1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::Span;
use rustc_type_ir::fold::TypeFoldable;
use std::ops::ControlFlow;

#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Parameter(pub u32);

impl From<ty::ParamTy> for Parameter {
    fn from(param: ty::ParamTy) -> Self {
        Parameter(param.index)
    }
}

impl From<ty::EarlyParamRegion> for Parameter {
    fn from(param: ty::EarlyParamRegion) -> Self {
        Parameter(param.index)
    }
}

impl From<ty::ParamConst> for Parameter {
    fn from(param: ty::ParamConst) -> Self {
        Parameter(param.index)
    }
}

/// Returns the set of parameters constrained by the impl header.
pub fn parameters_for_impl<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_self_ty: Ty<'tcx>,
    impl_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> FxHashSet<Parameter> {
    let vec = match impl_trait_ref {
        Some(tr) => parameters_for(tcx, tr, false),
        None => parameters_for(tcx, impl_self_ty, false),
    };
    vec.into_iter().collect()
}

/// If `include_nonconstraining` is false, returns the list of parameters that are
/// constrained by `value` - i.e., the value of each parameter in the list is
/// uniquely determined by `value` (see RFC 447). If it is true, return the list
/// of parameters whose values are needed in order to constrain `value` - these
/// differ, with the latter being a superset, in the presence of projections.
pub fn parameters_for<'tcx>(
    tcx: TyCtxt<'tcx>,
    value: impl TypeFoldable<TyCtxt<'tcx>>,
    include_nonconstraining: bool,
) -> Vec<Parameter> {
    let mut collector = ParameterCollector { parameters: vec![], include_nonconstraining };
    let value = if !include_nonconstraining { tcx.expand_weak_alias_tys(value) } else { value };
    value.visit_with(&mut collector);
    collector.parameters
}

struct ParameterCollector {
    parameters: Vec<Parameter>,
    include_nonconstraining: bool,
}

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ParameterCollector {
    fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
        match *t.kind() {
            // Projections are not injective in general.
            ty::Alias(ty::Projection | ty::Inherent | ty::Opaque, _)
                if !self.include_nonconstraining =>
            {
                return ControlFlow::Continue(());
            }
            // All weak alias types should've been expanded beforehand.
            ty::Alias(ty::Weak, _) if !self.include_nonconstraining => {
                bug!("unexpected weak alias type")
            }
            ty::Param(param) => self.parameters.push(Parameter::from(param)),
            _ => {}
        }

        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
        if let ty::ReEarlyParam(data) = *r {
            self.parameters.push(Parameter::from(data));
        }
        ControlFlow::Continue(())
    }

    fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
        match c.kind() {
            ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => {
                // Constant expressions are not injective in general.
                return c.ty().visit_with(self);
            }
            ty::ConstKind::Param(data) => {
                self.parameters.push(Parameter::from(data));
            }
            _ => {}
        }

        c.super_visit_with(self)
    }
}

pub fn identify_constrained_generic_params<'tcx>(
    tcx: TyCtxt<'tcx>,
    predicates: ty::GenericPredicates<'tcx>,
    impl_trait_ref: Option<ty::TraitRef<'tcx>>,
    input_parameters: &mut FxHashSet<Parameter>,
) {
    let mut predicates = predicates.predicates.to_vec();
    setup_constraining_predicates(tcx, &mut predicates, impl_trait_ref, input_parameters);
}

