_already_included;
43use crate::back::write::{
44    ComputedLtoType, OngoingCodegen, compute_per_cgu_lto_type, start_async_codegen,
45    submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm,
46};
47use crate::common::{self, IntPredicate, RealPredicate, TypeKind};
48use crate::meth::load_vtable;
49use crate::mir::operand::OperandValue;
50use crate::mir::place::PlaceRef;
51use crate::traits::*;
52use crate::{
53    CachedModuleCodegen, CodegenLintLevels, CrateInfo, ModuleCodegen, ModuleKind, errors, meth, mir,
54};
55
56pub(crate) fn bin_op_to_icmp_predicate(op: BinOp, signed: bool) -> IntPredicate {
57    match (op, signed) {
58        (BinOp::Eq, _) => IntPredicate::IntEQ,
59        (BinOp::Ne, _) => IntPredicate::IntNE,
60        (BinOp::Lt, true) => IntPredicate::IntSLT,
61        (BinOp::Lt, false) => IntPredicate::IntULT,
62        (BinOp::Le, true) => IntPredicate::IntSLE,
63        (BinOp::Le, false) => IntPredicate::IntULE,
64        (BinOp::Gt, true) => IntPredicate::IntSGT,
65        (BinOp::Gt, false) => IntPredicate::IntUGT,
66        (BinOp::Ge, true) => IntPredicate::IntSGE,
67        (BinOp::Ge, false) => IntPredicate::IntUGE,
68        op => bug!("bin_op_to_icmp_predicate: expected comparison operator, found {:?}", op),
69    }
70}
71
72pub(crate) fn bin_op_to_fcmp_predicate(op: BinOp) -> RealPredicate {
73    match op {
74        BinOp::Eq => RealPredicate::RealOEQ,
75        BinOp::Ne => RealPredicate::RealUNE,
76        BinOp::Lt => RealPredicate::RealOLT,
77        BinOp::Le => RealPredicate::RealOLE,
78        BinOp::Gt => RealPredicate::RealOGT,
79        BinOp::Ge => RealPredicate::RealOGE,
80        op => bug!("bin_op_to_fcmp_predicate: expected comparison operator, found {:?}", op),
81    }
82}
83
84pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
85    bx: &mut Bx,
86    lhs: Bx::Value,
87    rhs: Bx::Value,
88    t: Ty<'tcx>,
89    ret_ty: Bx::Type,
90    op: BinOp,
91) -> Bx::Value {
92    let signed = match t.kind() {
93        ty::Float(_) => {
94            let cmp = bin_op_to_fcmp_predicate(op);
95            let cmp = bx.fcmp(cmp, lhs, rhs);
96            return bx.sext(cmp, ret_ty);
97        }
98        ty::Uint(_) => false,
99        ty::Int(_) => true,
100        _ => bug!("compare_simd_types: invalid SIMD type"),
101    };
102
103    let cmp = bin_op_to_icmp_predicate(op, signed);
104    let cmp = bx.icmp(cmp, lhs, rhs);
105    // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
106    // to get the correctly sized type. This will compile to a single instruction
107    // once the IR is converted to assembly if the SIMD instruction is supported
108    // by the target architecture.
109    bx.sext(cmp, ret_ty)
110}
111
112/// Codegen takes advantage of the additional assumption, where if the
113/// principal trait def id of what's being casted doesn't change,
114/// then we don't need to adjust the vtable at all. This
115/// corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
116/// requires that `A = B`; we don't allow *upcasting* objects
117/// between the same trait with different args. If we, for
118/// some reason, were to relax the `Unsize` trait, it could become
119/// unsound, so let's validate here that the trait refs are subtypes.
120pub fn validate_trivial_unsize<'tcx>(
121    tcx: TyCtxt<'tcx>,
122    source_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
123    target_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
124) -> bool {
125    match (source_data.principal(), target_data.principal()) {
126        (Some(hr_source_principal), Some(hr_target_principal)) => {
127            let (infcx, param_env) =
128                tcx.infer_ctxt().build_with_typing_env(ty::TypingEnv::fully_monomorphized());
129            let universe = infcx.universe();
130            let ocx = ObligationCtxt::new(&infcx);
131            infcx.enter_forall(hr_target_principal, |target_principal| {
132                let source_principal = infcx.instantiate_binder_with_fresh_vars(
133                    DUMMY_SP,
134                    BoundRegionConversionTime::HigherRankedType,
135                    hr_source_principal,
136                );
137                let Ok(()) = ocx.eq(
138                    &ObligationCause::dummy(),
139                    param_env,
140                    target_principal,
141                    source_principal,
142                ) else {
143                    return false;
144                };
145                if !ocx.evaluate_obligations_error_on_ambiguity().is_empty() {
146                    return false;
147                }
148                infcx.leak_check(universe, None).is_ok()
149            })
150        }
151        (_, None) => true,
152        _ => false,
153    }
154}
155
156/// Retrieves the information we are losing (making dynamic) in an unsizing
157/// adjustment.
158///
159/// The `old_info` argument is a bit odd. It is intended for use in an upcast,
160/// where the new vtable for an object will be derived from the old one.
