rustc_mir_build/builder/expr/into.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
//! See docs in build/expr/mod.rs
use rustc_ast::{AsmMacro, InlineAsmOptions};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir as hir;
use rustc_middle::mir::*;
use rustc_middle::span_bug;
use rustc_middle::thir::*;
use rustc_middle::ty::CanonicalUserTypeAnnotation;
use rustc_span::source_map::Spanned;
use tracing::{debug, instrument};
use crate::builder::expr::category::{Category, RvalueFunc};
use crate::builder::matches::DeclareLetBindings;
use crate::builder::{BlockAnd, BlockAndExtension, BlockFrame, Builder, NeedsTemporary};
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// Compile `expr`, storing the result into `destination`, which
/// is assumed to be uninitialized.
#[instrument(level = "debug", skip(self))]
pub(crate) fn expr_into_dest(
&mut self,
destination: Place<'tcx>,
mut block: BasicBlock,
expr_id: ExprId,
) -> BlockAnd<()> {
// since we frequently have to reference `self` from within a
// closure, where `self` would be shadowed, it's easier to
// just use the name `this` uniformly
let this = self;
let expr = &this.thir[expr_id];
let expr_span = expr.span;
let source_info = this.source_info(expr_span);
let expr_is_block_or_scope =
matches!(expr.kind, ExprKind::Block { .. } | ExprKind::Scope { .. });
if !expr_is_block_or_scope {
this.block_context.push(BlockFrame::SubExpr);
}
let block_and = match expr.kind {
ExprKind::Scope { region_scope, lint_level, value } => {
let region_scope = (region_scope, source_info);
ensure_sufficient_stack(|| {
this.in_scope(region_scope, lint_level, |this| {
this.expr_into_dest(destination, block, value)
})
})
}
ExprKind::Block { block: ast_block } => {
this.ast_block(destination, block, ast_block, source_info)
}
ExprKind::Match { scrutinee, ref arms, .. } => this.match_expr(
destination,
block,
scrutinee,
arms,
expr_span,
this.thir[scrutinee].span,
),
ExprKind::If { cond, then, else_opt, if_then_scope } => {
let then_span = this.thir[then].span;
let then_source_info = this.source_info(then_span);
let condition_scope = this.local_scope();
let then_and_else_blocks = this.in_scope(
(if_then_scope, then_source_info),
LintLevel::Inherited,
|this| {
// FIXME: Does this need extra logic to handle let-chains?
let source_info = if this.is_let(cond) {
let variable_scope =
this.new_source_scope(then_span, LintLevel::Inherited);
this.source_scope = variable_scope;
SourceInfo { span: then_span, scope: variable_scope }
} else {
this.source_info(then_span)
};
// Lower the condition, and have it branch into `then` and `else` blocks.
let (then_block, else_block) =
this.in_if_then_scope(condition_scope, then_span, |this| {
let then_blk = this
.then_else_break(
block,
cond,
Some(condition_scope), // Temp scope
source_info,
DeclareLetBindings::Yes, // Declare `let` bindings normally
)
.into_block();
// Lower the `then` arm into its block.
this.expr_into_dest(destination, then_blk, then)
});
// Pack `(then_block, else_block)` into `BlockAnd<BasicBlock>`.
then_block.and(else_block)
},
);
// Unpack `BlockAnd<BasicBlock>` into `(then_blk, else_blk)`.
let (then_blk, mut else_blk);
else_blk = unpack!(then_blk = then_and_else_blocks);
// If there is an `else` arm, lower it into `else_blk`.
if let Some(else_expr) = else_opt {
else_blk = this.expr_into_dest(destination, else_blk, else_expr).into_block();
} else {
// There is no `else` arm, so we know both arms have type `()`.
// Generate the implicit `else {}` by assigning unit.
let correct_si = this.source_info(expr_span.shrink_to_hi());
this.cfg.push_assign_unit(else_blk, correct_si, destination, this.tcx);
}
// The `then` and `else` arms have been lowered into their respective
// blocks, so make both of them meet up in a new block.
let join_block = this.cfg.start_new_block();
this.cfg.goto(then_blk, source_info, join_block);
this.cfg.goto(else_blk, source_info, join_block);
join_block.unit()
}
ExprKind::Let { .. } => {
// After desugaring, `let` expressions should only appear inside `if`
// expressions or `match` guards, possibly nested within a let-chain.
