1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
use rustc_index::IndexSlice;
use rustc_middle::mir::patch::MirPatch;
use rustc_middle::mir::*;
use rustc_middle::ty::{ParamEnv, ScalarInt, Ty, TyCtxt};
use rustc_target::abi::Size;
use std::iter;

use super::simplify::simplify_cfg;

pub struct MatchBranchSimplification;

impl<'tcx> MirPass<'tcx> for MatchBranchSimplification {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.mir_opt_level() >= 1
    }

    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        let def_id = body.source.def_id();
        let param_env = tcx.param_env_reveal_all_normalized(def_id);

        let mut should_cleanup = false;
        for i in 0..body.basic_blocks.len() {
            let bbs = &*body.basic_blocks;
            let bb_idx = BasicBlock::from_usize(i);
            if !tcx.consider_optimizing(|| format!("MatchBranchSimplification {def_id:?} ")) {
                continue;
            }

            match bbs[bb_idx].terminator().kind {
                TerminatorKind::SwitchInt {
                    discr: ref _discr @ (Operand::Copy(_) | Operand::Move(_)),
                    ref targets,
                    ..
                    // We require that the possible target blocks don't contain this block.
                } if !targets.all_targets().contains(&bb_idx) => {}
                // Only optimize switch int statements
                _ => continue,
            };

            if SimplifyToIf.simplify(tcx, body, bb_idx, param_env).is_some() {
                should_cleanup = true;
                continue;
            }
            // unsound: https://github.com/rust-lang/rust/issues/124150
            if tcx.sess.opts.unstable_opts.unsound_mir_opts
                && SimplifyToExp::default().simplify(tcx, body, bb_idx, param_env).is_some()
            {
                should_cleanup = true;
                continue;
            }
        }

        if should_cleanup {
            simplify_cfg(body);
        }
    }
}

trait SimplifyMatch<'tcx> {
    /// Simplifies a match statement, returning true if the simplification succeeds, false otherwise.
    /// Generic code is written here, and we generally don't need a custom implementation.
    fn simplify(
        &mut self,
        tcx: TyCtxt<'tcx>,
        body: &mut Body<'tcx>,
        switch_bb_idx: BasicBlock,
        param_env: ParamEnv<'tcx>,
    ) -> Option<()> {
        let bbs = &body.basic_blocks;
        let (discr, targets) = match bbs[switch_bb_idx].terminator().kind {
            TerminatorKind::SwitchInt { ref discr, ref targets, .. } => (discr, targets),
            _ => unreachable!(),
        };

        let discr_ty = discr.ty(body.local_decls(), tcx);
        self.can_simplify(tcx, targets, param_env, bbs, discr_ty)?;

        let mut patch = MirPatch::new(body);

        // Take ownership of items now that we know we can optimize.
        let discr = discr.clone();

        // Introduce a temporary for the discriminant value.
        let source_info = bbs[switch_bb_idx].terminator().source_info;
        let discr_local = patch.new_temp(discr_ty, source_info.span);

        let (_, first) = targets.iter().next().unwrap();
        let statement_index = bbs[switch_bb_idx].statements.len();
        let parent_end = Location { block: switch_bb_idx, statement_index };
        patch.add_statement(parent_end, StatementKind::StorageLive(discr_local));
        patch.add_assign(parent_end, Place::from(discr_local), Rvalue::Use(discr));
        self.new_stmts(tcx, targets, param_env, &mut patch, parent_end, bbs, discr_local, discr_ty);
        patch.add_statement(parent_end, StatementKind::StorageDead(discr_local));
        patch.patch_terminator(switch_bb_idx, bbs[first].terminator().kind.clone());
        patch.apply(body);
        Some(())
    }

    /// Check that the BBs to be simplified satisfies all distinct and
    /// that the terminator are the same.
    /// There are also conditions for different ways of simplification.
    fn can_simplify(
        &mut self,
        tcx: TyCtxt<'tcx>,
        targets: &SwitchTargets,
        param_env: ParamEnv<'tcx>,
        bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
        discr_ty: Ty<'tcx>,
    ) -> Option<()>;

    fn new_stmts(
        &self,
        tcx: TyCtxt<'tcx>,
        targets: &SwitchTargets,
        param_env: ParamEnv<'tcx>,
        patch: &mut MirPatch<'tcx>,
        parent_end: Location,
        bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
        discr_local: Local,
        discr_ty: Ty<'tcx>,
    );
}

struct SimplifyToIf;