161fn unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
162    bx: &mut Bx,
163    source: Ty<'tcx>,
164    target: Ty<'tcx>,
165    old_info: Option<Bx::Value>,
166) -> Bx::Value {
167    let cx = bx.cx();
168    let (source, target) =
169        cx.tcx().struct_lockstep_tails_for_codegen(source, target, bx.typing_env());
170    match (source.kind(), target.kind()) {
171        (&ty::Array(_, len), &ty::Slice(_)) => cx.const_usize(
172            len.try_to_target_usize(cx.tcx()).expect("expected monomorphic const in codegen"),
173        ),
174        (&ty::Dynamic(data_a, _), &ty::Dynamic(data_b, _)) => {
175            let old_info =
176                old_info.expect("unsized_info: missing old info for trait upcasting coercion");
177            let b_principal_def_id = data_b.principal_def_id();
178            if data_a.principal_def_id() == b_principal_def_id || b_principal_def_id.is_none() {
179                // Codegen takes advantage of the additional assumption, where if the
180                // principal trait def id of what's being casted doesn't change,
181                // then we don't need to adjust the vtable at all. This
182                // corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
183                // requires that `A = B`; we don't allow *upcasting* objects
184                // between the same trait with different args. If we, for
185                // some reason, were to relax the `Unsize` trait, it could become
186                // unsound, so let's assert here that the trait refs are *equal*.
187                debug_assert!(
188                    validate_trivial_unsize(cx.tcx(), data_a, data_b),
189                    "NOP unsize vtable changed principal trait ref: {data_a} -> {data_b}"
190                );
191
192                // A NOP cast that doesn't actually change anything, let's avoid any
193                // unnecessary work. This relies on the assumption that if the principal
194                // traits are equal, then the associated type bounds (`dyn Trait<Assoc=T>`)
195                // are also equal, which is ensured by the fact that normalization is
196                // a function and we do not allow overlapping impls.
197                return old_info;
198            }
199
200            // trait upcasting coercion
201
202            let vptr_entry_idx = cx.tcx().supertrait_vtable_slot((source, target));
203
204            if let Some(entry_idx) = vptr_entry_idx {
205                let ptr_size = bx.data_layout().pointer_size();
206                let vtable_byte_offset = u64::try_from(entry_idx).unwrap() * ptr_size.bytes();
207                load_vtable(bx, old_info, bx.type_ptr(), vtable_byte_offset, source, true)
208            } else {
209                old_info
210            }
211        }
212        (_, ty::Dynamic(data, _)) => meth::get_vtable(
213            cx,
214            source,
215            data.principal()
216                .map(|principal| bx.tcx().instantiate_bound_regions_with_erased(principal)),
217        ),
218        _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
219    }
220}
221
222/// Coerces `src` to `dst_ty`. `src_ty` must be a pointer.
223pub(crate) fn unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
224    bx: &mut Bx,
225    src: Bx::Value,
226    src_ty: Ty<'tcx>,
227    dst_ty: Ty<'tcx>,
228    old_info: Option<Bx::Value>,
229) -> (Bx::Value, Bx::Value) {
230    debug!("unsize_ptr: {:?} => {:?}", src_ty, dst_ty);
231    match (src_ty.kind(), dst_ty.kind()) {
232        (&ty::Pat(a, _), &ty::Pat(b, _)) => unsize_ptr(bx, src, a, b, old_info),
233        (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(b, _))
234        | (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => {
235            assert_eq!(bx.cx().type_is_sized(a), old_info.is_none());
236            (src, unsized_info(bx, a, b, old_info))
237        }
238        (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
239            assert_eq!(def_a, def_b); // implies same number of fields
240            let src_layout = bx.cx().layout_of(src_ty);
241            let dst_layout = bx.cx().layout_of(dst_ty);
242            if src_ty == dst_ty {
243                return (src, old_info.unwrap());
244            }
245            let mut result = None;
246            for i in 0..src_layout.fields.count() {
247                let src_f = src_layout.field(bx.cx(), i);
248                if src_f.is_1zst() {
249                    // We are looking for the one non-1-ZST field; this is not it.
250                    continue;
251                }
252
253                assert_eq!(src_layout.fields.offset(i).bytes(), 0);
254                assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
255                assert_eq!(src_layout.size, src_f.size);
256
257                let dst_f = dst_layout.field(bx.cx(), i);
258                assert_ne!(src_f.ty, dst_f.ty);
259                assert_eq!(result, None);
260                result = Some(unsize_ptr(bx, src, src_f.ty, dst_f.ty, old_info));
261            }
262            result.unwrap()
263        }
264        _ => bug!("unsize_ptr: called on bad types"),
265    }
266}
267
268/// Coerces `src`, which is a reference to a value of type `src_ty`,
269/// to a value of type `dst_ty`, and stores the result in `dst`.
270pub(crate) fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
271    bx: &mut Bx,
272    src: PlaceRef<'tcx, Bx::Value>,
273    dst: PlaceRef<'tcx, Bx::Value>,
274) {
275    let src_ty = src.layout.ty;
276    let dst_ty = dst.layout.ty;
277    match (src_ty.kind(), dst_ty.kind()) {
278        (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
279            let (base, info) = match bx.load_operand(src).val {
280                OperandValue::Pair(base, info) => unsize_ptr(bx, base, src_ty, dst_ty, Some(info)),
281                OperandValue::Immediate(base) => unsize_ptr(bx, base, src_ty, dst_ty, None),
282                OperandValue::Ref(..) | OperandValue::ZeroSized => bug!(),
283            };
284            OperandValue::Pair(base, info).store(bx, dst);
285        }
286
287        (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
288            assert_eq!(def_a, def_b); // implies same number of fields
289
290            for i in def_a.variant(FIRST_VARIANT).fields.indices() {
291                let src_f = src.project_field(bx, i.as_usize());
292                let dst_f = dst.project_field(bx, i.as_usize());
293
294                if dst_f.layout.is_zst() {
295                    // No data here, nothing to copy/coerce.
296                    continue;
297                }
298
299                if src_f.layout.ty == dst_f.layout.ty {
300                    bx.typed_place_copy(dst_f.val, src_f.val, src_f.layout);
301                } else {
302                    coerce_unsized_into(bx, src_f, dst_f);
303                }
304            }
305        }
306        _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
307    }
308}
309
310/// Returns `rhs` sufficiently masked, truncated, and/or extended so that it can be used to shift
311/// `lhs`: it has the same size as `lhs`, and the value, when interpreted unsigned (no matter its
312/// type), will not exceed the size of `lhs`.
