1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
//! This pass is only used for the UNIT TESTS and DEBUGGING NEEDS
//! around dependency graph construction. It serves two purposes; it
//! will dump graphs in graphviz form to disk, and it searches for
//! `#[rustc_if_this_changed]` and `#[rustc_then_this_would_need]`
//! annotations. These annotations can be used to test whether paths
//! exist in the graph. These checks run after codegen, so they view the
//! the final state of the dependency graph. Note that there are
//! similar assertions found in `persist::dirty_clean` which check the
//! **initial** state of the dependency graph, just after it has been
//! loaded from disk.
//!
//! In this code, we report errors on each `rustc_if_this_changed`
//! annotation. If a path exists in all cases, then we would report
//! "all path(s) exist". Otherwise, we report: "no path to `foo`" for
//! each case where no path exists. `ui` tests can then be
//! used to check when paths exist or do not.
//!
//! The full form of the `rustc_if_this_changed` annotation is
//! `#[rustc_if_this_changed("foo")]`, which will report a
//! source node of `foo(def_id)`. The `"foo"` is optional and
//! defaults to `"Hir"` if omitted.
//!
//! Example:
//!
//! ```ignore (needs flags)
//! #[rustc_if_this_changed(Hir)]
//! fn foo() { }
//!
//! #[rustc_then_this_would_need(codegen)] //~ ERROR no path from `foo`
//! fn bar() { }
//!
//! #[rustc_then_this_would_need(codegen)] //~ ERROR OK
//! fn baz() { foo(); }
//! ```

use crate::errors;
use rustc_ast as ast;
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::graph::implementation::{Direction, NodeIndex, INCOMING, OUTGOING};
use rustc_graphviz as dot;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
use rustc_hir::intravisit::{self, Visitor};
use rustc_middle::dep_graph::{
    dep_kinds, DepGraphQuery, DepKind, DepNode, DepNodeExt, DepNodeFilter, EdgeFilter,
};
use rustc_middle::hir::nested_filter;
use rustc_middle::ty::TyCtxt;
use rustc_middle::{bug, span_bug};
use rustc_span::symbol::{sym, Symbol};
use rustc_span::Span;

use std::env;
use std::fs::{self, File};
use std::io::{BufWriter, Write};

#[allow(missing_docs)]
pub fn assert_dep_graph(tcx: TyCtxt<'_>) {
    tcx.dep_graph.with_ignore(|| {
        if tcx.sess.opts.unstable_opts.dump_dep_graph {
            tcx.dep_graph.with_query(dump_graph);
        }

        if !tcx.sess.opts.unstable_opts.query_dep_graph {
            return;
        }

        // if the `rustc_attrs` feature is not enabled, then the
        // attributes we are interested in cannot be present anyway, so
        // skip the walk.
        if !tcx.features().rustc_attrs {
            return;
        }

        // Find annotations supplied by user (if any).
        let (if_this_changed, then_this_would_need) = {
            let mut visitor =
                IfThisChanged { tcx, if_this_changed: vec![], then_this_would_need: vec![] };
            visitor.process_attrs(CRATE_DEF_ID);
            tcx.hir().visit_all_item_likes_in_crate(&mut visitor);
            (visitor.if_this_changed, visitor.then_this_would_need)
        };

        if !if_this_changed.is_empty() || !then_this_would_need.is_empty() {
            assert!(
                tcx.sess.opts.unstable_opts.query_dep_graph,
                "cannot use the `#[{}]` or `#[{}]` annotations \
                    without supplying `-Z query-dep-graph`",
                sym::rustc_if_this_changed,
                sym::rustc_then_this_would_need
            );
        }

        // Check paths.
        check_paths(tcx, &if_this_changed, &then_this_would_need);
    })
}

type Sources = Vec<(Span, DefId, DepNode)>;
type Targets = Vec<(Span, Symbol, hir::HirId, DepNode)>;

struct IfThisChanged<'tcx> {
    tcx: TyCtxt<'tcx>,
    if_this_changed: Sources,
    then_this_would_need: Targets,
}

impl<'tcx> IfThisChanged<'tcx> {
    fn argument(&self, attr: &ast::Attribute) -> Option<Symbol> {
        let mut value = None;
        for list_item in attr.meta_item_list().unwrap_or_default() {
            match list_item.ident() {
                Some(ident) if list_item.is_word() && value.is_none() => value = Some(ident.name),
                _ =>
                // FIXME better-encapsulate meta_item (don't directly access `node`)
                {
                    span_bug!(list_item.span(), "unexpected meta-item {:?}", list_item)
                }
            }
        }
        value
    }