/// If a source block is found that switches between two blocks that are exactly
/// the same modulo const bool assignments (e.g., one assigns true another false
/// to the same place), merge a target block statements into the source block,
/// using Eq / Ne comparison with switch value where const bools value differ.
///
/// For example:
///
/// ```ignore (MIR)
/// bb0: {
///     switchInt(move _3) -> [42_isize: bb1, otherwise: bb2];
/// }
///
/// bb1: {
///     _2 = const true;
///     goto -> bb3;
/// }
///
/// bb2: {
///     _2 = const false;
///     goto -> bb3;
/// }
/// ```
///
/// into:
///
/// ```ignore (MIR)
/// bb0: {
///    _2 = Eq(move _3, const 42_isize);
///    goto -> bb3;
/// }
/// ```
impl<'tcx> SimplifyMatch<'tcx> for SimplifyToIf {
    fn can_simplify(
        &mut self,
        tcx: TyCtxt<'tcx>,
        targets: &SwitchTargets,
        param_env: ParamEnv<'tcx>,
        bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
        _discr_ty: Ty<'tcx>,
    ) -> Option<()> {
        if targets.iter().len() != 1 {
            return None;
        }
        // We require that the possible target blocks all be distinct.
        let (_, first) = targets.iter().next().unwrap();
        let second = targets.otherwise();
        if first == second {
            return None;
        }
        // Check that destinations are identical, and if not, then don't optimize this block
        if bbs[first].terminator().kind != bbs[second].terminator().kind {
            return None;
        }

        // Check that blocks are assignments of consts to the same place or same statement,
        // and match up 1-1, if not don't optimize this block.
        let first_stmts = &bbs[first].statements;
        let second_stmts = &bbs[second].statements;
        if first_stmts.len() != second_stmts.len() {
            return None;
        }
        for (f, s) in iter::zip(first_stmts, second_stmts) {
            match (&f.kind, &s.kind) {
                // If two statements are exactly the same, we can optimize.
                (f_s, s_s) if f_s == s_s => {}

                // If two statements are const bool assignments to the same place, we can optimize.
                (
                    StatementKind::Assign(box (lhs_f, Rvalue::Use(Operand::Constant(f_c)))),
                    StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
                ) if lhs_f == lhs_s
                    && f_c.const_.ty().is_bool()
                    && s_c.const_.ty().is_bool()
                    && f_c.const_.try_eval_bool(tcx, param_env).is_some()
                    && s_c.const_.try_eval_bool(tcx, param_env).is_some() => {}

                // Otherwise we cannot optimize. Try another block.
                _ => return None,
            }
        }
        Some(())
    }

    fn new_stmts(
        &self,
        tcx: TyCtxt<'tcx>,
        targets: &SwitchTargets,
        param_env: ParamEnv<'tcx>,
        patch: &mut MirPatch<'tcx>,
        parent_end: Location,
        bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
        discr_local: Local,
        discr_ty: Ty<'tcx>,
    ) {
        let (val, first) = targets.iter().next().unwrap();
        let second = targets.otherwise();
        // We already checked that first and second are different blocks,
        // and bb_idx has a different terminator from both of them.
        let first = &bbs[first];
        let second = &bbs[second];
        for (f, s) in iter::zip(&first.statements, &second.statements) {
            match (&f.kind, &s.kind) {
                (f_s, s_s) if f_s == s_s => {
                    patch.add_statement(parent_end, f.kind.clone());
                }

                (
                    StatementKind::Assign(box (lhs, Rvalue::Use(Operand::Constant(f_c)))),
                    StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(s_c)))),
                ) => {
                    // From earlier loop we know that we are dealing with bool constants only:
                    let f_b = f_c.const_.try_eval_bool(tcx, param_env).unwrap();
                    let s_b = s_c.const_.try_eval_bool(tcx, param_env).unwrap();
                    if f_b == s_b {
                        // Same value in both blocks. Use statement as is.
                        patch.add_statement(parent_end, f.kind.clone());
                    } else {
                        // Different value between blocks. Make value conditional on switch condition.
                        let size = tcx.layout_of(param_env.and(discr_ty)).unwrap().size;
                        let const_cmp = Operand::const_from_scalar(
                            tcx,
                            discr_ty,
                            rustc_const_eval::interpret::Scalar::from_uint(val, size),
                            rustc_span::DUMMY_SP,
                        );
                        let op = if f_b { BinOp::Eq } else { BinOp::Ne };
                        let rhs = Rvalue::BinaryOp(
                            op,
                            Box::new((Operand::Copy(Place::from(discr_local)), const_cmp)),
                        );
                        patch.add_assign(parent_end, *lhs, rhs);
                    }
                }