313///
314/// Shifts in MIR are all allowed to have mismatched LHS & RHS types, and signed RHS.
315/// The shift methods in `BuilderMethods`, however, are fully homogeneous
316/// (both parameters and the return type are all the same size) and assume an unsigned RHS.
317///
318/// If `is_unchecked` is false, this masks the RHS to ensure it stays in-bounds,
319/// as the `BuilderMethods` shifts are UB for out-of-bounds shift amounts.
320/// For 32- and 64-bit types, this matches the semantics
321/// of Java. (See related discussion on #1877 and #10183.)
322///
323/// If `is_unchecked` is true, this does no masking, and adds sufficient `assume`
324/// calls or operation flags to preserve as much freedom to optimize as possible.
325pub(crate) fn build_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
326    bx: &mut Bx,
327    lhs: Bx::Value,
328    mut rhs: Bx::Value,
329    is_unchecked: bool,
330) -> Bx::Value {
331    // Shifts may have any size int on the rhs
332    let mut rhs_llty = bx.cx().val_ty(rhs);
333    let mut lhs_llty = bx.cx().val_ty(lhs);
334
335    let mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, false);
336    if !is_unchecked {
337        rhs = bx.and(rhs, mask);
338    }
339
340    if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
341        rhs_llty = bx.cx().element_type(rhs_llty)
342    }
343    if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
344        lhs_llty = bx.cx().element_type(lhs_llty)
345    }
346    let rhs_sz = bx.cx().int_width(rhs_llty);
347    let lhs_sz = bx.cx().int_width(lhs_llty);
348    if lhs_sz < rhs_sz {
349        if is_unchecked { bx.unchecked_utrunc(rhs, lhs_llty) } else { bx.trunc(rhs, lhs_llty) }
350    } else if lhs_sz > rhs_sz {
351        // We zero-extend even if the RHS is signed. So e.g. `(x: i32) << -1i8` will zero-extend the
352        // RHS to `255i32`. But then we mask the shift amount to be within the size of the LHS
353        // anyway so the result is `31` as it should be. All the extra bits introduced by zext
354        // are masked off so their value does not matter.
355        // FIXME: if we ever support 512bit integers, this will be wrong! For such large integers,
356        // the extra bits introduced by zext are *not* all masked away any more.
357        assert!(lhs_sz <= 256);
358        bx.zext(rhs, lhs_llty)
359    } else {
360        rhs
361    }
362}
363
364// Returns `true` if this session's target will use native wasm
365// exceptions. This means that the VM does the unwinding for
366// us
367pub fn wants_wasm_eh(sess: &Session) -> bool {
368    sess.target.is_like_wasm
369        && (sess.target.os != "emscripten" || sess.opts.unstable_opts.emscripten_wasm_eh)
370}
371
372/// Returns `true` if this session's target will use SEH-based unwinding.
373///
374/// This is only true for MSVC targets, and even then the 64-bit MSVC target
375/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
376/// 64-bit MinGW) instead of "full SEH".
377pub fn wants_msvc_seh(sess: &Session) -> bool {
378    sess.target.is_like_msvc
379}
380
381/// Returns `true` if this session's target requires the new exception
382/// handling LLVM IR instructions (catchpad / cleanuppad / ... instead
383/// of landingpad)
384pub(crate) fn wants_new_eh_instructions(sess: &Session) -> bool {
385    wants_wasm_eh(sess) || wants_msvc_seh(sess)
386}
387
388pub(crate) fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
389    cx: &'a Bx::CodegenCx,
390    instance: Instance<'tcx>,
391) {
392    // this is an info! to allow collecting monomorphization statistics
393    // and to allow finding the last function before LLVM aborts from
394    // release builds.
395    info!("codegen_instance({})", instance);
396
397    mir::codegen_mir::<Bx>(cx, instance);
398}
399
400pub fn codegen_global_asm<'tcx, Cx>(cx: &mut Cx, item_id: ItemId)
401where
402    Cx: LayoutOf<'tcx, LayoutOfResult = TyAndLayout<'tcx>> + AsmCodegenMethods<'tcx>,
403{
404    let item = cx.tcx().hir_item(item_id);
405    if let rustc_hir::ItemKind::GlobalAsm { asm, .. } = item.kind {
406        let operands: Vec<_> = asm
407            .operands
408            .iter()
409            .map(|(op, op_sp)| match *op {
410                rustc_hir::InlineAsmOperand::Const { ref anon_const } => {
411                    match cx.tcx().const_eval_poly(anon_const.def_id.to_def_id()) {
412                        Ok(const_value) => {
413                            let ty =
414                                cx.tcx().typeck_body(anon_const.body).node_type(anon_const.hir_id);
415                            let string = common::asm_const_to_str(
416                                cx.tcx(),
417                                *op_sp,
418                                const_value,
419                                cx.layout_of(ty),
420                            );
421                            GlobalAsmOperandRef::Const { string }
422                        }
423                        Err(ErrorHandled::Reported { .. }) => {
424                            // An error has already been reported and
425                            // compilation is guaranteed to fail if execution
426                            // hits this path. So an empty string instead of
427                            // a stringified constant value will suffice.