    fn process_attrs(&mut self, def_id: LocalDefId) {
        let def_path_hash = self.tcx.def_path_hash(def_id.to_def_id());
        let hir_id = self.tcx.local_def_id_to_hir_id(def_id);
        let attrs = self.tcx.hir().attrs(hir_id);
        for attr in attrs {
            if attr.has_name(sym::rustc_if_this_changed) {
                let dep_node_interned = self.argument(attr);
                let dep_node = match dep_node_interned {
                    None => DepNode::from_def_path_hash(
                        self.tcx,
                        def_path_hash,
                        dep_kinds::opt_hir_owner_nodes,
                    ),
                    Some(n) => {
                        match DepNode::from_label_string(self.tcx, n.as_str(), def_path_hash) {
                            Ok(n) => n,
                            Err(()) => self.tcx.dcx().emit_fatal(errors::UnrecognizedDepNode {
                                span: attr.span,
                                name: n,
                            }),
                        }
                    }
                };
                self.if_this_changed.push((attr.span, def_id.to_def_id(), dep_node));
            } else if attr.has_name(sym::rustc_then_this_would_need) {
                let dep_node_interned = self.argument(attr);
                let dep_node = match dep_node_interned {
                    Some(n) => {
                        match DepNode::from_label_string(self.tcx, n.as_str(), def_path_hash) {
                            Ok(n) => n,
                            Err(()) => self.tcx.dcx().emit_fatal(errors::UnrecognizedDepNode {
                                span: attr.span,
                                name: n,
                            }),
                        }
                    }
                    None => {
                        self.tcx.dcx().emit_fatal(errors::MissingDepNode { span: attr.span });
                    }
                };
                self.then_this_would_need.push((
                    attr.span,
                    dep_node_interned.unwrap(),
                    hir_id,
                    dep_node,
                ));
            }
        }
    }
}

impl<'tcx> Visitor<'tcx> for IfThisChanged<'tcx> {
    type NestedFilter = nested_filter::OnlyBodies;

    fn nested_visit_map(&mut self) -> Self::Map {
        self.tcx.hir()
    }

    fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
        self.process_attrs(item.owner_id.def_id);
        intravisit::walk_item(self, item);
    }

    fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
        self.process_attrs(trait_item.owner_id.def_id);
        intravisit::walk_trait_item(self, trait_item);
    }

    fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
        self.process_attrs(impl_item.owner_id.def_id);
        intravisit::walk_impl_item(self, impl_item);
    }

    fn visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>) {
        self.process_attrs(s.def_id);
        intravisit::walk_field_def(self, s);
    }
}

fn check_paths<'tcx>(tcx: TyCtxt<'tcx>, if_this_changed: &Sources, then_this_would_need: &Targets) {
    // Return early here so as not to construct the query, which is not cheap.
    if if_this_changed.is_empty() {
        for &(target_span, _, _, _) in then_this_would_need {
            tcx.dcx().emit_err(errors::MissingIfThisChanged { span: target_span });
        }
        return;
    }
    tcx.dep_graph.with_query(|query| {
        for &(_, source_def_id, ref source_dep_node) in if_this_changed {
            let dependents = query.transitive_predecessors(source_dep_node);
            for &(target_span, ref target_pass, _, ref target_dep_node) in then_this_would_need {
                if !dependents.contains(&target_dep_node) {
                    tcx.dcx().emit_err(errors::NoPath {
                        span: target_span,
                        source: tcx.def_path_str(source_def_id),
                        target: *target_pass,
                    });
                } else {
                    tcx.dcx().emit_err(errors::Ok { span: target_span });
                }
            }
        }
    });
}

fn dump_graph(query: &DepGraphQuery) {
    let path: String = env::var("RUST_DEP_GRAPH").unwrap_or_else(|_| "dep_graph".to_string());

    let nodes = match env::var("RUST_DEP_GRAPH_FILTER") {
        Ok(string) => {
            // Expect one of: "-> target", "source -> target", or "source ->".
            let edge_filter =
                EdgeFilter::new(&string).unwrap_or_else(|e| bug!("invalid filter: {}", e));
            let sources = node_set(query, &edge_filter.source);
            let targets = node_set(query, &edge_filter.target);
            filter_nodes(query, &sources, &targets)
        }
        Err(_) => query.nodes().into_iter().map(|n| n.kind).collect(),
    };
    let edges = filter_edges(query, &nodes);

    {
        // dump a .txt file with just the edges:
        let txt_path = format!("{path}.txt");
        let mut file = BufWriter::new(File::create(&txt_path).unwrap());
        for (source, target) in &edges {
            write!(file, "{source:?} -> {target:?}\n").unwrap();
        }
    }

    {
        // dump a .dot file in graphviz format:
        let dot_path = format!("{path}.dot");
        let mut v = Vec::new();
        dot::render(&GraphvizDepGraph(nodes, edges), &mut v).unwrap();
        fs::write(dot_path, v).unwrap();
    }
}