                _ => unreachable!(),
            }
        }
    }
}

#[derive(Default)]
struct SimplifyToExp {
    transfrom_types: Vec<TransfromType>,
}

#[derive(Clone, Copy)]
enum CompareType<'tcx, 'a> {
    /// Identical statements.
    Same(&'a StatementKind<'tcx>),
    /// Assignment statements have the same value.
    Eq(&'a Place<'tcx>, Ty<'tcx>, ScalarInt),
    /// Enum variant comparison type.
    Discr { place: &'a Place<'tcx>, ty: Ty<'tcx>, is_signed: bool },
}

enum TransfromType {
    Same,
    Eq,
    Discr,
}

impl From<CompareType<'_, '_>> for TransfromType {
    fn from(compare_type: CompareType<'_, '_>) -> Self {
        match compare_type {
            CompareType::Same(_) => TransfromType::Same,
            CompareType::Eq(_, _, _) => TransfromType::Eq,
            CompareType::Discr { .. } => TransfromType::Discr,
        }
    }
}

/// If we find that the value of match is the same as the assignment,
/// merge a target block statements into the source block,
/// using cast to transform different integer types.
///
/// For example:
///
/// ```ignore (MIR)
/// bb0: {
///     switchInt(_1) -> [1: bb2, 2: bb3, 3: bb4, otherwise: bb1];
/// }
///
/// bb1: {
///     unreachable;
/// }
///
/// bb2: {
///     _0 = const 1_i16;
///     goto -> bb5;
/// }
///
/// bb3: {
///     _0 = const 2_i16;
///     goto -> bb5;
/// }
///
/// bb4: {
///     _0 = const 3_i16;
///     goto -> bb5;
/// }
/// ```
///
/// into:
///
/// ```ignore (MIR)
/// bb0: {
///    _0 = _3 as i16 (IntToInt);
///    goto -> bb5;
/// }
/// ```
impl<'tcx> SimplifyMatch<'tcx> for SimplifyToExp {
    fn can_simplify(
        &mut self,
        tcx: TyCtxt<'tcx>,
        targets: &SwitchTargets,
        param_env: ParamEnv<'tcx>,
        bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
        discr_ty: Ty<'tcx>,
    ) -> Option<()> {
        if targets.iter().len() < 2 || targets.iter().len() > 64 {
            return None;
        }
        // We require that the possible target blocks all be distinct.
        if !targets.is_distinct() {
            return None;
        }
        if !bbs[targets.otherwise()].is_empty_unreachable() {
            return None;
        }
        let mut target_iter = targets.iter();
        let (first_val, first_target) = target_iter.next().unwrap();
        let first_terminator_kind = &bbs[first_target].terminator().kind;
        // Check that destinations are identical, and if not, then don't optimize this block
        if !targets
            .iter()
            .all(|(_, other_target)| first_terminator_kind == &bbs[other_target].terminator().kind)
        {
            return None;
        }

        let discr_size = tcx.layout_of(param_env.and(discr_ty)).unwrap().size;
        let first_stmts = &bbs[first_target].statements;
        let (second_val, second_target) = target_iter.next().unwrap();
        let second_stmts = &bbs[second_target].statements;
        if first_stmts.len() != second_stmts.len() {
            return None;
        }

        fn int_equal(l: ScalarInt, r: impl Into<u128>, size: Size) -> bool {
            l.to_bits_unchecked() == ScalarInt::try_from_uint(r, size).unwrap().to_bits_unchecked()
        }

        // We first compare the two branches, and then the other branches need to fulfill the same conditions.
        let mut compare_types = Vec::new();
        for (f, s) in iter::zip(first_stmts, second_stmts) {
            let compare_type = match (&f.kind, &s.kind) {
                // If two statements are exactly the same, we can optimize.
                (f_s, s_s) if f_s == s_s => CompareType::Same(f_s),