428                            GlobalAsmOperandRef::Const { string: String::new() }
429                        }
430                        Err(ErrorHandled::TooGeneric(_)) => {
431                            span_bug!(*op_sp, "asm const cannot be resolved; too generic")
432                        }
433                    }
434                }
435                rustc_hir::InlineAsmOperand::SymFn { expr } => {
436                    let ty = cx.tcx().typeck(item_id.owner_id).expr_ty(expr);
437                    let instance = match ty.kind() {
438                        &ty::FnDef(def_id, args) => Instance::expect_resolve(
439                            cx.tcx(),
440                            ty::TypingEnv::fully_monomorphized(),
441                            def_id,
442                            args,
443                            expr.span,
444                        ),
445                        _ => span_bug!(*op_sp, "asm sym is not a function"),
446                    };
447
448                    GlobalAsmOperandRef::SymFn { instance }
449                }
450                rustc_hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
451                    GlobalAsmOperandRef::SymStatic { def_id }
452                }
453                rustc_hir::InlineAsmOperand::In { .. }
454                | rustc_hir::InlineAsmOperand::Out { .. }
455                | rustc_hir::InlineAsmOperand::InOut { .. }
456                | rustc_hir::InlineAsmOperand::SplitInOut { .. }
457                | rustc_hir::InlineAsmOperand::Label { .. } => {
458                    span_bug!(*op_sp, "invalid operand type for global_asm!")
459                }
460            })
461            .collect();
462
463        cx.codegen_global_asm(asm.template, &operands, asm.options, asm.line_spans);
464    } else {
465        span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
466    }
467}
468
469/// Creates the `main` function which will initialize the rust runtime and call
470/// users main function.
471pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
472    cx: &'a Bx::CodegenCx,
473    cgu: &CodegenUnit<'tcx>,
474) -> Option<Bx::Function> {
475    let (main_def_id, entry_type) = cx.tcx().entry_fn(())?;
476    let main_is_local = main_def_id.is_local();
477    let instance = Instance::mono(cx.tcx(), main_def_id);
478
479    if main_is_local {
480        // We want to create the wrapper in the same codegen unit as Rust's main
481        // function.
482        if !cgu.contains_item(&MonoItem::Fn(instance)) {
483            return None;
484        }
485    } else if !cgu.is_primary() {
486        // We want to create the wrapper only when the codegen unit is the primary one
487        return None;
488    }
489
490    let main_llfn = cx.get_fn_addr(instance);
491
492    let entry_fn = create_entry_fn::<Bx>(cx, main_llfn, main_def_id, entry_type);
493    return Some(entry_fn);
494
495    fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
496        cx: &'a Bx::CodegenCx,
497        rust_main: Bx::Value,
498        rust_main_def_id: DefId,
499        entry_type: EntryFnType,
500    ) -> Bx::Function {
501        // The entry function is either `int main(void)` or `int main(int argc, char **argv)`, or
502        // `usize efi_main(void *handle, void *system_table)` depending on the target.
503        let llfty = if cx.sess().target.os.contains("uefi") {
504            cx.type_func(&[cx.type_ptr(), cx.type_ptr()], cx.type_isize())
505        } else if cx.sess().target.main_needs_argc_argv {
506            cx.type_func(&[cx.type_int(), cx.type_ptr()], cx.type_int())
507        } else {
508            cx.type_func(&[], cx.type_int())
509        };
510
511        let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).no_bound_vars().unwrap().output();
512        // Given that `main()` has no arguments,
513        // then its return type cannot have
514        // late-bound regions, since late-bound
515        // regions must appear in the argument
516        // listing.
517        let main_ret_ty = cx
518            .tcx()
519            .normalize_erasing_regions(cx.typing_env(), main_ret_ty.no_bound_vars().unwrap());
520
521        let Some(llfn) = cx.declare_c_main(llfty) else {
522            // FIXME: We should be smart and show a better diagnostic here.
523            let span = cx.tcx().def_span(rust_main_def_id);
524            cx.tcx().dcx().emit_fatal(errors::MultipleMainFunctions { span });
525        };
526
527        // `main` should respect same config for frame pointer elimination as rest of code
528        cx.set_frame_pointer_type(llfn);
529        cx.apply_target_cpu_attr(llfn);
530
531        let llbb = Bx::append_block(cx, llfn, "top");
532        let mut bx = Bx::build(cx, llbb);
533
534        bx.insert_reference_to_gdb_debug_scripts_section_global();
535
536        let isize_ty = cx.type_isize();
537        let ptr_ty = cx.type_ptr();
538        let (arg_argc, arg_argv) = get_argc_argv(&mut bx);
539
540        let EntryFnType::Main { sigpipe } = entry_type;
541        let (start_fn, start_ty, args, instance) = {
542            let start_def_id = cx.tcx().require_lang_item(LangItem::Start, DUMMY_SP);
543            let start_instance = ty::Instance::expect_resolve(
544                cx.tcx(),
545                cx.typing_env(),
546                start_def_id,
547                cx.tcx().mk_args(&[main_ret_ty.into()]),
548                DUMMY_SP,
549            );
550            let start_fn = cx.get_fn_addr(start_instance);
551
552            let i8_ty = cx.type_i8();
553            let arg_sigpipe = bx.const_u8(sigpipe);
554
555            let start_ty = cx.type_func(&[cx.val_ty(rust_main), isize_ty, ptr_ty, i8_ty], isize_ty);
556            (
557                start_fn,
558                start_ty,
559                vec![rust_main, arg_argc, arg_argv, arg_sigpipe],
560                Some(start_instance),
561            )
562        };
563
564        let result = bx.call(start_ty, None, None, start_fn, &args, None, instance);
565        if cx.sess().target.os.contains("uefi") {
566            bx.ret(result);
567        } else {
568            let cast = bx.intcast(result, cx.type_int(), true);
569            bx.ret(cast);
570        }
571
572        llfn
573    }
574}
575
576/// Obtain the `argc` and `argv` values to pass to the rust start function
577/// (i.e., the "start" lang item).
578fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(bx: &mut Bx) -> (Bx::Value, Bx::Value) {
579    if bx.cx().sess().target.os.contains("uefi") {
580        // Params for UEFI
581        let param_handle = bx.get_param(0);
582        let param_system_table = bx.get_param(1);
583        let ptr_size = bx.tcx().data_layout.pointer_size();
584        let ptr_align = bx.tcx().data_layout.pointer_align().abi;
585        let arg_argc = bx.const_int(bx.cx().type_isize(), 2);
586        let arg_argv = bx.alloca(2 * ptr_size, ptr_align);
587        bx.store(param_handle, arg_argv, ptr_align);
588        let arg_argv_el1 = bx.inbounds_ptradd(arg_argv, bx.const_usize(ptr_size.bytes()));
589        bx.store(param_system_table, arg_argv_el1, ptr_align);
590        (arg_argc, arg_argv)
591    } else if bx.cx().sess().target.main_needs_argc_argv {
592        // Params from native `main()` used as args for rust start function
593        let param_argc = bx.get_param(0);
594        let param_argv = bx.get_param(1);
595        let arg_argc = bx.intcast(param_argc, bx.cx().type_isize(), true);
596        let arg_argv = param_argv;
597        (arg_argc, arg_argv)
598    } else {
599        // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
600        let arg_argc = bx.const_int(bx.cx().type_int(), 0);
601        let arg_argv = bx.const_null(bx.cx().type_ptr());
602        (arg_argc, arg_argv)
603    }
604}
605
606/// This function returns all of the debugger visualizers specified for the
607/// current crate as well as all upstream crates transitively that match the
608/// `visualizer_type` specified.
609pub fn collect_debugger_visualizers_transitive(
610    tcx: TyCtxt<'_>,
611    visualizer_type: DebuggerVisualizerType,
612) -> BTreeSet<DebuggerVisualizerFile> {
613    tcx.debugger_visualizers(LOCAL_CRATE)
614        .iter()
615        .chain(
616            tcx.crates(())
617                .iter()
618                .filter(|&cnum| {
619                    let used_crate_source = tcx.used_crate_source(*cnum);
620                    used_crate_source.rlib.is_some() || used_crate_source.rmeta.is_some()
621                })
622                .flat_map(|&cnum| tcx.debugger_visualizers(cnum)),
623        )
624        .filter(|visualizer| visualizer.visualizer_type == visualizer_type)
625        .cloned()
626        .collect::<BTreeSet<_>>()
627}
628
629/// Decide allocator kind to codegen. If `Some(_)` this will be the same as
630/// `tcx.allocator_kind`, but it may be `None` in more cases (e.g. if using
631/// allocator definitions from a dylib dependency).
632pub fn allocator_kind_for_codegen(tcx: TyCtxt<'_>) -> Option<AllocatorKind> {
633    // If the crate doesn't have an `allocator_kind` set then there's definitely
634    // no shim to generate. Otherwise we also check our dependency graph for all
635    // our output crate types. If anything there looks like its a `Dynamic`
636    // linkage for all crate types we may link as, then it's already got an
637    // allocator shim and we'll be using that one instead. If nothing exists
638    // then it's our job to generate the allocator! If crate types disagree
639    // about whether an allocator shim is necessary or not, we generate one
640    // and let needs_allocator_shim_for_linking decide at link time whether or
641    // not to use it for any particular linker invocation.
642    let all_crate_types_any_dynamic_crate = tcx.dependency_formats(()).iter().all(|(_, list)| {
643        use rustc_middle::middle::dependency_format::Linkage;
644        list.iter().any(|&linkage| linkage == Linkage::Dynamic)
645    });
646    if all_crate_types_any_dynamic_crate { None } else { tcx.allocator_kind(()) }
647}
648
649/// Decide if this particular crate type needs an allocator shim linked in.
650/// This may return true even when allocator_kind_for_codegen returns false. In
651/// this case no allocator shim shall be linked.
652pub(crate) fn needs_allocator_shim_for_linking(
653    dependency_formats: &Dependencies,
654    crate_type: CrateType,
655) -> bool {
656    use rustc_middle::middle::dependency_format::Linkage;
657    let any_dynamic_crate =
658        dependency_formats[&crate_type].iter().any(|&linkage| linkage == Linkage::Dynamic);
659    !any_dynamic_crate
660}
661
662pub fn allocator_shim_contents(tcx: TyCtxt<'_>, kind: AllocatorKind) -> Vec<AllocatorMethod> {
663    let mut methods = Vec::new();
664
665    if kind == AllocatorKind::Default {
666        methods.extend(ALLOCATOR_METHODS.into_iter().copied());
667    }
668
669    // If the return value of allocator_kind_for_codegen is Some then
670    // alloc_error_handler_kind must also be Some.
671    if tcx.alloc_error_handler_kind(()).unwrap() == AllocatorKind::Default {
672        methods.push(AllocatorMethod {
673            name: ALLOC_ERROR_HANDLER,
674            special: None,
675            inputs: &[],
676            output: AllocatorTy::Never,
677        });
678    }
679
680    methods
681}
682
683pub fn codegen_crate<B: ExtraBackendMethods>(
684    backend: B,
685    tcx: TyCtxt<'_>,
686    target_cpu: String,
687) -> OngoingCodegen<B> {
688    if tcx.sess.target.need_explicit_cpu && tcx.sess.opts.cg.target_cpu.is_none() {
689        // The target has no default cpu, but none is set explicitly
690        tcx.dcx().emit_fatal(errors::CpuRequired);
691    }
692
693    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
694
695    // Run the monomorphization collector and partition the collected items into
696    // codegen units.
697    let MonoItemPartitions { codegen_units, .. } = tcx.collect_and_partition_mono_items(());
698
699    // Force all codegen_unit queries so they are already either red or green
700    // when compile_codegen_unit accesses them. We are not able to re-execute
701    // the codegen_unit query from just the DepNode, so an unknown color would
702    // lead to having to re-execute compile_codegen_unit, possibly
703    // unnecessarily.