// In both cases they are specifically handled by the lowerings of
// those expressions, so this case is currently unreachable.
span_bug!(expr_span, "unexpected let expression outside of if or match-guard");
}
ExprKind::NeverToAny { source } => {
let source_expr = &this.thir[source];
let is_call =
matches!(source_expr.kind, ExprKind::Call { .. } | ExprKind::InlineAsm { .. });
// (#66975) Source could be a const of type `!`, so has to
// exist in the generated MIR.
unpack!(
block =
this.as_temp(block, this.local_temp_lifetime(), source, Mutability::Mut)
);
// This is an optimization. If the expression was a call then we already have an
// unreachable block. Don't bother to terminate it and create a new one.
if is_call {
block.unit()
} else {
this.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
let end_block = this.cfg.start_new_block();
end_block.unit()
}
}
ExprKind::LogicalOp { op, lhs, rhs } => {
let condition_scope = this.local_scope();
let source_info = this.source_info(expr.span);
this.visit_coverage_branch_operation(op, expr.span);
// We first evaluate the left-hand side of the predicate ...
let (then_block, else_block) =
this.in_if_then_scope(condition_scope, expr.span, |this| {
this.then_else_break(
block,
lhs,
Some(condition_scope), // Temp scope
source_info,
// This flag controls how inner `let` expressions are lowered,
// but either way there shouldn't be any of those in here.
DeclareLetBindings::LetNotPermitted,
)
});
let (short_circuit, continuation, constant) = match op {
LogicalOp::And => (else_block, then_block, false),
LogicalOp::Or => (then_block, else_block, true),
};
// At this point, the control flow splits into a short-circuiting path
// and a continuation path.
// - If the operator is `&&`, passing `lhs` leads to continuation of evaluation on `rhs`;
// failing it leads to the short-circuting path which assigns `false` to the place.
// - If the operator is `||`, failing `lhs` leads to continuation of evaluation on `rhs`;
// passing it leads to the short-circuting path which assigns `true` to the place.
this.cfg.push_assign_constant(
short_circuit,
source_info,
destination,
ConstOperand {
span: expr.span,
user_ty: None,
const_: Const::from_bool(this.tcx, constant),
},
);
let mut rhs_block =
this.expr_into_dest(destination, continuation, rhs).into_block();
// Instrument the lowered RHS's value for condition coverage.
// (Does nothing if condition coverage is not enabled.)
this.visit_coverage_standalone_condition(rhs, destination, &mut rhs_block);
let target = this.cfg.start_new_block();
this.cfg.goto(rhs_block, source_info, target);
this.cfg.goto(short_circuit, source_info, target);
target.unit()
}
ExprKind::Loop { body } => {
// [block]
// |
// [loop_block] -> [body_block] -/eval. body/-> [body_block_end]
// | ^ |
// false link | |
// | +-----------------------------------------+
// +-> [diverge_cleanup]
// The false link is required to make sure borrowck considers unwinds through the
// body, even when the exact code in the body cannot unwind
let loop_block = this.cfg.start_new_block();
// Start the loop.
this.cfg.goto(block, source_info, loop_block);
this.in_breakable_scope(Some(loop_block), destination, expr_span, move |this| {
// conduct the test, if necessary
let body_block = this.cfg.start_new_block();
this.cfg.terminate(loop_block, source_info, TerminatorKind::FalseUnwind {
real_target: body_block,
unwind: UnwindAction::Continue,
});
this.diverge_from(loop_block);
// The “return” value of the loop body must always be a unit. We therefore
// introduce a unit temporary as the destination for the loop body.
let tmp = this.get_unit_temp();
// Execute the body, branching back to the test.
let body_block_end = this.expr_into_dest(tmp, body_block, body).into_block();
this.cfg.goto(body_block_end, source_info, loop_block);
// Loops are only exited by `break` expressions.
