rustc_hir_analysis/constrained_generic_params.rs
1use rustc_data_structures::fx::FxHashSet;
2use rustc_middle::bug;
3use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeSuperVisitable, TypeVisitor};
4use rustc_span::Span;
5use tracing::debug;
6
7#[derive(Clone, PartialEq, Eq, Hash, Debug)]
8pub(crate) struct Parameter(pub u32);
9
10impl From<ty::ParamTy> for Parameter {
11 fn from(param: ty::ParamTy) -> Self {
12 Parameter(param.index)
13 }
14}
15
16impl From<ty::EarlyParamRegion> for Parameter {
17 fn from(param: ty::EarlyParamRegion) -> Self {
18 Parameter(param.index)
19 }
20}
21
22impl From<ty::ParamConst> for Parameter {
23 fn from(param: ty::ParamConst) -> Self {
24 Parameter(param.index)
25 }
26}
27
28/// Returns the set of parameters constrained by the impl header.
29pub(crate) fn parameters_for_impl<'tcx>(
30 tcx: TyCtxt<'tcx>,
31 impl_self_ty: Ty<'tcx>,
32 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
33) -> FxHashSet<Parameter> {
34 let vec = match impl_trait_ref {
35 Some(tr) => parameters_for(tcx, tr, false),
36 None => parameters_for(tcx, impl_self_ty, false),
37 };
38 vec.into_iter().collect()
39}
40
41/// If `include_nonconstraining` is false, returns the list of parameters that are
42/// constrained by `value` - i.e., the value of each parameter in the list is
43/// uniquely determined by `value` (see RFC 447). If it is true, return the list
44/// of parameters whose values are needed in order to constrain `value` - these
45/// differ, with the latter being a superset, in the presence of projections.
46pub(crate) fn parameters_for<'tcx>(
47 tcx: TyCtxt<'tcx>,
48 value: impl TypeFoldable<TyCtxt<'tcx>>,
49 include_nonconstraining: bool,
50) -> Vec<Parameter> {
51 let mut collector = ParameterCollector { parameters: vec![], include_nonconstraining };
52 let value = if !include_nonconstraining { tcx.expand_weak_alias_tys(value) } else { value };
53 value.visit_with(&mut collector);
54 collector.parameters
55}
56
57struct ParameterCollector {
58 parameters: Vec<Parameter>,
59 include_nonconstraining: bool,
60}
61
62impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ParameterCollector {
63 fn visit_ty(&mut self, t: Ty<'tcx>) {
64 match *t.kind() {
65 // Projections are not injective in general.
66 ty::Alias(ty::Projection | ty::Inherent | ty::Opaque, _)
67 if !self.include_nonconstraining =>
68 {
69 return;
70 }
71 // All weak alias types should've been expanded beforehand.
72 ty::Alias(ty::Weak, _) if !self.include_nonconstraining => {
73 bug!("unexpected weak alias type")
74 }
75 ty::Param(param) => self.parameters.push(Parameter::from(param)),
76 _ => {}
77 }
78
79 t.super_visit_with(self)
80 }
81
82 fn visit_region(&mut self, r: ty::Region<'tcx>) {
83 if let ty::ReEarlyParam(data) = *r {
84 self.parameters.push(Parameter::from(data));
85 }
86 }
87
88 fn visit_const(&mut self, c: ty::Const<'tcx>) {
89 match c.kind() {
90 ty::ConstKind::Unevaluated(..) if !self.include_nonconstraining => {
91 // Constant expressions are not injective in general.
92 return;
93 }
94 ty::ConstKind::Param(data) => {
95 self.parameters.push(Parameter::from(data));
96 }
97 _ => {}
98 }
99
100 c.super_visit_with(self)
101 }
102}
103
104pub(crate) fn identify_constrained_generic_params<'tcx>(
105 tcx: TyCtxt<'tcx>,
106 predicates: ty::GenericPredicates<'tcx>,
107 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
108 input_parameters: &mut FxHashSet<Parameter>,
109) {
110 let mut predicates = predicates.predicates.to_vec();
111 setup_constraining_predicates(tcx, &mut predicates, impl_trait_ref, input_parameters);
112}
113
114/// Order the predicates in `predicates` such that each parameter is
115/// constrained before it is used, if that is possible, and add the
116/// parameters so constrained to `input_parameters`. For example,
117/// imagine the following impl:
118/// ```ignore (illustrative)
119/// impl<T: Debug, U: Iterator<Item = T>> Trait for U
120/// ```
121/// The impl's predicates are collected from left to right. Ignoring
122/// the implicit `Sized` bounds, these are
123/// * `T: Debug`
124/// * `U: Iterator`
125/// * `<U as Iterator>::Item = T` -- a desugared ProjectionPredicate
126///
127/// When we, for example, try to go over the trait-reference
128/// `IntoIter<u32> as Trait`, we instantiate the impl parameters with fresh
129/// variables and match them with the impl trait-ref, so we know that
130/// `$U = IntoIter<u32>`.
