rustc_query_system/query/job.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
use std::hash::Hash;
use std::io::Write;
use std::num::NonZero;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{Diag, DiagCtxtHandle};
use rustc_hir::def::DefKind;
use rustc_session::Session;
use rustc_span::Span;
#[cfg(parallel_compiler)]
use {
parking_lot::{Condvar, Mutex},
rustc_data_structures::fx::FxHashSet,
rustc_data_structures::jobserver,
rustc_span::DUMMY_SP,
std::iter,
std::sync::Arc,
};
use crate::dep_graph::DepContext;
use crate::error::CycleStack;
use crate::query::plumbing::CycleError;
use crate::query::{DepKind, QueryContext, QueryStackFrame};
/// Represents a span and a query key.
#[derive(Clone, Debug)]
pub struct QueryInfo {
/// The span corresponding to the reason for which this query was required.
pub span: Span,
pub query: QueryStackFrame,
}
pub type QueryMap = FxHashMap<QueryJobId, QueryJobInfo>;
/// A value uniquely identifying an active query job.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct QueryJobId(pub NonZero<u64>);
impl QueryJobId {
fn query(self, map: &QueryMap) -> QueryStackFrame {
map.get(&self).unwrap().query.clone()
}
#[cfg(parallel_compiler)]
fn span(self, map: &QueryMap) -> Span {
map.get(&self).unwrap().job.span
}
#[cfg(parallel_compiler)]
fn parent(self, map: &QueryMap) -> Option<QueryJobId> {
map.get(&self).unwrap().job.parent
}
#[cfg(parallel_compiler)]
fn latch(self, map: &QueryMap) -> Option<&QueryLatch> {
map.get(&self).unwrap().job.latch.as_ref()
}
}
#[derive(Clone, Debug)]
pub struct QueryJobInfo {
pub query: QueryStackFrame,
pub job: QueryJob,
}
/// Represents an active query job.
#[derive(Clone, Debug)]
pub struct QueryJob {
pub id: QueryJobId,
/// The span corresponding to the reason for which this query was required.
pub span: Span,
/// The parent query job which created this job and is implicitly waiting on it.
pub parent: Option<QueryJobId>,
/// The latch that is used to wait on this job.
#[cfg(parallel_compiler)]
latch: Option<QueryLatch>,
}
impl QueryJob {
/// Creates a new query job.
#[inline]
pub fn new(id: QueryJobId, span: Span, parent: Option<QueryJobId>) -> Self {
QueryJob {
id,
span,
parent,
#[cfg(parallel_compiler)]
latch: None,
}
}
#[cfg(parallel_compiler)]
pub(super) fn latch(&mut self) -> QueryLatch {
if self.latch.is_none() {
self.latch = Some(QueryLatch::new());
}
self.latch.as_ref().unwrap().clone()
}
/// Signals to waiters that the query is complete.
