stable_mir/abi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
use std::fmt::{self, Debug};
use std::num::NonZero;
use std::ops::RangeInclusive;
use serde::Serialize;
use crate::compiler_interface::with;
use crate::mir::FieldIdx;
use crate::target::{MachineInfo, MachineSize as Size};
use crate::ty::{Align, IndexedVal, Ty, VariantIdx};
use crate::{Error, Opaque, error};
/// A function ABI definition.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct FnAbi {
/// The types of each argument.
pub args: Vec<ArgAbi>,
/// The expected return type.
pub ret: ArgAbi,
/// The count of non-variadic arguments.
///
/// Should only be different from `args.len()` when a function is a C variadic function.
pub fixed_count: u32,
/// The ABI convention.
pub conv: CallConvention,
/// Whether this is a variadic C function,
pub c_variadic: bool,
}
/// Information about the ABI of a function's argument, or return value.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct ArgAbi {
pub ty: Ty,
pub layout: Layout,
pub mode: PassMode,
}
/// How a function argument should be passed in to the target function.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum PassMode {
/// Ignore the argument.
///
/// The argument is either uninhabited or a ZST.
Ignore,
/// Pass the argument directly.
///
/// The argument has a layout abi of `Scalar` or `Vector`.
Direct(Opaque),
/// Pass a pair's elements directly in two arguments.
///
/// The argument has a layout abi of `ScalarPair`.
Pair(Opaque, Opaque),
/// Pass the argument after casting it.
Cast { pad_i32: bool, cast: Opaque },
/// Pass the argument indirectly via a hidden pointer.
Indirect { attrs: Opaque, meta_attrs: Opaque, on_stack: bool },
}
/// The layout of a type, alongside the type itself.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct TyAndLayout {
pub ty: Ty,
pub layout: Layout,
}
/// The layout of a type in memory.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct LayoutShape {
/// The fields location within the layout
pub fields: FieldsShape,
/// Encodes information about multi-variant layouts.
/// Even with `Multiple` variants, a layout still has its own fields! Those are then
/// shared between all variants.
///
/// To access all fields of this layout, both `fields` and the fields of the active variant
/// must be taken into account.
pub variants: VariantsShape,
/// The `abi` defines how this data is passed between functions.
pub abi: ValueAbi,
/// The ABI mandated alignment in bytes.
pub abi_align: Align,
/// The size of this layout in bytes.
pub size: Size,
}
impl LayoutShape {
/// Returns `true` if the layout corresponds to an unsized type.
#[inline]
pub fn is_unsized(&self) -> bool {
self.abi.is_unsized()
}
#[inline]
pub fn is_sized(&self) -> bool {
!self.abi.is_unsized()
}
/// Returns `true` if the type is sized and a 1-ZST (meaning it has size 0 and alignment 1).
pub fn is_1zst(&self) -> bool {
self.is_sized() && self.size.bits() == 0 && self.abi_align == 1
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub struct Layout(usize);
impl Layout {
pub fn shape(self) -> LayoutShape {
with(|cx| cx.layout_shape(self))
}
}
impl IndexedVal for Layout {
fn to_val(index: usize) -> Self {
Layout(index)
}
fn to_index(&self) -> usize {
self.0
}
}
/// Describes how the fields of a type are shaped in memory.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum FieldsShape {
/// Scalar primitives and `!`, which never have fields.
Primitive,
/// All fields start at no offset. The `usize` is the field count.
Union(NonZero<usize>),
/// Array/vector-like placement, with all fields of identical types.
Array { stride: Size, count: u64 },
/// Struct-like placement, with precomputed offsets.
///
/// Fields are guaranteed to not overlap, but note that gaps
/// before, between and after all the fields are NOT always
/// padding, and as such their contents may not be discarded.
/// For example, enum variants leave a gap at the start,
/// where the discriminant field in the enum layout goes.
Arbitrary {
/// Offsets for the first byte of each field,
/// ordered to match the source definition order.
/// I.e.: It follows the same order as [crate::ty::VariantDef::fields()].