#[allow(missing_docs)]
pub struct GraphvizDepGraph(FxIndexSet<DepKind>, Vec<(DepKind, DepKind)>);

impl<'a> dot::GraphWalk<'a> for GraphvizDepGraph {
    type Node = DepKind;
    type Edge = (DepKind, DepKind);
    fn nodes(&self) -> dot::Nodes<'_, DepKind> {
        let nodes: Vec<_> = self.0.iter().cloned().collect();
        nodes.into()
    }
    fn edges(&self) -> dot::Edges<'_, (DepKind, DepKind)> {
        self.1[..].into()
    }
    fn source(&self, edge: &(DepKind, DepKind)) -> DepKind {
        edge.0
    }
    fn target(&self, edge: &(DepKind, DepKind)) -> DepKind {
        edge.1
    }
}

impl<'a> dot::Labeller<'a> for GraphvizDepGraph {
    type Node = DepKind;
    type Edge = (DepKind, DepKind);
    fn graph_id(&self) -> dot::Id<'_> {
        dot::Id::new("DependencyGraph").unwrap()
    }
    fn node_id(&self, n: &DepKind) -> dot::Id<'_> {
        let s: String = format!("{n:?}")
            .chars()
            .map(|c| if c == '_' || c.is_alphanumeric() { c } else { '_' })
            .collect();
        debug!("n={:?} s={:?}", n, s);
        dot::Id::new(s).unwrap()
    }
    fn node_label(&self, n: &DepKind) -> dot::LabelText<'_> {
        dot::LabelText::label(format!("{n:?}"))
    }
}

// Given an optional filter like `"x,y,z"`, returns either `None` (no
// filter) or the set of nodes whose labels contain all of those
// substrings.
fn node_set<'q>(
    query: &'q DepGraphQuery,
    filter: &DepNodeFilter,
) -> Option<FxIndexSet<&'q DepNode>> {
    debug!("node_set(filter={:?})", filter);

    if filter.accepts_all() {
        return None;
    }

    Some(query.nodes().into_iter().filter(|n| filter.test(n)).collect())
}

fn filter_nodes<'q>(
    query: &'q DepGraphQuery,
    sources: &Option<FxIndexSet<&'q DepNode>>,
    targets: &Option<FxIndexSet<&'q DepNode>>,
) -> FxIndexSet<DepKind> {
    if let Some(sources) = sources {
        if let Some(targets) = targets {
            walk_between(query, sources, targets)
        } else {
            walk_nodes(query, sources, OUTGOING)
        }
    } else if let Some(targets) = targets {
        walk_nodes(query, targets, INCOMING)
    } else {
        query.nodes().into_iter().map(|n| n.kind).collect()
    }
}

fn walk_nodes<'q>(
    query: &'q DepGraphQuery,
    starts: &FxIndexSet<&'q DepNode>,
    direction: Direction,
) -> FxIndexSet<DepKind> {
    let mut set = FxIndexSet::default();
    for &start in starts {
        debug!("walk_nodes: start={:?} outgoing?={:?}", start, direction == OUTGOING);
        if set.insert(start.kind) {
            let mut stack = vec![query.indices[start]];
            while let Some(index) = stack.pop() {
                for (_, edge) in query.graph.adjacent_edges(index, direction) {
                    let neighbor_index = edge.source_or_target(direction);
                    let neighbor = query.graph.node_data(neighbor_index);
                    if set.insert(neighbor.kind) {
                        stack.push(neighbor_index);
                    }
                }
            }
        }
    }
    set
}

fn walk_between<'q>(
    query: &'q DepGraphQuery,
    sources: &FxIndexSet<&'q DepNode>,
    targets: &FxIndexSet<&'q DepNode>,
) -> FxIndexSet<DepKind> {
    // This is a bit tricky. We want to include a node only if it is:
    // (a) reachable from a source and (b) will reach a target. And we
    // have to be careful about cycles etc. Luckily efficiency is not
    // a big concern!

    #[derive(Copy, Clone, PartialEq)]
    enum State {
        Undecided,
        Deciding,
        Included,
        Excluded,
    }

    let mut node_states = vec![State::Undecided; query.graph.len_nodes()];

    for &target in targets {
        node_states[query.indices[target].0] = State::Included;
    }

    for source in sources.iter().map(|&n| query.indices[n]) {
        recurse(query, &mut node_states, source);
    }

    return query
        .nodes()
        .into_iter()
        .filter(|&n| {
            let index = query.indices[n];
            node_states[index.0] == State::Included
        })
        .map(|n| n.kind)
        .collect();

    fn recurse(query: &DepGraphQuery, node_states: &mut [State], node: NodeIndex) -> bool {
        match node_states[node.0] {
            // known to reach a target
            State::Included => return true,

            // known not to reach a target
            State::Excluded => return false,

            // backedge, not yet known, say false
            State::Deciding => return false,

            State::Undecided => {}
        }

        node_states[node.0] = State::Deciding;

        for neighbor_index in query.graph.successor_nodes(node) {
            if recurse(query, node_states, neighbor_index) {
                node_states[node.0] = State::Included;
            }
        }

        // if we didn't find a path to target, then set to excluded
        if node_states[node.0] == State::Deciding {
            node_states[node.0] = State::Excluded;
            false
        } else {
            assert!(node_states[node.0] == State::Included);
            true
        }
    }
}

fn filter_edges(query: &DepGraphQuery, nodes: &FxIndexSet<DepKind>) -> Vec<(DepKind, DepKind)> {
    let uniq: FxIndexSet<_> = query
        .edges()
        .into_iter()
        .map(|(s, t)| (s.kind, t.kind))
        .filter(|(source, target)| nodes.contains(source) && nodes.contains(target))
        .collect();
    uniq.into_iter().collect()
}