///
/// This does nothing for single threaded rustc,
/// as there are no concurrent jobs which could be waiting on us
#[inline]
pub fn signal_complete(self) {
#[cfg(parallel_compiler)]
{
if let Some(latch) = self.latch {
latch.set();
}
}
}
}
impl QueryJobId {
pub(super) fn find_cycle_in_stack(
&self,
query_map: QueryMap,
current_job: &Option<QueryJobId>,
span: Span,
) -> CycleError {
// Find the waitee amongst `current_job` parents
let mut cycle = Vec::new();
let mut current_job = Option::clone(current_job);
while let Some(job) = current_job {
let info = query_map.get(&job).unwrap();
cycle.push(QueryInfo { span: info.job.span, query: info.query.clone() });
if job == *self {
cycle.reverse();
// This is the end of the cycle
// The span entry we included was for the usage
// of the cycle itself, and not part of the cycle
// Replace it with the span which caused the cycle to form
cycle[0].span = span;
// Find out why the cycle itself was used
let usage = info
.job
.parent
.as_ref()
.map(|parent| (info.job.span, parent.query(&query_map)));
return CycleError { usage, cycle };
}
current_job = info.job.parent;
}
panic!("did not find a cycle")
}
#[cold]
#[inline(never)]
pub fn try_find_layout_root(
&self,
query_map: QueryMap,
layout_of_kind: DepKind,
) -> Option<(QueryJobInfo, usize)> {
let mut last_layout = None;
let mut current_id = Some(*self);
let mut depth = 0;
while let Some(id) = current_id {
let info = query_map.get(&id).unwrap();
if info.query.dep_kind == layout_of_kind {
depth += 1;
last_layout = Some((info.clone(), depth));
}
current_id = info.job.parent;
}
last_layout
}
}
#[cfg(parallel_compiler)]
#[derive(Debug)]
struct QueryWaiter {
query: Option<QueryJobId>,
condvar: Condvar,
span: Span,
cycle: Mutex<Option<CycleError>>,
}
#[cfg(parallel_compiler)]
impl QueryWaiter {
fn notify(&self, registry: &rayon_core::Registry) {
rayon_core::mark_unblocked(registry);
self.condvar.notify_one();
}
}
#[cfg(parallel_compiler)]
#[derive(Debug)]
struct QueryLatchInfo {
complete: bool,
waiters: Vec<Arc<QueryWaiter>>,
}
#[cfg(parallel_compiler)]
#[derive(Clone, Debug)]
pub(super) struct QueryLatch {
info: Arc<Mutex<QueryLatchInfo>>,
}
#[cfg(parallel_compiler)]
impl QueryLatch {
fn new() -> Self {
QueryLatch {
info: Arc::new(Mutex::new(QueryLatchInfo { complete: false, waiters: Vec::new() })),
}
}
/// Awaits for the query job to complete.
pub(super) fn wait_on(&self, query: Option<QueryJobId>, span: Span) -> Result<(), CycleError> {
let waiter =
Arc::new(QueryWaiter { query, span, cycle: Mutex::new(None), condvar: Condvar::new() });
self.wait_on_inner(&waiter);
// FIXME: Get rid of this lock. We have ownership of the QueryWaiter
// although another thread may still have a Arc reference so we cannot
// use Arc::get_mut
let mut cycle = waiter.cycle.lock();
match cycle.take() {
None => Ok(()),
Some(cycle) => Err(cycle),
}
}
/// Awaits the caller on this latch by blocking the current thread.
fn wait_on_inner(&self, waiter: &Arc<QueryWaiter>) {
let mut info = self.info.lock();
if !info.complete {
// We push the waiter on to the `waiters` list. It can be accessed inside
// the `wait` call below, by 1) the `set` method or 2) by deadlock detection.
// Both of these will remove it from the `waiters` list before resuming
// this thread.
info.waiters.push(Arc::clone(waiter));
// If this detects a deadlock and the deadlock handler wants to resume this thread
// we have to be in the `wait` call. This is ensured by the deadlock handler
// getting the self.info lock.
rayon_core::mark_blocked();
jobserver::release_thread();
waiter.condvar.wait(&mut info);
// Release the lock before we potentially block in `acquire_thread`
drop(info);
jobserver::acquire_thread();
}
}
/// Sets the latch and resumes all waiters on it
fn set(&self) {
let mut info = self.info.lock();
debug_assert!(!info.complete);
info.complete = true;
let registry = rayon_core::Registry::current();
for waiter in info.waiters.drain(..) {
waiter.notify(®istry);
}
}
/// Removes a single waiter from the list of waiters.
/// This is used to break query cycles.
fn extract_waiter(&self, waiter: usize) -> Arc<QueryWaiter> {
let mut info = self.info.lock();
debug_assert!(!info.complete);
// Remove the waiter from the list of waiters
info.waiters.remove(waiter)
}
}
/// A resumable waiter of a query. The usize is the index into waiters in the query's latch
#[cfg(parallel_compiler)]
type Waiter = (QueryJobId, usize);
/// Visits all the non-resumable and resumable waiters of a query.
