1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
use std::fmt::{self, Debug};
use std::num::NonZero;
use std::ops::RangeInclusive;

use serde::Serialize;

use crate::compiler_interface::with;
use crate::mir::FieldIdx;
use crate::target::{MachineInfo, MachineSize as Size};
use crate::ty::{Align, IndexedVal, Ty, VariantIdx};
use crate::{error, Error, Opaque};

/// A function ABI definition.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct FnAbi {
    /// The types of each argument.
    pub args: Vec<ArgAbi>,

    /// The expected return type.
    pub ret: ArgAbi,

    /// The count of non-variadic arguments.
    ///
    /// Should only be different from `args.len()` when a function is a C variadic function.
    pub fixed_count: u32,

    /// The ABI convention.
    pub conv: CallConvention,

    /// Whether this is a variadic C function,
    pub c_variadic: bool,
}

/// Information about the ABI of a function's argument, or return value.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct ArgAbi {
    pub ty: Ty,
    pub layout: Layout,
    pub mode: PassMode,
}

/// How a function argument should be passed in to the target function.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum PassMode {
    /// Ignore the argument.
    ///
    /// The argument is either uninhabited or a ZST.
    Ignore,
    /// Pass the argument directly.
    ///
    /// The argument has a layout abi of `Scalar` or `Vector`.
    Direct(Opaque),
    /// Pass a pair's elements directly in two arguments.
    ///
    /// The argument has a layout abi of `ScalarPair`.
    Pair(Opaque, Opaque),
    /// Pass the argument after casting it.
    Cast { pad_i32: bool, cast: Opaque },
    /// Pass the argument indirectly via a hidden pointer.
    Indirect { attrs: Opaque, meta_attrs: Opaque, on_stack: bool },
}

/// The layout of a type, alongside the type itself.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct TyAndLayout {
    pub ty: Ty,
    pub layout: Layout,
}

/// The layout of a type in memory.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct LayoutShape {
    /// The fields location within the layout
    pub fields: FieldsShape,

    /// Encodes information about multi-variant layouts.
    /// Even with `Multiple` variants, a layout still has its own fields! Those are then
    /// shared between all variants.
    ///
    /// To access all fields of this layout, both `fields` and the fields of the active variant
    /// must be taken into account.
    pub variants: VariantsShape,

    /// The `abi` defines how this data is passed between functions.
    pub abi: ValueAbi,

    /// The ABI mandated alignment in bytes.
    pub abi_align: Align,

    /// The size of this layout in bytes.
    pub size: Size,
}

impl LayoutShape {
    /// Returns `true` if the layout corresponds to an unsized type.
    #[inline]
    pub fn is_unsized(&self) -> bool {
        self.abi.is_unsized()
    }

    #[inline]
    pub fn is_sized(&self) -> bool {
        !self.abi.is_unsized()
    }

    /// Returns `true` if the type is sized and a 1-ZST (meaning it has size 0 and alignment 1).
    pub fn is_1zst(&self) -> bool {
        self.is_sized() && self.size.bits() == 0 && self.abi_align == 1
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct Layout(usize);

impl Layout {
    pub fn shape(self) -> LayoutShape {
        with(|cx| cx.layout_shape(self))
    }
}

impl IndexedVal for Layout {
    fn to_val(index: usize) -> Self {
        Layout(index)
    }
    fn to_index(&self) -> usize {
        self.0
    }
}

/// Describes how the fields of a type are shaped in memory.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum FieldsShape {
    /// Scalar primitives and `!`, which never have fields.
    Primitive,

    /// All fields start at no offset. The `usize` is the field count.
    Union(NonZero<usize>),

    /// Array/vector-like placement, with all fields of identical types.
    Array { stride: Size, count: u64 },