131///
132/// However, in order to process the `$T: Debug` predicate, we must first
133/// know the value of `$T` - which is only given by processing the
134/// projection. As we occasionally want to process predicates in a single
135/// pass, we want the projection to come first. In fact, as projections
136/// can (acyclically) depend on one another - see RFC447 for details - we
137/// need to topologically sort them.
138///
139/// We *do* have to be somewhat careful when projection targets contain
140/// projections themselves, for example in
141///
142/// ```ignore (illustrative)
143/// impl<S,U,V,W> Trait for U where
144/// /* 0 */ S: Iterator<Item = U>,
145/// /* - */ U: Iterator,
146/// /* 1 */ <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
147/// /* 2 */ W: Iterator<Item = V>
148/// /* 3 */ V: Debug
149/// ```
150///
151/// we have to evaluate the projections in the order I wrote them:
152/// `V: Debug` requires `V` to be evaluated. The only projection that
153/// *determines* `V` is 2 (1 contains it, but *does not determine it*,
154/// as it is only contained within a projection), but that requires `W`
155/// which is determined by 1, which requires `U`, that is determined
156/// by 0. I should probably pick a less tangled example, but I can't
157/// think of any.
158pub(crate) fn setup_constraining_predicates<'tcx>(
159 tcx: TyCtxt<'tcx>,
160 predicates: &mut [(ty::Clause<'tcx>, Span)],
161 impl_trait_ref: Option<ty::TraitRef<'tcx>>,
162 input_parameters: &mut FxHashSet<Parameter>,
163) {
164 // The canonical way of doing the needed topological sort
165 // would be a DFS, but getting the graph and its ownership
166 // right is annoying, so I am using an in-place fixed-point iteration,
167 // which is `O(nt)` where `t` is the depth of type-parameter constraints,
168 // remembering that `t` should be less than 7 in practice.
169 //
170 // Basically, I iterate over all projections and swap every
171 // "ready" projection to the start of the list, such that
172 // all of the projections before `i` are topologically sorted
173 // and constrain all the parameters in `input_parameters`.
174 //
175 // In the example, `input_parameters` starts by containing `U` - which
176 // is constrained by the trait-ref - and so on the first pass we
177 // observe that `<U as Iterator>::Item = T` is a "ready" projection that
178 // constrains `T` and swap it to front. As it is the sole projection,
179 // no more swaps can take place afterwards, with the result being
180 // * <U as Iterator>::Item = T
181 // * T: Debug
182 // * U: Iterator
183 debug!(
184 "setup_constraining_predicates: predicates={:?} \
185 impl_trait_ref={:?} input_parameters={:?}",
186 predicates, impl_trait_ref, input_parameters
187 );
188 let mut i = 0;
189 let mut changed = true;
190 while changed {
191 changed = false;
192
193 for j in i..predicates.len() {
194 // Note that we don't have to care about binders here,
195 // as the impl trait ref never contains any late-bound regions.
196 if let ty::ClauseKind::Projection(projection) = predicates[j].0.kind().skip_binder() {
197 // Special case: watch out for some kind of sneaky attempt
198 // to project out an associated type defined by this very
199 // trait.
200 let unbound_trait_ref = projection.projection_term.trait_ref(tcx);
201 if Some(unbound_trait_ref) == impl_trait_ref {
202 continue;
203 }
204
205 // A projection depends on its input types and determines its output
206 // type. For example, if we have
207 // `<<T as Bar>::Baz as Iterator>::Output = <U as Iterator>::Output`
208 // Then the projection only applies if `T` is known, but it still
209 // does not determine `U`.
210 let inputs = parameters_for(tcx, projection.projection_term, true);
211 let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(p));
212 if !relies_only_on_inputs {
213 continue;
214 }
215 input_parameters.extend(parameters_for(tcx, projection.term, false));
216 } else {
217 continue;
218 }
219 // fancy control flow to bypass borrow checker
220 predicates.swap(i, j);
221 i += 1;
222 changed = true;
223 }
224 debug!(
225 "setup_constraining_predicates: predicates={:?} \
226 i={} impl_trait_ref={:?} input_parameters={:?}",
227 predicates, i, impl_trait_ref, input_parameters
228 );
229 }
230}