/// This vector does not go in increasing order.
offsets: Vec<Size>,
},
}
impl FieldsShape {
pub fn fields_by_offset_order(&self) -> Vec<FieldIdx> {
match self {
FieldsShape::Primitive => vec![],
FieldsShape::Union(_) | FieldsShape::Array { .. } => (0..self.count()).collect(),
FieldsShape::Arbitrary { offsets, .. } => {
let mut indices = (0..offsets.len()).collect::<Vec<_>>();
indices.sort_by_key(|idx| offsets[*idx]);
indices
}
}
}
pub fn count(&self) -> usize {
match self {
FieldsShape::Primitive => 0,
FieldsShape::Union(count) => count.get(),
FieldsShape::Array { count, .. } => *count as usize,
FieldsShape::Arbitrary { offsets, .. } => offsets.len(),
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum VariantsShape {
/// A type with no valid variants. Must be uninhabited.
Empty,
/// Single enum variants, structs/tuples, unions, and all non-ADTs.
Single { index: VariantIdx },
/// Enum-likes with more than one inhabited variant: each variant comes with
/// a *discriminant* (usually the same as the variant index but the user can
/// assign explicit discriminant values). That discriminant is encoded
/// as a *tag* on the machine. The layout of each variant is
/// a struct, and they all have space reserved for the tag.
/// For enums, the tag is the sole field of the layout.
Multiple {
tag: Scalar,
tag_encoding: TagEncoding,
tag_field: usize,
variants: Vec<LayoutShape>,
},
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum TagEncoding {
/// The tag directly stores the discriminant, but possibly with a smaller layout
/// (so converting the tag to the discriminant can require sign extension).
Direct,
/// Niche (values invalid for a type) encoding the discriminant:
/// Discriminant and variant index coincide.
/// The variant `untagged_variant` contains a niche at an arbitrary
/// offset (field `tag_field` of the enum), which for a variant with
/// discriminant `d` is set to
/// `(d - niche_variants.start).wrapping_add(niche_start)`.
///
/// For example, `Option<(usize, &T)>` is represented such that
/// `None` has a null pointer for the second tuple field, and
/// `Some` is the identity function (with a non-null reference).
Niche {
untagged_variant: VariantIdx,
niche_variants: RangeInclusive<VariantIdx>,
niche_start: u128,
},
}
/// Describes how values of the type are passed by target ABIs,
/// in terms of categories of C types there are ABI rules for.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum ValueAbi {
Uninhabited,
Scalar(Scalar),
ScalarPair(Scalar, Scalar),
Vector {
element: Scalar,
count: u64,
},
Aggregate {
/// If true, the size is exact, otherwise it's only a lower bound.
sized: bool,
},
}
impl ValueAbi {
/// Returns `true` if the layout corresponds to an unsized type.
pub fn is_unsized(&self) -> bool {
match *self {
ValueAbi::Uninhabited
| ValueAbi::Scalar(_)
| ValueAbi::ScalarPair(..)
| ValueAbi::Vector { .. } => false,
ValueAbi::Aggregate { sized } => !sized,
}
}
}
/// Information about one scalar component of a Rust type.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Serialize)]
pub enum Scalar {
Initialized {
/// The primitive type used to represent this value.
value: Primitive,
/// The range that represents valid values.
/// The range must be valid for the `primitive` size.
valid_range: WrappingRange,
},
Union {
/// Unions never have niches, so there is no `valid_range`.
/// Even for unions, we need to use the correct registers for the kind of
/// values inside the union, so we keep the `Primitive` type around.
/// It is also used to compute the size of the scalar.
value: Primitive,
},
}
impl Scalar {
pub fn has_niche(&self, target: &MachineInfo) -> bool {
match self {
Scalar::Initialized { value, valid_range } => {
!valid_range.is_full(value.size(target)).unwrap()
}
Scalar::Union { .. } => false,
}
}
}
/// Fundamental unit of memory access and layout.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Serialize)]
pub enum Primitive {
/// The `bool` is the signedness of the `Integer` type.
///
/// One would think we would not care about such details this low down,
/// but some ABIs are described in terms of C types and ISAs where the
/// integer arithmetic is done on {sign,zero}-extended registers, e.g.