    /// Struct-like placement, with precomputed offsets.
    ///
    /// Fields are guaranteed to not overlap, but note that gaps
    /// before, between and after all the fields are NOT always
    /// padding, and as such their contents may not be discarded.
    /// For example, enum variants leave a gap at the start,
    /// where the discriminant field in the enum layout goes.
    Arbitrary {
        /// Offsets for the first byte of each field,
        /// ordered to match the source definition order.
        /// I.e.: It follows the same order as [crate::ty::VariantDef::fields()].
        /// This vector does not go in increasing order.
        offsets: Vec<Size>,
    },
}

impl FieldsShape {
    pub fn fields_by_offset_order(&self) -> Vec<FieldIdx> {
        match self {
            FieldsShape::Primitive => vec![],
            FieldsShape::Union(_) | FieldsShape::Array { .. } => (0..self.count()).collect(),
            FieldsShape::Arbitrary { offsets, .. } => {
                let mut indices = (0..offsets.len()).collect::<Vec<_>>();
                indices.sort_by_key(|idx| offsets[*idx]);
                indices
            }
        }
    }

    pub fn count(&self) -> usize {
        match self {
            FieldsShape::Primitive => 0,
            FieldsShape::Union(count) => count.get(),
            FieldsShape::Array { count, .. } => *count as usize,
            FieldsShape::Arbitrary { offsets, .. } => offsets.len(),
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum VariantsShape {
    /// Single enum variants, structs/tuples, unions, and all non-ADTs.
    Single { index: VariantIdx },

    /// Enum-likes with more than one inhabited variant: each variant comes with
    /// a *discriminant* (usually the same as the variant index but the user can
    /// assign explicit discriminant values). That discriminant is encoded
    /// as a *tag* on the machine. The layout of each variant is
    /// a struct, and they all have space reserved for the tag.
    /// For enums, the tag is the sole field of the layout.
    Multiple {
        tag: Scalar,
        tag_encoding: TagEncoding,
        tag_field: usize,
        variants: Vec<LayoutShape>,
    },
}

#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum TagEncoding {
    /// The tag directly stores the discriminant, but possibly with a smaller layout
    /// (so converting the tag to the discriminant can require sign extension).
    Direct,

    /// Niche (values invalid for a type) encoding the discriminant:
    /// Discriminant and variant index coincide.
    /// The variant `untagged_variant` contains a niche at an arbitrary
    /// offset (field `tag_field` of the enum), which for a variant with
    /// discriminant `d` is set to
    /// `(d - niche_variants.start).wrapping_add(niche_start)`.
    ///
    /// For example, `Option<(usize, &T)>`  is represented such that
    /// `None` has a null pointer for the second tuple field, and
    /// `Some` is the identity function (with a non-null reference).
    Niche {
        untagged_variant: VariantIdx,
        niche_variants: RangeInclusive<VariantIdx>,
        niche_start: u128,
    },
}

/// Describes how values of the type are passed by target ABIs,
/// in terms of categories of C types there are ABI rules for.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum ValueAbi {
    Uninhabited,
    Scalar(Scalar),
    ScalarPair(Scalar, Scalar),
    Vector {
        element: Scalar,
        count: u64,
    },
    Aggregate {
        /// If true, the size is exact, otherwise it's only a lower bound.
        sized: bool,
    },
}

impl ValueAbi {
    /// Returns `true` if the layout corresponds to an unsized type.
    pub fn is_unsized(&self) -> bool {
        match *self {
            ValueAbi::Uninhabited
            | ValueAbi::Scalar(_)
            | ValueAbi::ScalarPair(..)
            | ValueAbi::Vector { .. } => false,
            ValueAbi::Aggregate { sized } => !sized,
        }
    }
}

/// Information about one scalar component of a Rust type.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Serialize)]
pub enum Scalar {
    Initialized {
        /// The primitive type used to represent this value.
        value: Primitive,
        /// The range that represents valid values.
        /// The range must be valid for the `primitive` size.
        valid_range: WrappingRange,
    },
    Union {
        /// Unions never have niches, so there is no `valid_range`.
        /// Even for unions, we need to use the correct registers for the kind of
        /// values inside the union, so we keep the `Primitive` type around.
        /// It is also used to compute the size of the scalar.
        value: Primitive,
    },
}

impl Scalar {
    pub fn has_niche(&self, target: &MachineInfo) -> bool {
        match self {
            Scalar::Initialized { value, valid_range } => {
                !valid_range.is_full(value.size(target)).unwrap()
            }
            Scalar::Union { .. } => false,
        }
    }
}

