rustc_infer/infer/relate/lattice.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
//! # Lattice variables
//!
//! Generic code for operating on [lattices] of inference variables
//! that are characterized by an upper- and lower-bound.
//!
//! The code is defined quite generically so that it can be
//! applied both to type variables, which represent types being inferred,
//! and fn variables, which represent function types being inferred.
//! (It may eventually be applied to their types as well.)
//! In some cases, the functions are also generic with respect to the
//! operation on the lattice (GLB vs LUB).
//!
//! ## Note
//!
//! Although all the functions are generic, for simplicity, comments in the source code
//! generally refer to type variables and the LUB operation.
//!
//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)
use rustc_middle::traits::solve::Goal;
use rustc_middle::ty::relate::combine::{super_combine_consts, super_combine_tys};
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::{self, Ty, TyCtxt, TyVar, TypeVisitableExt};
use rustc_span::Span;
use tracing::{debug, instrument};
use super::StructurallyRelateAliases;
use super::combine::PredicateEmittingRelation;
use crate::infer::{DefineOpaqueTypes, InferCtxt, SubregionOrigin, TypeTrace};
use crate::traits::{Obligation, PredicateObligations};
#[derive(Clone, Copy)]
pub(crate) enum LatticeOpKind {
Glb,
Lub,
}
impl LatticeOpKind {
fn invert(self) -> Self {
match self {
LatticeOpKind::Glb => LatticeOpKind::Lub,
LatticeOpKind::Lub => LatticeOpKind::Glb,
}
}
}
/// A greatest lower bound" (common subtype) or least upper bound (common supertype).
pub(crate) struct LatticeOp<'infcx, 'tcx> {
infcx: &'infcx InferCtxt<'tcx>,
// Immutable fields
trace: TypeTrace<'tcx>,
param_env: ty::ParamEnv<'tcx>,
// Mutable fields
kind: LatticeOpKind,
obligations: PredicateObligations<'tcx>,
}
impl<'infcx, 'tcx> LatticeOp<'infcx, 'tcx> {
pub(crate) fn new(
infcx: &'infcx InferCtxt<'tcx>,
trace: TypeTrace<'tcx>,
param_env: ty::ParamEnv<'tcx>,
kind: LatticeOpKind,
) -> LatticeOp<'infcx, 'tcx> {
LatticeOp { infcx, trace, param_env, kind, obligations: PredicateObligations::new() }
}
pub(crate) fn into_obligations(self) -> PredicateObligations<'tcx> {
self.obligations
}
}
impl<'tcx> TypeRelation<TyCtxt<'tcx>> for LatticeOp<'_, 'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn relate_with_variance<T: Relate<TyCtxt<'tcx>>>(
&mut self,
variance: ty::Variance,
_info: ty::VarianceDiagInfo<TyCtxt<'tcx>>,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
match variance {
ty::Invariant => {
self.obligations.extend(
self.infcx
.at(&self.trace.cause, self.param_env)
.eq_trace(DefineOpaqueTypes::Yes, self.trace.clone(), a, b)?
.into_obligations(),
);
Ok(a)
}
ty::Covariant => self.relate(a, b),
// FIXME(#41044) -- not correct, need test
ty::Bivariant => Ok(a),
ty::Contravariant => {
self.kind = self.kind.invert();
let res = self.relate(a, b);
self.kind = self.kind.invert();
res
}
}
}
/// Relates two types using a given lattice.
#[instrument(skip(self), level = "trace")]
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
if a == b {
return Ok(a);
}
let infcx = self.infcx;
let a = infcx.shallow_resolve(a);
let b = infcx.shallow_resolve(b);
match (a.kind(), b.kind()) {
// If one side is known to be a variable and one is not,
// create a variable (`v`) to represent the LUB. Make sure to
// relate `v` to the non-type-variable first (by passing it
// first to `relate_bound`). Otherwise, we would produce a
// subtype obligation that must then be processed.
//
// Example: if the LHS is a type variable, and RHS is
// `Box<i32>`, then we current compare `v` to the RHS first,
// which will instantiate `v` with `Box<i32>`. Then when `v`
// is compared to the LHS, we instantiate LHS with `Box<i32>`.
