rustc_symbol_mangling/legacy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
use std::fmt::{self, Write};
use std::mem::{self, discriminant};
use rustc_data_structures::stable_hasher::{Hash64, HashStable, StableHasher};
use rustc_hir::def_id::{CrateNum, DefId};
use rustc_hir::definitions::{DefPathData, DisambiguatedDefPathData};
use rustc_middle::bug;
use rustc_middle::ty::print::{PrettyPrinter, Print, PrintError, Printer};
use rustc_middle::ty::{
self, GenericArg, GenericArgKind, Instance, ReifyReason, Ty, TyCtxt, TypeVisitableExt,
};
use tracing::debug;
pub(super) fn mangle<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
instantiating_crate: Option<CrateNum>,
) -> String {
let def_id = instance.def_id();
// We want to compute the "type" of this item. Unfortunately, some
// kinds of items (e.g., closures) don't have an entry in the
// item-type array. So walk back up the find the closest parent
// that DOES have an entry.
let mut ty_def_id = def_id;
let instance_ty;
loop {
let key = tcx.def_key(ty_def_id);
match key.disambiguated_data.data {
DefPathData::TypeNs(_) | DefPathData::ValueNs(_) => {
instance_ty = tcx.type_of(ty_def_id).instantiate_identity();
debug!(?instance_ty);
break;
}
_ => {
// if we're making a symbol for something, there ought
// to be a value or type-def or something in there
// *somewhere*
ty_def_id.index = key.parent.unwrap_or_else(|| {
bug!(
"finding type for {:?}, encountered def-id {:?} with no \
parent",
def_id,
ty_def_id
);
});
}
}
}
// Erase regions because they may not be deterministic when hashed
// and should not matter anyhow.
let instance_ty = tcx.erase_regions(instance_ty);
let hash = get_symbol_hash(tcx, instance, instance_ty, instantiating_crate);
let mut printer = SymbolPrinter { tcx, path: SymbolPath::new(), keep_within_component: false };
printer
.print_def_path(
def_id,
if let ty::InstanceKind::DropGlue(_, _)
| ty::InstanceKind::AsyncDropGlueCtorShim(_, _) = instance.def
{
// Add the name of the dropped type to the symbol name
&*instance.args
} else {
&[]
},
)
.unwrap();
match instance.def {
ty::InstanceKind::ThreadLocalShim(..) => {
printer.write_str("{{tls-shim}}").unwrap();
}
ty::InstanceKind::VTableShim(..) => {
printer.write_str("{{vtable-shim}}").unwrap();
}
ty::InstanceKind::ReifyShim(_, reason) => {
printer.write_str("{{reify-shim").unwrap();
match reason {
Some(ReifyReason::FnPtr) => printer.write_str("-fnptr").unwrap(),
Some(ReifyReason::Vtable) => printer.write_str("-vtable").unwrap(),
None => (),
}
printer.write_str("}}").unwrap();
}
// FIXME(async_closures): This shouldn't be needed when we fix
// `Instance::ty`/`Instance::def_id`.
ty::InstanceKind::ConstructCoroutineInClosureShim { receiver_by_ref, .. } => {
printer
.write_str(if receiver_by_ref { "{{by-move-shim}}" } else { "{{by-ref-shim}}" })
.unwrap();
}
_ => {}
}
printer.path.finish(hash)
}
fn get_symbol_hash<'tcx>(
tcx: TyCtxt<'tcx>,
// instance this name will be for
instance: Instance<'tcx>,
// type of the item, without any generic
// parameters instantiated; this is
// included in the hash as a kind of
// safeguard.
item_type: Ty<'tcx>,
instantiating_crate: Option<CrateNum>,
) -> Hash64 {
let def_id = instance.def_id();
let args = instance.args;
debug!("get_symbol_hash(def_id={:?}, parameters={:?})", def_id, args);
tcx.with_stable_hashing_context(|mut hcx| {
let mut hasher = StableHasher::new();
// the main symbol name is not necessarily unique; hash in the
// compiler's internal def-path, guaranteeing each symbol has a
// truly unique path
tcx.def_path_hash(def_id).hash_stable(&mut hcx, &mut hasher);
// Include the main item-type. Note that, in this case, the
// assertions about `has_param` may not hold, but this item-type
// ought to be the same for every reference anyway.
assert!(!item_type.has_erasable_regions());
hcx.while_hashing_spans(false, |hcx| {
item_type.hash_stable(hcx, &mut hasher);
// If this is a function, we hash the signature as well.
// This is not *strictly* needed, but it may help in some
// situations, see the `run-make/a-b-a-linker-guard` test.
if let ty::FnDef(..) = item_type.kind() {
item_type.fn_sig(tcx).hash_stable(hcx, &mut hasher);
}
// also include any type parameters (for generic items)
args.hash_stable(hcx, &mut hasher);
if let Some(instantiating_crate) = instantiating_crate {
tcx.def_path_hash(instantiating_crate.as_def_id())
.stable_crate_id()
.hash_stable(hcx, &mut hasher);
}
// We want to avoid accidental collision between different types of instances.