/// a negative integer passed by zero-extension will appear positive in
/// the callee, and most operations on it will produce the wrong values.
Int {
length: IntegerLength,
signed: bool,
},
Float {
length: FloatLength,
},
Pointer(AddressSpace),
}
impl Primitive {
pub fn size(self, target: &MachineInfo) -> Size {
match self {
Primitive::Int { length, .. } => Size::from_bits(length.bits()),
Primitive::Float { length } => Size::from_bits(length.bits()),
Primitive::Pointer(_) => target.pointer_width,
}
}
}
/// Enum representing the existing integer lengths.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Serialize)]
pub enum IntegerLength {
I8,
I16,
I32,
I64,
I128,
}
/// Enum representing the existing float lengths.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Serialize)]
pub enum FloatLength {
F16,
F32,
F64,
F128,
}
impl IntegerLength {
pub fn bits(self) -> usize {
match self {
IntegerLength::I8 => 8,
IntegerLength::I16 => 16,
IntegerLength::I32 => 32,
IntegerLength::I64 => 64,
IntegerLength::I128 => 128,
}
}
}
impl FloatLength {
pub fn bits(self) -> usize {
match self {
FloatLength::F16 => 16,
FloatLength::F32 => 32,
FloatLength::F64 => 64,
FloatLength::F128 => 128,
}
}
}
/// An identifier that specifies the address space that some operation
/// should operate on. Special address spaces have an effect on code generation,
/// depending on the target and the address spaces it implements.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize)]
pub struct AddressSpace(pub u32);
impl AddressSpace {
/// The default address space, corresponding to data space.
pub const DATA: Self = AddressSpace(0);
}
/// Inclusive wrap-around range of valid values (bitwise representation), that is, if
/// start > end, it represents `start..=MAX`, followed by `0..=end`.
///
/// That is, for an i8 primitive, a range of `254..=2` means following
/// sequence:
///
/// 254 (-2), 255 (-1), 0, 1, 2
#[derive(Clone, Copy, PartialEq, Eq, Hash, Serialize)]
pub struct WrappingRange {
pub start: u128,
pub end: u128,
}
impl WrappingRange {
/// Returns `true` if `size` completely fills the range.
#[inline]
pub fn is_full(&self, size: Size) -> Result<bool, Error> {
let Some(max_value) = size.unsigned_int_max() else {
return Err(error!("Expected size <= 128 bits, but found {} instead", size.bits()));
};
if self.start <= max_value && self.end <= max_value {
Ok(self.start == (self.end.wrapping_add(1) & max_value))
} else {
Err(error!("Range `{self:?}` out of bounds for size `{}` bits.", size.bits()))
}
}
/// Returns `true` if `v` is contained in the range.
#[inline(always)]
pub fn contains(&self, v: u128) -> bool {
if self.wraps_around() {
self.start <= v || v <= self.end
} else {
self.start <= v && v <= self.end
}
}
/// Returns `true` if the range wraps around.
/// I.e., the range represents the union of `self.start..=MAX` and `0..=self.end`.
/// Returns `false` if this is a non-wrapping range, i.e.: `self.start..=self.end`.
#[inline]
pub fn wraps_around(&self) -> bool {
self.start > self.end
}
}
impl Debug for WrappingRange {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.start > self.end {
write!(fmt, "(..={}) | ({}..)", self.end, self.start)?;
} else {
write!(fmt, "{}..={}", self.start, self.end)?;
}
Ok(())
}
}
/// General language calling conventions.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize)]
pub enum CallConvention {
C,
Rust,
Cold,
PreserveMost,
PreserveAll,
// Target-specific calling conventions.
ArmAapcs,
CCmseNonSecureCall,
CCmseNonSecureEntry,
Msp430Intr,
PtxKernel,
X86Fastcall,
X86Intr,
X86Stdcall,
X86ThisCall,
X86VectorCall,
X86_64SysV,
X86_64Win64,
AvrInterrupt,
AvrNonBlockingInterrupt,
RiscvInterrupt,
}