// But if we did in reverse order, we would create a `v <:
// LHS` (or vice versa) constraint and then instantiate
// `v`. This would require further processing to achieve same
// end-result; in particular, this screws up some of the logic
// in coercion, which expects LUB to figure out that the LHS
// is (e.g.) `Box<i32>`. A more obvious solution might be to
// iterate on the subtype obligations that are returned, but I
// think this suffices. -nmatsakis
(&ty::Infer(TyVar(..)), _) => {
let v = infcx.next_ty_var(self.trace.cause.span);
self.relate_bound(v, b, a)?;
Ok(v)
}
(_, &ty::Infer(TyVar(..))) => {
let v = infcx.next_ty_var(self.trace.cause.span);
self.relate_bound(v, a, b)?;
Ok(v)
}
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id => super_combine_tys(infcx, self, a, b),
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
if def_id.is_local() && !infcx.next_trait_solver() =>
{
self.register_goals(infcx.handle_opaque_type(
a,
b,
self.span(),
self.param_env(),
)?);
Ok(a)
}
_ => super_combine_tys(infcx, self, a, b),
}
}
#[instrument(skip(self), level = "trace")]
fn regions(
&mut self,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
let origin = SubregionOrigin::Subtype(Box::new(self.trace.clone()));
let mut inner = self.infcx.inner.borrow_mut();
let mut constraints = inner.unwrap_region_constraints();
Ok(match self.kind {
// GLB(&'static u8, &'a u8) == &RegionLUB('static, 'a) u8 == &'static u8
LatticeOpKind::Glb => constraints.lub_regions(self.cx(), origin, a, b),
// LUB(&'static u8, &'a u8) == &RegionGLB('static, 'a) u8 == &'a u8
LatticeOpKind::Lub => constraints.glb_regions(self.cx(), origin, a, b),
})
}
#[instrument(skip(self), level = "trace")]
fn consts(
&mut self,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
super_combine_consts(self.infcx, self, a, b)
}
fn binders<T>(
&mut self,
a: ty::Binder<'tcx, T>,
b: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
where
T: Relate<TyCtxt<'tcx>>,
{
// GLB/LUB of a binder and itself is just itself
if a == b {
return Ok(a);
}
debug!("binders(a={:?}, b={:?})", a, b);
if a.skip_binder().has_escaping_bound_vars() || b.skip_binder().has_escaping_bound_vars() {
// When higher-ranked types are involved, computing the GLB/LUB is
// very challenging, switch to invariance. This is obviously
// overly conservative but works ok in practice.
self.relate_with_variance(ty::Invariant, ty::VarianceDiagInfo::default(), a, b)?;
Ok(a)
} else {
Ok(ty::Binder::dummy(self.relate(a.skip_binder(), b.skip_binder())?))
}
}
}
impl<'infcx, 'tcx> LatticeOp<'infcx, 'tcx> {
// Relates the type `v` to `a` and `b` such that `v` represents
// the LUB/GLB of `a` and `b` as appropriate.
//
// Subtle hack: ordering *may* be significant here. This method
// relates `v` to `a` first, which may help us to avoid unnecessary
// type variable obligations. See caller for details.
fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()> {
let at = self.infcx.at(&self.trace.cause, self.param_env);
match self.kind {
LatticeOpKind::Glb => {
self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, v, a)?.into_obligations());
self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, v, b)?.into_obligations());
}
LatticeOpKind::Lub => {
self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, a, v)?.into_obligations());
self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, b, v)?.into_obligations());
}
}
Ok(())
}
}
impl<'tcx> PredicateEmittingRelation<InferCtxt<'tcx>> for LatticeOp<'_, 'tcx> {
fn span(&self) -> Span {
self.trace.span()
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
StructurallyRelateAliases::No
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn register_predicates(
&mut self,
preds: impl IntoIterator<Item: ty::Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>>>,
) {
self.obligations.extend(preds.into_iter().map(|pred| {
Obligation::new(self.infcx.tcx, self.trace.cause.clone(), self.param_env, pred)
}))
}
fn register_goals(&mut self, goals: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>) {
self.obligations.extend(goals.into_iter().map(|goal| {
Obligation::new(
self.infcx.tcx,
self.trace.cause.clone(),
goal.param_env,
goal.predicate,
)
}))
}
fn register_alias_relate_predicate(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.register_predicates([ty::Binder::dummy(ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
// FIXME(deferred_projection_equality): This isn't right, I think?
ty::AliasRelationDirection::Equate,
))]);
}
}