// Especially, `VTableShim`s and `ReifyShim`s may overlap with their original
// instances without this.
discriminant(&instance.def).hash_stable(hcx, &mut hasher);
});
// 64 bits should be enough to avoid collisions.
hasher.finish::<Hash64>()
})
}
// Follow C++ namespace-mangling style, see
// https://en.wikipedia.org/wiki/Name_mangling for more info.
//
// It turns out that on macOS you can actually have arbitrary symbols in
// function names (at least when given to LLVM), but this is not possible
// when using unix's linker. Perhaps one day when we just use a linker from LLVM
// we won't need to do this name mangling. The problem with name mangling is
// that it seriously limits the available characters. For example we can't
// have things like &T in symbol names when one would theoretically
// want them for things like impls of traits on that type.
//
// To be able to work on all platforms and get *some* reasonable output, we
// use C++ name-mangling.
#[derive(Debug)]
struct SymbolPath {
result: String,
temp_buf: String,
}
impl SymbolPath {
fn new() -> Self {
let mut result =
SymbolPath { result: String::with_capacity(64), temp_buf: String::with_capacity(16) };
result.result.push_str("_ZN"); // _Z == Begin name-sequence, N == nested
result
}
fn finalize_pending_component(&mut self) {
if !self.temp_buf.is_empty() {
let _ = write!(self.result, "{}{}", self.temp_buf.len(), self.temp_buf);
self.temp_buf.clear();
}
}
fn finish(mut self, hash: Hash64) -> String {
self.finalize_pending_component();
// E = end name-sequence
let _ = write!(self.result, "17h{hash:016x}E");
self.result
}
}
struct SymbolPrinter<'tcx> {
tcx: TyCtxt<'tcx>,
path: SymbolPath,
// When `true`, `finalize_pending_component` isn't used.
// This is needed when recursing into `path_qualified`,
// or `path_generic_args`, as any nested paths are
// logically within one component.
keep_within_component: bool,
}
// HACK(eddyb) this relies on using the `fmt` interface to get
// `PrettyPrinter` aka pretty printing of e.g. types in paths,
// symbol names should have their own printing machinery.
impl<'tcx> Printer<'tcx> for SymbolPrinter<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn print_region(&mut self, _region: ty::Region<'_>) -> Result<(), PrintError> {
Ok(())
}
fn print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
match *ty.kind() {
// Print all nominal types as paths (unlike `pretty_print_type`).
ty::FnDef(def_id, args)
| ty::Alias(ty::Projection | ty::Opaque, ty::AliasTy { def_id, args, .. })
| ty::Closure(def_id, args)
| ty::CoroutineClosure(def_id, args)
| ty::Coroutine(def_id, args) => self.print_def_path(def_id, args),
// The `pretty_print_type` formatting of array size depends on
// -Zverbose-internals flag, so we cannot reuse it here.
ty::Array(ty, size) => {
self.write_str("[")?;
self.print_type(ty)?;
self.write_str("; ")?;
if let Some(size) = size.try_to_target_usize(self.tcx()) {
write!(self, "{size}")?
} else if let ty::ConstKind::Param(param) = size.kind() {
param.print(self)?
} else {
self.write_str("_")?
}
self.write_str("]")?;
Ok(())
}
ty::Alias(ty::Inherent, _) => panic!("unexpected inherent projection"),
_ => self.pretty_print_type(ty),
}
}
fn print_dyn_existential(
&mut self,
predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> Result<(), PrintError> {
let mut first = true;
for p in predicates {
if !first {
write!(self, "+")?;
}
first = false;
p.print(self)?;
}
Ok(())
}
fn print_const(&mut self, ct: ty::Const<'tcx>) -> Result<(), PrintError> {
// only print integers
match ct.kind() {
ty::ConstKind::Value(ty, ty::ValTree::Leaf(scalar)) if ty.is_integral() => {
// The `pretty_print_const` formatting depends on -Zverbose-internals
// flag, so we cannot reuse it here.
let signed = matches!(ty.kind(), ty::Int(_));
write!(
self,
"{:#?}",
ty::ConstInt::new(scalar, signed, ty.is_ptr_sized_integral())
)?;
}
_ => self.write_str("_")?,
}
Ok(())
}
fn path_crate(&mut self, cnum: CrateNum) -> Result<(), PrintError> {
self.write_str(self.tcx.crate_name(cnum).as_str())?;
Ok(())
}
fn path_qualified(
&mut self,
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
// Similar to `pretty_path_qualified`, but for the other
// types that are printed as paths (see `print_type` above).
match self_ty.kind() {
ty::FnDef(..)
| ty::Alias(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
if trait_ref.is_none() =>
{
self.print_type(self_ty)
}
_ => self.pretty_path_qualified(self_ty, trait_ref),
}
}
fn path_append_impl(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
_disambiguated_data: &DisambiguatedDefPathData,
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
self.pretty_path_append_impl(
|cx| {
print_prefix(cx)?;
if cx.keep_within_component {
// HACK(eddyb) print the path similarly to how `FmtPrinter` prints it.