None
})
}
ExprKind::Call { ty: _, fun, ref args, from_hir_call, fn_span } => {
let fun = unpack!(block = this.as_local_operand(block, fun));
let args: Box<[_]> = args
.into_iter()
.copied()
.map(|arg| Spanned {
node: unpack!(block = this.as_local_call_operand(block, arg)),
span: this.thir.exprs[arg].span,
})
.collect();
let success = this.cfg.start_new_block();
this.record_operands_moved(&args);
debug!("expr_into_dest: fn_span={:?}", fn_span);
this.cfg.terminate(block, source_info, TerminatorKind::Call {
func: fun,
args,
unwind: UnwindAction::Continue,
destination,
// The presence or absence of a return edge affects control-flow sensitive
// MIR checks and ultimately whether code is accepted or not. We can only
// omit the return edge if a return type is visibly uninhabited to a module
// that makes the call.
target: expr
.ty
.is_inhabited_from(
this.tcx,
this.parent_module,
this.infcx.typing_env(this.param_env),
)
.then_some(success),
call_source: if from_hir_call {
CallSource::Normal
} else {
CallSource::OverloadedOperator
},
fn_span,
});
this.diverge_from(block);
success.unit()
}
ExprKind::Use { source } => this.expr_into_dest(destination, block, source),
ExprKind::Borrow { arg, borrow_kind } => {
// We don't do this in `as_rvalue` because we use `as_place`
// for borrow expressions, so we cannot create an `RValue` that
// remains valid across user code. `as_rvalue` is usually called
// by this method anyway, so this shouldn't cause too many
// unnecessary temporaries.
let arg_place = match borrow_kind {
BorrowKind::Shared => {
unpack!(block = this.as_read_only_place(block, arg))
}
_ => unpack!(block = this.as_place(block, arg)),
};
let borrow = Rvalue::Ref(this.tcx.lifetimes.re_erased, borrow_kind, arg_place);
this.cfg.push_assign(block, source_info, destination, borrow);
block.unit()
}
ExprKind::RawBorrow { mutability, arg } => {
let place = match mutability {
hir::Mutability::Not => this.as_read_only_place(block, arg),
hir::Mutability::Mut => this.as_place(block, arg),
};
let address_of = Rvalue::RawPtr(mutability, unpack!(block = place));
this.cfg.push_assign(block, source_info, destination, address_of);
block.unit()
}
ExprKind::Adt(box AdtExpr {
adt_def,
variant_index,
args,
ref user_ty,
ref fields,
ref base,
}) => {
// See the notes for `ExprKind::Array` in `as_rvalue` and for
// `ExprKind::Borrow` above.
let is_union = adt_def.is_union();
let active_field_index = is_union.then(|| fields[0].name);
let scope = this.local_temp_lifetime();
// first process the set of fields that were provided
// (evaluating them in order given by user)
let fields_map: FxHashMap<_, _> = fields
.into_iter()
.map(|f| {
(
f.name,
unpack!(
block = this.as_operand(
block,
scope,
f.expr,
LocalInfo::AggregateTemp,
NeedsTemporary::Maybe,
)
),
)
})
.collect();
let variant = adt_def.variant(variant_index);
let field_names = variant.fields.indices();
let fields = match base {
AdtExprBase::None => {
field_names.filter_map(|n| fields_map.get(&n).cloned()).collect()
}
AdtExprBase::Base(FruInfo { base, field_types }) => {
let place_builder = unpack!(block = this.as_place_builder(block, *base));
// We desugar FRU as we lower to MIR, so for each
// base-supplied field, generate an operand that
// reads it from the base.