/// Only waiters in a query are visited.
/// `visit` is called for every waiter and is passed a query waiting on `query_ref`
/// and a span indicating the reason the query waited on `query_ref`.
/// If `visit` returns Some, this function returns.
/// For visits of non-resumable waiters it returns the return value of `visit`.
/// For visits of resumable waiters it returns Some(Some(Waiter)) which has the
/// required information to resume the waiter.
/// If all `visit` calls returns None, this function also returns None.
#[cfg(parallel_compiler)]
fn visit_waiters<F>(query_map: &QueryMap, query: QueryJobId, mut visit: F) -> Option<Option<Waiter>>
where
F: FnMut(Span, QueryJobId) -> Option<Option<Waiter>>,
{
// Visit the parent query which is a non-resumable waiter since it's on the same stack
if let Some(parent) = query.parent(query_map) {
if let Some(cycle) = visit(query.span(query_map), parent) {
return Some(cycle);
}
}
// Visit the explicit waiters which use condvars and are resumable
if let Some(latch) = query.latch(query_map) {
for (i, waiter) in latch.info.lock().waiters.iter().enumerate() {
if let Some(waiter_query) = waiter.query {
if visit(waiter.span, waiter_query).is_some() {
// Return a value which indicates that this waiter can be resumed
return Some(Some((query, i)));
}
}
}
}
None
}
/// Look for query cycles by doing a depth first search starting at `query`.
/// `span` is the reason for the `query` to execute. This is initially DUMMY_SP.
/// If a cycle is detected, this initial value is replaced with the span causing
/// the cycle.
#[cfg(parallel_compiler)]
fn cycle_check(
query_map: &QueryMap,
query: QueryJobId,
span: Span,
stack: &mut Vec<(Span, QueryJobId)>,
visited: &mut FxHashSet<QueryJobId>,
) -> Option<Option<Waiter>> {
if !visited.insert(query) {
return if let Some(p) = stack.iter().position(|q| q.1 == query) {
// We detected a query cycle, fix up the initial span and return Some
// Remove previous stack entries
stack.drain(0..p);
// Replace the span for the first query with the cycle cause
stack[0].0 = span;
Some(None)
} else {
None
};
}
// Query marked as visited is added it to the stack
stack.push((span, query));
// Visit all the waiters
let r = visit_waiters(query_map, query, |span, successor| {
cycle_check(query_map, successor, span, stack, visited)
});
// Remove the entry in our stack if we didn't find a cycle
if r.is_none() {
stack.pop();
}
r
}
/// Finds out if there's a path to the compiler root (aka. code which isn't in a query)
/// from `query` without going through any of the queries in `visited`.
/// This is achieved with a depth first search.
#[cfg(parallel_compiler)]
fn connected_to_root(
query_map: &QueryMap,
query: QueryJobId,
visited: &mut FxHashSet<QueryJobId>,
) -> bool {
// We already visited this or we're deliberately ignoring it
if !visited.insert(query) {
return false;
}
// This query is connected to the root (it has no query parent), return true
if query.parent(query_map).is_none() {
return true;
}
visit_waiters(query_map, query, |_, successor| {
connected_to_root(query_map, successor, visited).then_some(None)
})
.is_some()
}
// Deterministically pick an query from a list
#[cfg(parallel_compiler)]
fn pick_query<'a, T, F>(query_map: &QueryMap, queries: &'a [T], f: F) -> &'a T
where
F: Fn(&T) -> (Span, QueryJobId),
{
// Deterministically pick an entry point
// FIXME: Sort this instead
queries
.iter()
.min_by_key(|v| {
let (span, query) = f(v);
let hash = query.query(query_map).hash;
// Prefer entry points which have valid spans for nicer error messages
// We add an integer to the tuple ensuring that entry points
// with valid spans are picked first
let span_cmp = if span == DUMMY_SP { 1 } else { 0 };
(span_cmp, hash)
})
.unwrap()
}
/// Looks for query cycles starting from the last query in `jobs`.