704    if tcx.dep_graph.is_fully_enabled() {
705        for cgu in codegen_units {
706            tcx.ensure_ok().codegen_unit(cgu.name());
707        }
708    }
709
710    // Codegen an allocator shim, if necessary.
711    let allocator_module = if let Some(kind) = allocator_kind_for_codegen(tcx) {
712        let llmod_id =
713            cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
714
715        tcx.sess.time("write_allocator_module", || {
716            let module =
717                backend.codegen_allocator(tcx, &llmod_id, &allocator_shim_contents(tcx, kind));
718            Some(ModuleCodegen::new_allocator(llmod_id, module))
719        })
720    } else {
721        None
722    };
723
724    let ongoing_codegen = start_async_codegen(backend.clone(), tcx, target_cpu, allocator_module);
725
726    // For better throughput during parallel processing by LLVM, we used to sort
727    // CGUs largest to smallest. This would lead to better thread utilization
728    // by, for example, preventing a large CGU from being processed last and
729    // having only one LLVM thread working while the rest remained idle.
730    //
731    // However, this strategy would lead to high memory usage, as it meant the
732    // LLVM-IR for all of the largest CGUs would be resident in memory at once.
733    //
734    // Instead, we can compromise by ordering CGUs such that the largest and
735    // smallest are first, second largest and smallest are next, etc. If there
736    // are large size variations, this can reduce memory usage significantly.
737    let codegen_units: Vec<_> = {
738        let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
739        sorted_cgus.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
740
741        let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
742        first_half.iter().interleave(second_half.iter().rev()).copied().collect()
743    };
744
745    // Calculate the CGU reuse
746    let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
747        codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, cgu)).collect::<Vec<_>>()
748    });
749
750    crate::assert_module_sources::assert_module_sources(tcx, &|cgu_reuse_tracker| {
751        for (i, cgu) in codegen_units.iter().enumerate() {
752            let cgu_reuse = cgu_reuse[i];
753            cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
754        }
755    });
756
757    let mut total_codegen_time = Duration::new(0, 0);
758    let start_rss = tcx.sess.opts.unstable_opts.time_passes.then(|| get_resident_set_size());
759
760    // The non-parallel compiler can only translate codegen units to LLVM IR
761    // on a single thread, leading to a staircase effect where the N LLVM
762    // threads have to wait on the single codegen threads to generate work
763    // for them. The parallel compiler does not have this restriction, so
764    // we can pre-load the LLVM queue in parallel before handing off
765    // coordination to the OnGoingCodegen scheduler.
766    //
767    // This likely is a temporary measure. Once we don't have to support the
768    // non-parallel compiler anymore, we can compile CGUs end-to-end in
769    // parallel and get rid of the complicated scheduling logic.
770    let mut pre_compiled_cgus = if tcx.sess.threads() > 1 {
771        tcx.sess.time("compile_first_CGU_batch", || {
772            // Try to find one CGU to compile per thread.
773            let cgus: Vec<_> = cgu_reuse
774                .iter()
775                .enumerate()
776                .filter(|&(_, reuse)| reuse == &CguReuse::No)
777                .take(tcx.sess.threads())
778                .collect();
779
780            // Compile the found CGUs in parallel.
781            let start_time = Instant::now();
782
783            let pre_compiled_cgus = par_map(cgus, |(i, _)| {
784                let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
785                (i, IntoDynSyncSend(module))
786            });
787
788            total_codegen_time += start_time.elapsed();
789
790            pre_compiled_cgus
791        })
792    } else {
793        FxHashMap::default()
794    };
795
796    for (i, cgu) in codegen_units.iter().enumerate() {
797        ongoing_codegen.wait_for_signal_to_codegen_item();
798        ongoing_codegen.check_for_errors(tcx.sess);
799
800        let cgu_reuse = cgu_reuse[i];
801
802        match cgu_reuse {
803            CguReuse::No => {
804                let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
805                    cgu.0
806                } else {
807                    let start_time = Instant::now();
808                    let module = backend.compile_codegen_unit(tcx, cgu.name());
809                    total_codegen_time += start_time.elapsed();
810                    module
811                };
812                // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
813                // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
814                // compilation hang on post-monomorphization errors.
815                tcx.dcx().abort_if_errors();
816
817                submit_codegened_module_to_llvm(&ongoing_codegen.coordinator, module, cost);
818            }
819            CguReuse::PreLto => {
820                submit_pre_lto_module_to_llvm(
821                    tcx,
822                    &ongoing_codegen.coordinator,
823                    CachedModuleCodegen {
824                        name: cgu.name().to_string(),
825                        source: cgu.previous_work_product(tcx),
826                    },
827                );
828            }
829            CguReuse::PostLto => {
830                submit_post_lto_module_to_llvm(
831                    &ongoing_codegen.coordinator,
832                    CachedModuleCodegen {
833                        name: cgu.name().to_string(),
834                        source: cgu.previous_work_product(tcx),
835                    },
836                );
837            }
838        }
839    }
840
841    ongoing_codegen.codegen_finished(tcx);
842
843    // Since the main thread is sometimes blocked during codegen, we keep track
844    // -Ztime-passes output manually.
845    if tcx.sess.opts.unstable_opts.time_passes {
846        let end_rss = get_resident_set_size();
847
848        print_time_passes_entry(
849            "codegen_to_LLVM_IR",
850            total_codegen_time,
851            start_rss.unwrap(),
852            end_rss,
853            tcx.sess.opts.unstable_opts.time_passes_format,
854        );
855    }
856
857    ongoing_codegen.check_for_errors(tcx.sess);
858    ongoing_codegen
859}
860
861/// Returns whether a call from the current crate to the [`Instance`] would produce a call
862/// from `compiler_builtins` to a symbol the linker must resolve.