itertools::zip_eq(field_names, &**field_types)
.map(|(n, ty)| match fields_map.get(&n) {
Some(v) => v.clone(),
None => {
let place =
place_builder.clone_project(PlaceElem::Field(n, *ty));
this.consume_by_copy_or_move(place.to_place(this))
}
})
.collect()
}
AdtExprBase::DefaultFields(field_types) => {
itertools::zip_eq(field_names, field_types)
.map(|(n, &ty)| match fields_map.get(&n) {
Some(v) => v.clone(),
None => match variant.fields[n].value {
Some(def) => {
let value = Const::Unevaluated(
UnevaluatedConst::new(def, args),
ty,
);
Operand::Constant(Box::new(ConstOperand {
span: expr_span,
user_ty: None,
const_: value,
}))
}
None => {
let name = variant.fields[n].name;
span_bug!(
expr_span,
"missing mandatory field `{name}` of type `{ty}`",
);
}
},
})
.collect()
}
};
let inferred_ty = expr.ty;
let user_ty = user_ty.as_ref().map(|user_ty| {
this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation {
span: source_info.span,
user_ty: user_ty.clone(),
inferred_ty,
})
});
let adt = Box::new(AggregateKind::Adt(
adt_def.did(),
variant_index,
args,
user_ty,
active_field_index,
));
this.cfg.push_assign(
block,
source_info,
destination,
Rvalue::Aggregate(adt, fields),
);
block.unit()
}
ExprKind::InlineAsm(box InlineAsmExpr {
asm_macro,
template,
ref operands,
options,
line_spans,
}) => {
use rustc_middle::{mir, thir};
let destination_block = this.cfg.start_new_block();
let mut targets =
if asm_macro.diverges(options) { vec![] } else { vec![destination_block] };
let operands = operands
.into_iter()
.map(|op| match *op {
thir::InlineAsmOperand::In { reg, expr } => mir::InlineAsmOperand::In {
reg,
value: unpack!(block = this.as_local_operand(block, expr)),
},
thir::InlineAsmOperand::Out { reg, late, expr } => {
mir::InlineAsmOperand::Out {
reg,
late,
place: expr.map(|expr| unpack!(block = this.as_place(block, expr))),
}
}
thir::InlineAsmOperand::InOut { reg, late, expr } => {
let place = unpack!(block = this.as_place(block, expr));
mir::InlineAsmOperand::InOut {
reg,
late,
// This works because asm operands must be Copy
in_value: Operand::Copy(place),
out_place: Some(place),
}
}
thir::InlineAsmOperand::SplitInOut { reg, late, in_expr, out_expr } => {
mir::InlineAsmOperand::InOut {
reg,
late,
in_value: unpack!(block = this.as_local_operand(block, in_expr)),
out_place: out_expr.map(|out_expr| {
unpack!(block = this.as_place(block, out_expr))
}),
}
}
thir::InlineAsmOperand::Const { value, span } => {
mir::InlineAsmOperand::Const {
value: Box::new(ConstOperand {
span,
user_ty: None,
const_: value,
}),
}
}
thir::InlineAsmOperand::SymFn { value, span } => {
mir::InlineAsmOperand::SymFn {
value: Box::new(ConstOperand {
span,
user_ty: None,
const_: value,
}),
}
}
thir::InlineAsmOperand::SymStatic { def_id } => {
mir::InlineAsmOperand::SymStatic { def_id }
}
thir::InlineAsmOperand::Label { block } => {
let target = this.cfg.start_new_block();
let target_index = targets.len();
targets.push(target);
let tmp = this.get_unit_temp();
let target =
this.ast_block(tmp, target, block, source_info).into_block();
this.cfg.terminate(target, source_info, TerminatorKind::Goto {
target: destination_block,
});
mir::InlineAsmOperand::Label { target_index }
}
})
.collect();
if !expr.ty.is_never() {
this.cfg.push_assign_unit(block, source_info, destination, this.tcx);
}
let asm_macro = match asm_macro {
AsmMacro::Asm => InlineAsmMacro::Asm,
AsmMacro::GlobalAsm => {
span_bug!(expr_span, "unexpected global_asm! in inline asm")
}
AsmMacro::NakedAsm => InlineAsmMacro::NakedAsm,
};
this.cfg.terminate(block, source_info, TerminatorKind::InlineAsm {
asm_macro,
template,
operands,
options,
line_spans,
targets: targets.into_boxed_slice(),
unwind: if options.contains(InlineAsmOptions::MAY_UNWIND) {
UnwindAction::Continue
} else {
UnwindAction::Unreachable
},
});
if options.contains(InlineAsmOptions::MAY_UNWIND) {
this.diverge_from(block);
}
destination_block.unit()
}
// These cases don't actually need a destination
ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
block = this.stmt_expr(block, expr_id, None).into_block();
this.cfg.push_assign_unit(block, source_info, destination, this.tcx);
block.unit()
}
ExprKind::Continue { .. }
| ExprKind::Break { .. }
| ExprKind::Return { .. }
| ExprKind::Become { .. } => {
block = this.stmt_expr(block, expr_id, None).into_block();
// No assign, as these have type `!`.