/// Fundamental unit of memory access and layout.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Serialize)]
pub enum Primitive {
    /// The `bool` is the signedness of the `Integer` type.
    ///
    /// One would think we would not care about such details this low down,
    /// but some ABIs are described in terms of C types and ISAs where the
    /// integer arithmetic is done on {sign,zero}-extended registers, e.g.
    /// a negative integer passed by zero-extension will appear positive in
    /// the callee, and most operations on it will produce the wrong values.
    Int {
        length: IntegerLength,
        signed: bool,
    },
    Float {
        length: FloatLength,
    },
    Pointer(AddressSpace),
}

impl Primitive {
    pub fn size(self, target: &MachineInfo) -> Size {
        match self {
            Primitive::Int { length, .. } => Size::from_bits(length.bits()),
            Primitive::Float { length } => Size::from_bits(length.bits()),
            Primitive::Pointer(_) => target.pointer_width,
        }
    }
}

/// Enum representing the existing integer lengths.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Serialize)]
pub enum IntegerLength {
    I8,
    I16,
    I32,
    I64,
    I128,
}

/// Enum representing the existing float lengths.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Serialize)]
pub enum FloatLength {
    F16,
    F32,
    F64,
    F128,
}

impl IntegerLength {
    pub fn bits(self) -> usize {
        match self {
            IntegerLength::I8 => 8,
            IntegerLength::I16 => 16,
            IntegerLength::I32 => 32,
            IntegerLength::I64 => 64,
            IntegerLength::I128 => 128,
        }
    }
}

impl FloatLength {
    pub fn bits(self) -> usize {
        match self {
            FloatLength::F16 => 16,
            FloatLength::F32 => 32,
            FloatLength::F64 => 64,
            FloatLength::F128 => 128,
        }
    }
}

/// An identifier that specifies the address space that some operation
/// should operate on. Special address spaces have an effect on code generation,
/// depending on the target and the address spaces it implements.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize)]
pub struct AddressSpace(pub u32);

impl AddressSpace {
    /// The default address space, corresponding to data space.
    pub const DATA: Self = AddressSpace(0);
}

/// Inclusive wrap-around range of valid values (bitwise representation), that is, if
/// start > end, it represents `start..=MAX`, followed by `0..=end`.
///
/// That is, for an i8 primitive, a range of `254..=2` means following
/// sequence:
///
///    254 (-2), 255 (-1), 0, 1, 2
#[derive(Clone, Copy, PartialEq, Eq, Hash, Serialize)]
pub struct WrappingRange {
    pub start: u128,
    pub end: u128,
}

impl WrappingRange {
    /// Returns `true` if `size` completely fills the range.
    #[inline]
    pub fn is_full(&self, size: Size) -> Result<bool, Error> {
        let Some(max_value) = size.unsigned_int_max() else {
            return Err(error!("Expected size <= 128 bits, but found {} instead", size.bits()));
        };
        if self.start <= max_value && self.end <= max_value {
            Ok(self.start == (self.end.wrapping_add(1) & max_value))
        } else {
            Err(error!("Range `{self:?}` out of bounds for size `{}` bits.", size.bits()))
        }
    }

    /// Returns `true` if `v` is contained in the range.
    #[inline(always)]
    pub fn contains(&self, v: u128) -> bool {
        if self.wraps_around() {
            self.start <= v || v <= self.end
        } else {
            self.start <= v && v <= self.end
        }
    }

    /// Returns `true` if the range wraps around.
    /// I.e., the range represents the union of `self.start..=MAX` and `0..=self.end`.
    /// Returns `false` if this is a non-wrapping range, i.e.: `self.start..=self.end`.
    #[inline]
    pub fn wraps_around(&self) -> bool {
        self.start > self.end
    }
}

impl Debug for WrappingRange {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.start > self.end {
            write!(fmt, "(..={}) | ({}..)", self.end, self.start)?;
        } else {
            write!(fmt, "{}..={}", self.start, self.end)?;
        }
        Ok(())
    }
}

/// General language calling conventions.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum CallConvention {
    C,
    Rust,

    Cold,
    PreserveMost,
    PreserveAll,

    // Target-specific calling conventions.
    ArmAapcs,
    CCmseNonSecureCall,

    Msp430Intr,

    PtxKernel,

    X86Fastcall,
    X86Intr,
    X86Stdcall,
    X86ThisCall,
    X86VectorCall,

    X86_64SysV,
    X86_64Win64,

    AvrInterrupt,
    AvrNonBlockingInterrupt,

    RiscvInterrupt,
}