863///
864/// Such calls from `compiler_bultins` are effectively impossible for the linker to handle. Some
865/// linkers will optimize such that dead calls to unresolved symbols are not an error, but this is
866/// not guaranteed. So we used this function in codegen backends to ensure we do not generate any
867/// unlinkable calls.
868///
869/// Note that calls to LLVM intrinsics are uniquely okay because they won't make it to the linker.
870pub fn is_call_from_compiler_builtins_to_upstream_monomorphization<'tcx>(
871    tcx: TyCtxt<'tcx>,
872    instance: Instance<'tcx>,
873) -> bool {
874    fn is_llvm_intrinsic(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
875        if let Some(name) = tcx.codegen_fn_attrs(def_id).symbol_name {
876            name.as_str().starts_with("llvm.")
877        } else {
878            false
879        }
880    }
881
882    let def_id = instance.def_id();
883    !def_id.is_local()
884        && tcx.is_compiler_builtins(LOCAL_CRATE)
885        && !is_llvm_intrinsic(tcx, def_id)
886        && !tcx.should_codegen_locally(instance)
887}
888
889impl CrateInfo {
890    pub fn new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo {
891        let crate_types = tcx.crate_types().to_vec();
892        let exported_symbols = crate_types
893            .iter()
894            .map(|&c| (c, crate::back::linker::exported_symbols(tcx, c)))
895            .collect();
896        let linked_symbols =
897            crate_types.iter().map(|&c| (c, crate::back::linker::linked_symbols(tcx, c))).collect();
898        let local_crate_name = tcx.crate_name(LOCAL_CRATE);
899        let crate_attrs = tcx.hir_attrs(rustc_hir::CRATE_HIR_ID);
900        let subsystem =
901            ast::attr::first_attr_value_str_by_name(crate_attrs, sym::windows_subsystem);
902        let windows_subsystem = subsystem.map(|subsystem| {
903            if subsystem != sym::windows && subsystem != sym::console {
904                tcx.dcx().emit_fatal(errors::InvalidWindowsSubsystem { subsystem });
905            }
906            subsystem.to_string()
907        });
908
909        // This list is used when generating the command line to pass through to
910        // system linker. The linker expects undefined symbols on the left of the
911        // command line to be defined in libraries on the right, not the other way
912        // around. For more info, see some comments in the add_used_library function
913        // below.
914        //
915        // In order to get this left-to-right dependency ordering, we use the reverse
916        // postorder of all crates putting the leaves at the rightmost positions.
917        let mut compiler_builtins = None;
918        let mut used_crates: Vec<_> = tcx
919            .postorder_cnums(())
920            .iter()
921            .rev()
922            .copied()
923            .filter(|&cnum| {
924                let link = !tcx.dep_kind(cnum).macros_only();
925                if link && tcx.is_compiler_builtins(cnum) {
926                    compiler_builtins = Some(cnum);
927                    return false;
928                }
929                link
930            })
931            .collect();
932        // `compiler_builtins` are always placed last to ensure that they're linked correctly.
933        used_crates.extend(compiler_builtins);
934
935        let crates = tcx.crates(());
936        let n_crates = crates.len();
937        let mut info = CrateInfo {
938            target_cpu,
939            target_features: tcx.global_backend_features(()).clone(),
940            crate_types,
941            exported_symbols,
942            linked_symbols,
943            local_crate_name,
944            compiler_builtins,
945            profiler_runtime: None,
946            is_no_builtins: Default::default(),
947            native_libraries: Default::default(),
948            used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
949            crate_name: UnordMap::with_capacity(n_crates),
950            used_crates,
951            used_crate_source: UnordMap::with_capacity(n_crates),
952            dependency_formats: Arc::clone(tcx.dependency_formats(())),
953            windows_subsystem,
954            natvis_debugger_visualizers: Default::default(),
955            lint_levels: CodegenLintLevels::from_tcx(tcx),
956            metadata_symbol: exported_symbols::metadata_symbol_name(tcx),
957        };
958
959        info.native_libraries.reserve(n_crates);
960
961        for &cnum in crates.iter() {
962            info.native_libraries
963                .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
964            info.crate_name.insert(cnum, tcx.crate_name(cnum));
965
966            let used_crate_source = tcx.used_crate_source(cnum);
967            info.used_crate_source.insert(cnum, Arc::clone(used_crate_source));
968            if tcx.is_profiler_runtime(cnum) {
969                info.profiler_runtime = Some(cnum);
970            }
971            if tcx.is_no_builtins(cnum) {
972                info.is_no_builtins.insert(cnum);
973            }
974        }
975
976        // Handle circular dependencies in the standard library.
977        // See comment before `add_linked_symbol_object` function for the details.
978        // If global LTO is enabled then almost everything (*) is glued into a single object file,
979        // so this logic is not necessary and can cause issues on some targets (due to weak lang
980        // item symbols being "privatized" to that object file), so we disable it.
981        // (*) Native libs, and `#[compiler_builtins]` and `#[no_builtins]` crates are not glued,
982        // and we assume that they cannot define weak lang items. This is not currently enforced
983        // by the compiler, but that's ok because all this stuff is unstable anyway.
984        let target = &tcx.sess.target;
985        if !are_upstream_rust_objects_already_included(tcx.sess) {
986            let add_prefix = match (target.is_like_windows, &target.arch) {
987                (true, Arch::X86) => |name: String, _: SymbolExportKind| format!("_{name}"),
988                (true, Arch::Arm64EC) => {
989                    // Only functions are decorated for arm64ec.