/// If a cycle is found, all queries in the cycle is removed from `jobs` and
/// the function return true.
/// If a cycle was not found, the starting query is removed from `jobs` and
/// the function returns false.
#[cfg(parallel_compiler)]
fn remove_cycle(
query_map: &QueryMap,
jobs: &mut Vec<QueryJobId>,
wakelist: &mut Vec<Arc<QueryWaiter>>,
) -> bool {
let mut visited = FxHashSet::default();
let mut stack = Vec::new();
// Look for a cycle starting with the last query in `jobs`
if let Some(waiter) =
cycle_check(query_map, jobs.pop().unwrap(), DUMMY_SP, &mut stack, &mut visited)
{
// The stack is a vector of pairs of spans and queries; reverse it so that
// the earlier entries require later entries
let (mut spans, queries): (Vec<_>, Vec<_>) = stack.into_iter().rev().unzip();
// Shift the spans so that queries are matched with the span for their waitee
spans.rotate_right(1);
// Zip them back together
let mut stack: Vec<_> = iter::zip(spans, queries).collect();
// Remove the queries in our cycle from the list of jobs to look at
for r in &stack {
if let Some(pos) = jobs.iter().position(|j| j == &r.1) {
jobs.remove(pos);
}
}
// Find the queries in the cycle which are
// connected to queries outside the cycle
let entry_points = stack
.iter()
.filter_map(|&(span, query)| {
if query.parent(query_map).is_none() {
// This query is connected to the root (it has no query parent)
Some((span, query, None))
} else {
let mut waiters = Vec::new();
// Find all the direct waiters who lead to the root
visit_waiters(query_map, query, |span, waiter| {
// Mark all the other queries in the cycle as already visited
let mut visited = FxHashSet::from_iter(stack.iter().map(|q| q.1));
if connected_to_root(query_map, waiter, &mut visited) {
waiters.push((span, waiter));
}
None
});
if waiters.is_empty() {
None
} else {
// Deterministically pick one of the waiters to show to the user
let waiter = *pick_query(query_map, &waiters, |s| *s);
Some((span, query, Some(waiter)))
}
}
})
.collect::<Vec<(Span, QueryJobId, Option<(Span, QueryJobId)>)>>();
// Deterministically pick an entry point
let (_, entry_point, usage) = pick_query(query_map, &entry_points, |e| (e.0, e.1));
// Shift the stack so that our entry point is first
let entry_point_pos = stack.iter().position(|(_, query)| query == entry_point);
if let Some(pos) = entry_point_pos {
stack.rotate_left(pos);
}
let usage = usage.as_ref().map(|(span, query)| (*span, query.query(query_map)));
// Create the cycle error
let error = CycleError {
usage,
cycle: stack
.iter()
.map(|&(s, ref q)| QueryInfo { span: s, query: q.query(query_map) })
.collect(),
};
// We unwrap `waiter` here since there must always be one
// edge which is resumable / waited using a query latch
let (waitee_query, waiter_idx) = waiter.unwrap();
// Extract the waiter we want to resume
let waiter = waitee_query.latch(query_map).unwrap().extract_waiter(waiter_idx);
// Set the cycle error so it will be picked up when resumed
*waiter.cycle.lock() = Some(error);
// Put the waiter on the list of things to resume
wakelist.push(waiter);
true
} else {
false
}
}
/// Detects query cycles by using depth first search over all active query jobs.
/// If a query cycle is found it will break the cycle by finding an edge which
/// uses a query latch and then resuming that waiter.
/// There may be multiple cycles involved in a deadlock, so this searches
/// all active queries for cycles before finally resuming all the waiters at once.