block.unit()
}
// Avoid creating a temporary
ExprKind::VarRef { .. }
| ExprKind::UpvarRef { .. }
| ExprKind::PlaceTypeAscription { .. }
| ExprKind::ValueTypeAscription { .. } => {
debug_assert!(Category::of(&expr.kind) == Some(Category::Place));
let place = unpack!(block = this.as_place(block, expr_id));
let rvalue = Rvalue::Use(this.consume_by_copy_or_move(place));
this.cfg.push_assign(block, source_info, destination, rvalue);
block.unit()
}
ExprKind::Index { .. } | ExprKind::Deref { .. } | ExprKind::Field { .. } => {
debug_assert_eq!(Category::of(&expr.kind), Some(Category::Place));
// Create a "fake" temporary variable so that we check that the
// value is Sized. Usually, this is caught in type checking, but
// in the case of box expr there is no such check.
if !destination.projection.is_empty() {
this.local_decls.push(LocalDecl::new(expr.ty, expr.span));
}
let place = unpack!(block = this.as_place(block, expr_id));
let rvalue = Rvalue::Use(this.consume_by_copy_or_move(place));
this.cfg.push_assign(block, source_info, destination, rvalue);
block.unit()
}
ExprKind::Yield { value } => {
let scope = this.local_temp_lifetime();
let value = unpack!(
block =
this.as_operand(block, scope, value, LocalInfo::Boring, NeedsTemporary::No)
);
let resume = this.cfg.start_new_block();
this.cfg.terminate(block, source_info, TerminatorKind::Yield {
value,
resume,
resume_arg: destination,
drop: None,
});
this.coroutine_drop_cleanup(block);
resume.unit()
}
// these are the cases that are more naturally handled by some other mode
ExprKind::Unary { .. }
| ExprKind::Binary { .. }
| ExprKind::Box { .. }
| ExprKind::Cast { .. }
| ExprKind::PointerCoercion { .. }
| ExprKind::Repeat { .. }
| ExprKind::Array { .. }
| ExprKind::Tuple { .. }
| ExprKind::Closure { .. }
| ExprKind::ConstBlock { .. }
| ExprKind::Literal { .. }
| ExprKind::NamedConst { .. }
| ExprKind::NonHirLiteral { .. }
| ExprKind::ZstLiteral { .. }
| ExprKind::ConstParam { .. }
| ExprKind::ThreadLocalRef(_)
| ExprKind::StaticRef { .. }
| ExprKind::OffsetOf { .. } => {
debug_assert!(match Category::of(&expr.kind).unwrap() {
// should be handled above
Category::Rvalue(RvalueFunc::Into) => false,
// must be handled above or else we get an
// infinite loop in the builder; see
// e.g., `ExprKind::VarRef` above
Category::Place => false,
_ => true,
});
let rvalue = unpack!(block = this.as_local_rvalue(block, expr_id));
this.cfg.push_assign(block, source_info, destination, rvalue);
block.unit()
}
};
if !expr_is_block_or_scope {
let popped = this.block_context.pop();
assert!(popped.is_some());
}
block_and
}
fn is_let(&self, expr: ExprId) -> bool {
match self.thir[expr].kind {
ExprKind::Let { .. } => true,
ExprKind::Scope { value, .. } => self.is_let(value),
_ => false,
}
}
}