990                    |name: String, export_kind: SymbolExportKind| match export_kind {
991                        SymbolExportKind::Text => format!("#{name}"),
992                        _ => name,
993                    }
994                }
995                _ => |name: String, _: SymbolExportKind| name,
996            };
997            let missing_weak_lang_items: FxIndexSet<(Symbol, SymbolExportKind)> = info
998                .used_crates
999                .iter()
1000                .flat_map(|&cnum| tcx.missing_lang_items(cnum))
1001                .filter(|l| l.is_weak())
1002                .filter_map(|&l| {
1003                    let name = l.link_name()?;
1004                    let export_kind = match l.target() {
1005                        Target::Fn => SymbolExportKind::Text,
1006                        Target::Static => SymbolExportKind::Data,
1007                        _ => bug!(
1008                            "Don't know what the export kind is for lang item of kind {:?}",
1009                            l.target()
1010                        ),
1011                    };
1012                    lang_items::required(tcx, l).then_some((name, export_kind))
1013                })
1014                .collect();
1015
1016            // This loop only adds new items to values of the hash map, so the order in which we
1017            // iterate over the values is not important.
1018            #[allow(rustc::potential_query_instability)]
1019            info.linked_symbols
1020                .iter_mut()
1021                .filter(|(crate_type, _)| {
1022                    !matches!(crate_type, CrateType::Rlib | CrateType::Staticlib)
1023                })
1024                .for_each(|(_, linked_symbols)| {
1025                    let mut symbols = missing_weak_lang_items
1026                        .iter()
1027                        .map(|(item, export_kind)| {
1028                            (
1029                                add_prefix(
1030                                    mangle_internal_symbol(tcx, item.as_str()),
1031                                    *export_kind,
1032                                ),
1033                                *export_kind,
1034                            )
1035                        })
1036                        .collect::<Vec<_>>();
1037                    symbols.sort_unstable_by(|a, b| a.0.cmp(&b.0));
1038                    linked_symbols.extend(symbols);
1039                });
1040        }
1041
1042        let embed_visualizers = tcx.crate_types().iter().any(|&crate_type| match crate_type {
1043            CrateType::Executable | CrateType::Dylib | CrateType::Cdylib | CrateType::Sdylib => {
1044                // These are crate types for which we invoke the linker and can embed
1045                // NatVis visualizers.
1046                true
1047            }
1048            CrateType::ProcMacro => {
1049                // We could embed NatVis for proc macro crates too (to improve the debugging
1050                // experience for them) but it does not seem like a good default, since
1051                // this is a rare use case and we don't want to slow down the common case.
1052                false
1053            }
1054            CrateType::Staticlib | CrateType::Rlib => {
1055                // We don't invoke the linker for these, so we don't need to collect the NatVis for
1056                // them.
1057                false
1058            }
1059        });
1060
1061        if target.is_like_msvc && embed_visualizers {
1062            info.natvis_debugger_visualizers =
1063                collect_debugger_visualizers_transitive(tcx, DebuggerVisualizerType::Natvis);
1064        }
1065
1066        info
1067    }
1068}
1069
1070pub(crate) fn provide(providers: &mut Providers) {
1071    providers.backend_optimization_level = |tcx, cratenum| {
1072        let for_speed = match tcx.sess.opts.optimize {
1073            // If globally no optimisation is done, #[optimize] has no effect.
1074            //
1075            // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
1076            // pass manager and it is likely that some module-wide passes (such as inliner or
1077            // cross-function constant propagation) would ignore the `optnone` annotation we put
1078            // on the functions, thus necessarily involving these functions into optimisations.
1079            config::OptLevel::No => return config::OptLevel::No,
1080            // If globally optimise-speed is already specified, just use that level.
1081            config::OptLevel::Less => return config::OptLevel::Less,
1082            config::OptLevel::More => return config::OptLevel::More,
1083            config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
1084            // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
1085            // are present).
1086            config::OptLevel::Size => config::OptLevel::More,
1087            config::OptLevel::SizeMin => config::OptLevel::More,
1088        };
1089
1090        let defids = tcx.collect_and_partition_mono_items(cratenum).all_mono_items;
1091
1092        let any_for_speed = defids.items().any(|id| {
1093            let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
1094            matches!(optimize, OptimizeAttr::Speed)
1095        });
1096
1097        if any_for_speed {
1098            return for_speed;
1099        }
1100
1101        tcx.sess.opts.optimize
1102    };
1103}
1104
1105pub fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
1106    if !tcx.dep_graph.is_fully_enabled() {
1107        return CguReuse::No;
1108    }
1109
1110    let work_product_id = &cgu.work_product_id();
1111    if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
1112        // We don't have anything cached for this CGU. This can happen
1113        // if the CGU did not exist in the previous session.
1114        return CguReuse::No;
1115    }
1116
1117    // Try to mark the CGU as green. If it we can do so, it means that nothing
1118    // affecting the LLVM module has changed and we can re-use a cached version.
1119    // If we compile with any kind of LTO, this means we can re-use the bitcode
1120    // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
1121    // know that later). If we are not doing LTO, there is only one optimized
1122    // version of each module, so we re-use that.
1123    let dep_node = cgu.codegen_dep_node(tcx);
1124    tcx.dep_graph.assert_dep_node_not_yet_allocated_in_current_session(&dep_node, || {
1125        format!(
1126            "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
1127            cgu.name()
1128        )
1129    });
1130
1131    if tcx.try_mark_green(&dep_node) {
1132        // We can re-use either the pre- or the post-thinlto state. If no LTO is
1133        // being performed then we can use post-LTO artifacts, otherwise we must
1134        // reuse pre-LTO artifacts
1135        match compute_per_cgu_lto_type(
1136            &tcx.sess.lto(),
1137            &tcx.sess.opts,
1138            tcx.crate_types(),
1139            ModuleKind::Regular,
1140        ) {
1141            ComputedLtoType::No => CguReuse::PostLto,
1142            _ => CguReuse::PreLto,
1143        }
1144    } else {
1145        CguReuse::No
1146    }
1147}