#[cfg(parallel_compiler)]
pub fn break_query_cycles(query_map: QueryMap, registry: &rayon_core::Registry) {
let mut wakelist = Vec::new();
let mut jobs: Vec<QueryJobId> = query_map.keys().cloned().collect();
let mut found_cycle = false;
while jobs.len() > 0 {
if remove_cycle(&query_map, &mut jobs, &mut wakelist) {
found_cycle = true;
}
}
// Check that a cycle was found. It is possible for a deadlock to occur without
// a query cycle if a query which can be waited on uses Rayon to do multithreading
// internally. Such a query (X) may be executing on 2 threads (A and B) and A may
// wait using Rayon on B. Rayon may then switch to executing another query (Y)
// which in turn will wait on X causing a deadlock. We have a false dependency from
// X to Y due to Rayon waiting and a true dependency from Y to X. The algorithm here
// only considers the true dependency and won't detect a cycle.
if !found_cycle {
panic!(
"deadlock detected as we're unable to find a query cycle to break\n\
current query map:\n{:#?}",
query_map
);
}
// FIXME: Ensure this won't cause a deadlock before we return
for waiter in wakelist.into_iter() {
waiter.notify(registry);
}
}
#[inline(never)]
#[cold]
pub fn report_cycle<'a>(
sess: &'a Session,
CycleError { usage, cycle: stack }: &CycleError,
) -> Diag<'a> {
assert!(!stack.is_empty());
let span = stack[0].query.default_span(stack[1 % stack.len()].span);
let mut cycle_stack = Vec::new();
use crate::error::StackCount;
let stack_count = if stack.len() == 1 { StackCount::Single } else { StackCount::Multiple };
for i in 1..stack.len() {
let query = &stack[i].query;
let span = query.default_span(stack[(i + 1) % stack.len()].span);
cycle_stack.push(CycleStack { span, desc: query.description.to_owned() });
}
let mut cycle_usage = None;
if let Some((span, ref query)) = *usage {
cycle_usage = Some(crate::error::CycleUsage {
span: query.default_span(span),
usage: query.description.to_string(),
});
}
let alias = if stack.iter().all(|entry| matches!(entry.query.def_kind, Some(DefKind::TyAlias)))
{
Some(crate::error::Alias::Ty)
} else if stack.iter().all(|entry| entry.query.def_kind == Some(DefKind::TraitAlias)) {
Some(crate::error::Alias::Trait)
} else {
None
};
let cycle_diag = crate::error::Cycle {
span,
cycle_stack,
stack_bottom: stack[0].query.description.to_owned(),
alias,
cycle_usage,
stack_count,
note_span: (),
};
sess.dcx().create_err(cycle_diag)
}
pub fn print_query_stack<Qcx: QueryContext>(
qcx: Qcx,
mut current_query: Option<QueryJobId>,
dcx: DiagCtxtHandle<'_>,
num_frames: Option<usize>,
mut file: Option<std::fs::File>,
) -> usize {
// Be careful relying on global state here: this code is called from
// a panic hook, which means that the global `DiagCtxt` may be in a weird
// state if it was responsible for triggering the panic.
let mut count_printed = 0;
let mut count_total = 0;
let query_map = qcx.collect_active_jobs();
if let Some(ref mut file) = file {
let _ = writeln!(file, "\n\nquery stack during panic:");
}
while let Some(query) = current_query {
let Some(query_info) = query_map.get(&query) else {
break;
};
if Some(count_printed) < num_frames || num_frames.is_none() {
// Only print to stderr as many stack frames as `num_frames` when present.
// FIXME: needs translation
#[allow(rustc::diagnostic_outside_of_impl)]
#[allow(rustc::untranslatable_diagnostic)]
dcx.struct_failure_note(format!(
"#{} [{:?}] {}",
count_printed, query_info.query.dep_kind, query_info.query.description
))
.with_span(query_info.job.span)
.emit();
count_printed += 1;
}
if let Some(ref mut file) = file {
let _ = writeln!(
file,
"#{} [{}] {}",
count_total,
qcx.dep_context().dep_kind_info(query_info.query.dep_kind).name,
query_info.query.description
);
}
current_query = query_info.job.parent;
count_total += 1;
}
if let Some(ref mut file) = file {
let _ = writeln!(file, "end of query stack");
}
count_printed
}