                // If two statements are assignments with the match values to the same place, we can optimize.
                (
                    StatementKind::Assign(box (lhs_f, Rvalue::Use(Operand::Constant(f_c)))),
                    StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
                ) if lhs_f == lhs_s
                    && f_c.const_.ty() == s_c.const_.ty()
                    && f_c.const_.ty().is_integral() =>
                {
                    match (
                        f_c.const_.try_eval_scalar_int(tcx, param_env),
                        s_c.const_.try_eval_scalar_int(tcx, param_env),
                    ) {
                        (Some(f), Some(s)) if f == s => CompareType::Eq(lhs_f, f_c.const_.ty(), f),
                        // Enum variants can also be simplified to an assignment statement if their values are equal.
                        // We need to consider both unsigned and signed scenarios here.
                        (Some(f), Some(s))
                            if ((f_c.const_.ty().is_signed() || discr_ty.is_signed())
                                && int_equal(f, first_val, discr_size)
                                && int_equal(s, second_val, discr_size))
                                || (Some(f) == ScalarInt::try_from_uint(first_val, f.size())
                                    && Some(s)
                                        == ScalarInt::try_from_uint(second_val, s.size())) =>
                        {
                            CompareType::Discr {
                                place: lhs_f,
                                ty: f_c.const_.ty(),
                                is_signed: f_c.const_.ty().is_signed() || discr_ty.is_signed(),
                            }
                        }
                        _ => {
                            return None;
                        }
                    }
                }

                // Otherwise we cannot optimize. Try another block.
                _ => return None,
            };
            compare_types.push(compare_type);
        }

        // All remaining BBs need to fulfill the same pattern as the two BBs from the previous step.
        for (other_val, other_target) in target_iter {
            let other_stmts = &bbs[other_target].statements;
            if compare_types.len() != other_stmts.len() {
                return None;
            }
            for (f, s) in iter::zip(&compare_types, other_stmts) {
                match (*f, &s.kind) {
                    (CompareType::Same(f_s), s_s) if f_s == s_s => {}
                    (
                        CompareType::Eq(lhs_f, f_ty, val),
                        StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
                    ) if lhs_f == lhs_s
                        && s_c.const_.ty() == f_ty
                        && s_c.const_.try_eval_scalar_int(tcx, param_env) == Some(val) => {}
                    (
                        CompareType::Discr { place: lhs_f, ty: f_ty, is_signed },
                        StatementKind::Assign(box (lhs_s, Rvalue::Use(Operand::Constant(s_c)))),
                    ) if lhs_f == lhs_s && s_c.const_.ty() == f_ty => {
                        let Some(f) = s_c.const_.try_eval_scalar_int(tcx, param_env) else {
                            return None;
                        };
                        if is_signed
                            && s_c.const_.ty().is_signed()
                            && int_equal(f, other_val, discr_size)
                        {
                            continue;
                        }
                        if Some(f) == ScalarInt::try_from_uint(other_val, f.size()) {
                            continue;
                        }
                        return None;
                    }
                    _ => return None,
                }
            }
        }
        self.transfrom_types = compare_types.into_iter().map(|c| c.into()).collect();
        Some(())
    }

    fn new_stmts(
        &self,
        _tcx: TyCtxt<'tcx>,
        targets: &SwitchTargets,
        _param_env: ParamEnv<'tcx>,
        patch: &mut MirPatch<'tcx>,
        parent_end: Location,
        bbs: &IndexSlice<BasicBlock, BasicBlockData<'tcx>>,
        discr_local: Local,
        discr_ty: Ty<'tcx>,
    ) {
        let (_, first) = targets.iter().next().unwrap();
        let first = &bbs[first];

        for (t, s) in iter::zip(&self.transfrom_types, &first.statements) {
            match (t, &s.kind) {
                (TransfromType::Same, _) | (TransfromType::Eq, _) => {
                    patch.add_statement(parent_end, s.kind.clone());
                }
                (
                    TransfromType::Discr,
                    StatementKind::Assign(box (lhs, Rvalue::Use(Operand::Constant(f_c)))),
                ) => {
                    let operand = Operand::Copy(Place::from(discr_local));
                    let r_val = if f_c.const_.ty() == discr_ty {
                        Rvalue::Use(operand)
                    } else {
                        Rvalue::Cast(CastKind::IntToInt, operand, f_c.const_.ty())
                    };
                    patch.add_assign(parent_end, *lhs, r_val);
                }
                _ => unreachable!(),
            }
        }
    }
}