/// Order the predicates in `predicates` such that each parameter is
/// constrained before it is used, if that is possible, and add the
/// parameters so constrained to `input_parameters`. For example,
/// imagine the following impl:
/// ```ignore (illustrative)
/// impl<T: Debug, U: Iterator<Item = T>> Trait for U
/// ```
/// The impl's predicates are collected from left to right. Ignoring
/// the implicit `Sized` bounds, these are
///   * `T: Debug`
///   * `U: Iterator`
///   * `<U as Iterator>::Item = T` -- a desugared ProjectionPredicate
///
/// When we, for example, try to go over the trait-reference
/// `IntoIter<u32> as Trait`, we instantiate the impl parameters with fresh
/// variables and match them with the impl trait-ref, so we know that
/// `$U = IntoIter<u32>`.
///
/// However, in order to process the `$T: Debug` predicate, we must first
/// know the value of `$T` - which is only given by processing the
/// projection. As we occasionally want to process predicates in a single
/// pass, we want the projection to come first. In fact, as projections
/// can (acyclically) depend on one another - see RFC447 for details - we
/// need to topologically sort them.
///
/// We *do* have to be somewhat careful when projection targets contain
/// projections themselves, for example in
///
/// ```ignore (illustrative)
///     impl<S,U,V,W> Trait for U where
/// /* 0 */   S: Iterator<Item = U>,
/// /* - */   U: Iterator,
/// /* 1 */   <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
/// /* 2 */   W: Iterator<Item = V>
/// /* 3 */   V: Debug
/// ```
///
/// we have to evaluate the projections in the order I wrote them:
/// `V: Debug` requires `V` to be evaluated. The only projection that
/// *determines* `V` is 2 (1 contains it, but *does not determine it*,
/// as it is only contained within a projection), but that requires `W`
/// which is determined by 1, which requires `U`, that is determined
/// by 0. I should probably pick a less tangled example, but I can't
/// think of any.
pub fn setup_constraining_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    predicates: &mut [(ty::Clause<'tcx>, Span)],
    impl_trait_ref: Option<ty::TraitRef<'tcx>>,
    input_parameters: &mut FxHashSet<Parameter>,
) {
    // The canonical way of doing the needed topological sort
    // would be a DFS, but getting the graph and its ownership
    // right is annoying, so I am using an in-place fixed-point iteration,
    // which is `O(nt)` where `t` is the depth of type-parameter constraints,
    // remembering that `t` should be less than 7 in practice.
    //
    // Basically, I iterate over all projections and swap every
    // "ready" projection to the start of the list, such that
    // all of the projections before `i` are topologically sorted
    // and constrain all the parameters in `input_parameters`.
    //
    // In the example, `input_parameters` starts by containing `U` - which
    // is constrained by the trait-ref - and so on the first pass we
    // observe that `<U as Iterator>::Item = T` is a "ready" projection that
    // constrains `T` and swap it to front. As it is the sole projection,
    // no more swaps can take place afterwards, with the result being
    //   * <U as Iterator>::Item = T
    //   * T: Debug
    //   * U: Iterator
    debug!(
        "setup_constraining_predicates: predicates={:?} \
            impl_trait_ref={:?} input_parameters={:?}",
        predicates, impl_trait_ref, input_parameters
    );
    let mut i = 0;
    let mut changed = true;
    while changed {
        changed = false;

        for j in i..predicates.len() {
            // Note that we don't have to care about binders here,
            // as the impl trait ref never contains any late-bound regions.
            if let ty::ClauseKind::Projection(projection) = predicates[j].0.kind().skip_binder() {
                // Special case: watch out for some kind of sneaky attempt
                // to project out an associated type defined by this very
                // trait.
                let unbound_trait_ref = projection.projection_ty.trait_ref(tcx);
                if Some(unbound_trait_ref) == impl_trait_ref {
                    continue;
                }

                // A projection depends on its input types and determines its output
                // type. For example, if we have
                //     `<<T as Bar>::Baz as Iterator>::Output = <U as Iterator>::Output`
                // Then the projection only applies if `T` is known, but it still
                // does not determine `U`.
                let inputs = parameters_for(tcx, projection.projection_ty, true);
                let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(p));
                if !relies_only_on_inputs {
                    continue;
                }
                input_parameters.extend(parameters_for(tcx, projection.term, false));
            } else {
                continue;
            }
            // fancy control flow to bypass borrow checker
            predicates.swap(i, j);
            i += 1;
            changed = true;
        }
        debug!(
            "setup_constraining_predicates: predicates={:?} \
                i={} impl_trait_ref={:?} input_parameters={:?}",
            predicates, i, impl_trait_ref, input_parameters
        );
    }
}