cx.write_str("::")?;
} else {
cx.path.finalize_pending_component();
}
Ok(())
},
self_ty,
trait_ref,
)
}
fn path_append(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
disambiguated_data: &DisambiguatedDefPathData,
) -> Result<(), PrintError> {
print_prefix(self)?;
// Skip `::{{extern}}` blocks and `::{{constructor}}` on tuple/unit structs.
if let DefPathData::ForeignMod | DefPathData::Ctor = disambiguated_data.data {
return Ok(());
}
if self.keep_within_component {
// HACK(eddyb) print the path similarly to how `FmtPrinter` prints it.
self.write_str("::")?;
} else {
self.path.finalize_pending_component();
}
write!(self, "{}", disambiguated_data.data)?;
Ok(())
}
fn path_generic_args(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
args: &[GenericArg<'tcx>],
) -> Result<(), PrintError> {
print_prefix(self)?;
let args =
args.iter().cloned().filter(|arg| !matches!(arg.unpack(), GenericArgKind::Lifetime(_)));
if args.clone().next().is_some() {
self.generic_delimiters(|cx| cx.comma_sep(args))
} else {
Ok(())
}
}
fn print_impl_path(
&mut self,
impl_def_id: DefId,
args: &'tcx [GenericArg<'tcx>],
mut self_ty: Ty<'tcx>,
mut impl_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
let mut typing_env = ty::TypingEnv::post_analysis(self.tcx, impl_def_id);
if !args.is_empty() {
typing_env.param_env =
ty::EarlyBinder::bind(typing_env.param_env).instantiate(self.tcx, args);
}
match &mut impl_trait_ref {
Some(impl_trait_ref) => {
assert_eq!(impl_trait_ref.self_ty(), self_ty);
*impl_trait_ref = self.tcx.normalize_erasing_regions(typing_env, *impl_trait_ref);
self_ty = impl_trait_ref.self_ty();
}
None => {
self_ty = self.tcx.normalize_erasing_regions(typing_env, self_ty);
}
}
self.default_print_impl_path(impl_def_id, args, self_ty, impl_trait_ref)
}
}
impl<'tcx> PrettyPrinter<'tcx> for SymbolPrinter<'tcx> {
fn should_print_region(&self, _region: ty::Region<'_>) -> bool {
false
}
fn comma_sep<T>(&mut self, mut elems: impl Iterator<Item = T>) -> Result<(), PrintError>
where
T: Print<'tcx, Self>,
{
if let Some(first) = elems.next() {
first.print(self)?;
for elem in elems {
self.write_str(",")?;
elem.print(self)?;
}
}
Ok(())
}
fn generic_delimiters(
&mut self,
f: impl FnOnce(&mut Self) -> Result<(), PrintError>,
) -> Result<(), PrintError> {
write!(self, "<")?;
let kept_within_component = mem::replace(&mut self.keep_within_component, true);
f(self)?;
self.keep_within_component = kept_within_component;
write!(self, ">")?;
Ok(())
}
}
impl fmt::Write for SymbolPrinter<'_> {
fn write_str(&mut self, s: &str) -> fmt::Result {
// Name sanitation. LLVM will happily accept identifiers with weird names, but
// gas doesn't!
// gas accepts the following characters in symbols: a-z, A-Z, 0-9, ., _, $
// NVPTX assembly has more strict naming rules than gas, so additionally, dots
// are replaced with '$' there.
for c in s.chars() {
if self.path.temp_buf.is_empty() {
match c {
'a'..='z' | 'A'..='Z' | '_' => {}
_ => {
// Underscore-qualify anything that didn't start as an ident.
self.path.temp_buf.push('_');
}
}
}
match c {
// Escape these with $ sequences
'@' => self.path.temp_buf.push_str("$SP$"),
'*' => self.path.temp_buf.push_str("$BP$"),
'&' => self.path.temp_buf.push_str("$RF$"),
'<' => self.path.temp_buf.push_str("$LT$"),
'>' => self.path.temp_buf.push_str("$GT$"),
'(' => self.path.temp_buf.push_str("$LP$"),
')' => self.path.temp_buf.push_str("$RP$"),
',' => self.path.temp_buf.push_str("$C$"),
'-' | ':' | '.' if self.tcx.has_strict_asm_symbol_naming() => {
// NVPTX doesn't support these characters in symbol names.
self.path.temp_buf.push('$')
}
// '.' doesn't occur in types and functions, so reuse it
// for ':' and '-'
'-' | ':' => self.path.temp_buf.push('.'),
// Avoid crashing LLVM in certain (LTO-related) situations, see #60925.
'm' if self.path.temp_buf.ends_with(".llv") => self.path.temp_buf.push_str("$u6d$"),
// These are legal symbols
'a'..='z' | 'A'..='Z' | '0'..='9' | '_' | '.' | '$' => self.path.temp_buf.push(c),
_ => {
self.path.temp_buf.push('$');
for c in c.escape_unicode().skip(1) {
match c {
'{' => {}
'}' => self.path.temp_buf.push('$'),
c => self.path.temp_buf.push(c),
}
}
}
}
}
Ok(())
}
}