rustc_query_system/query/
job.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
use std::hash::Hash;
use std::io::Write;
use std::num::NonZero;

use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{Diag, DiagCtxtHandle};
use rustc_hir::def::DefKind;
use rustc_session::Session;
use rustc_span::Span;
#[cfg(parallel_compiler)]
use {
    parking_lot::{Condvar, Mutex},
    rustc_data_structures::fx::FxHashSet,
    rustc_data_structures::jobserver,
    rustc_span::DUMMY_SP,
    std::iter,
    std::sync::Arc,
};

use crate::dep_graph::DepContext;
use crate::error::CycleStack;
use crate::query::plumbing::CycleError;
use crate::query::{DepKind, QueryContext, QueryStackFrame};

/// Represents a span and a query key.
#[derive(Clone, Debug)]
pub struct QueryInfo {
    /// The span corresponding to the reason for which this query was required.
    pub span: Span,
    pub query: QueryStackFrame,
}

pub type QueryMap = FxHashMap<QueryJobId, QueryJobInfo>;

/// A value uniquely identifying an active query job.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct QueryJobId(pub NonZero<u64>);

impl QueryJobId {
    fn query(self, map: &QueryMap) -> QueryStackFrame {
        map.get(&self).unwrap().query.clone()
    }

    #[cfg(parallel_compiler)]
    fn span(self, map: &QueryMap) -> Span {
        map.get(&self).unwrap().job.span
    }

    #[cfg(parallel_compiler)]
    fn parent(self, map: &QueryMap) -> Option<QueryJobId> {
        map.get(&self).unwrap().job.parent
    }

    #[cfg(parallel_compiler)]
    fn latch(self, map: &QueryMap) -> Option<&QueryLatch> {
        map.get(&self).unwrap().job.latch.as_ref()
    }
}

#[derive(Clone, Debug)]
pub struct QueryJobInfo {
    pub query: QueryStackFrame,
    pub job: QueryJob,
}

/// Represents an active query job.
#[derive(Clone, Debug)]
pub struct QueryJob {
    pub id: QueryJobId,

    /// The span corresponding to the reason for which this query was required.
    pub span: Span,

    /// The parent query job which created this job and is implicitly waiting on it.
    pub parent: Option<QueryJobId>,

    /// The latch that is used to wait on this job.
    #[cfg(parallel_compiler)]
    latch: Option<QueryLatch>,
}

impl QueryJob {
    /// Creates a new query job.
    #[inline]
    pub fn new(id: QueryJobId, span: Span, parent: Option<QueryJobId>) -> Self {
        QueryJob {
            id,
            span,
            parent,
            #[cfg(parallel_compiler)]
            latch: None,
        }
    }

    #[cfg(parallel_compiler)]
    pub(super) fn latch(&mut self) -> QueryLatch {
        if self.latch.is_none() {
            self.latch = Some(QueryLatch::new());
        }
        self.latch.as_ref().unwrap().clone()
    }

    /// Signals to waiters that the query is complete.
    ///
    /// This does nothing for single threaded rustc,
    /// as there are no concurrent jobs which could be waiting on us
    #[inline]
    pub fn signal_complete(self) {
        #[cfg(parallel_compiler)]
        {
            if let Some(latch) = self.latch {
                latch.set();
            }
        }
    }
}

impl QueryJobId {
    pub(super) fn find_cycle_in_stack(
        &self,
        query_map: QueryMap,
        current_job: &Option<QueryJobId>,
        span: Span,
    ) -> CycleError {
        // Find the waitee amongst `current_job` parents
        let mut cycle = Vec::new();
        let mut current_job = Option::clone(current_job);

        while let Some(job) = current_job {
            let info = query_map.get(&job).unwrap();
            cycle.push(QueryInfo { span: info.job.span, query: info.query.clone() });

            if job == *self {
                cycle.reverse();

                // This is the end of the cycle
                // The span entry we included was for the usage
                // of the cycle itself, and not part of the cycle
                // Replace it with the span which caused the cycle to form
                cycle[0].span = span;
                // Find out why the cycle itself was used
                let usage = info
                    .job
                    .parent
                    .as_ref()
                    .map(|parent| (info.job.span, parent.query(&query_map)));
                return CycleError { usage, cycle };
            }

            current_job = info.job.parent;
        }

        panic!("did not find a cycle")
    }

    #[cold]
    #[inline(never)]
    pub fn try_find_layout_root(
        &self,
        query_map: QueryMap,
        layout_of_kind: DepKind,
    ) -> Option<(QueryJobInfo, usize)> {
        let mut last_layout = None;
        let mut current_id = Some(*self);
        let mut depth = 0;

        while let Some(id) = current_id {
            let info = query_map.get(&id).unwrap();
            if info.query.dep_kind == layout_of_kind {
                depth += 1;
                last_layout = Some((info.clone(), depth));
            }
            current_id = info.job.parent;
        }
        last_layout
    }
}

#[cfg(parallel_compiler)]
#[derive(Debug)]
struct QueryWaiter {
    query: Option<QueryJobId>,
    condvar: Condvar,
    span: Span,
    cycle: Mutex<Option<CycleError>>,
}

#[cfg(parallel_compiler)]
impl QueryWaiter {
    fn notify(&self, registry: &rayon_core::Registry) {
        rayon_core::mark_unblocked(registry);
        self.condvar.notify_one();
    }
}

#[cfg(parallel_compiler)]
#[derive(Debug)]
struct QueryLatchInfo {
    complete: bool,
    waiters: Vec<Arc<QueryWaiter>>,
}

#[cfg(parallel_compiler)]
#[derive(Clone, Debug)]
pub(super) struct QueryLatch {
    info: Arc<Mutex<QueryLatchInfo>>,
}

#[cfg(parallel_compiler)]
impl QueryLatch {
    fn new() -> Self {
        QueryLatch {
            info: Arc::new(Mutex::new(QueryLatchInfo { complete: false, waiters: Vec::new() })),
        }
    }

    /// Awaits for the query job to complete.
    pub(super) fn wait_on(&self, query: Option<QueryJobId>, span: Span) -> Result<(), CycleError> {
        let waiter =
            Arc::new(QueryWaiter { query, span, cycle: Mutex::new(None), condvar: Condvar::new() });
        self.wait_on_inner(&waiter);
        // FIXME: Get rid of this lock. We have ownership of the QueryWaiter
        // although another thread may still have a Arc reference so we cannot
        // use Arc::get_mut
        let mut cycle = waiter.cycle.lock();
        match cycle.take() {
            None => Ok(()),
            Some(cycle) => Err(cycle),
        }
    }

    /// Awaits the caller on this latch by blocking the current thread.
    fn wait_on_inner(&self, waiter: &Arc<QueryWaiter>) {
        let mut info = self.info.lock();
        if !info.complete {
            // We push the waiter on to the `waiters` list. It can be accessed inside
            // the `wait` call below, by 1) the `set` method or 2) by deadlock detection.
            // Both of these will remove it from the `waiters` list before resuming
            // this thread.
            info.waiters.push(Arc::clone(waiter));

            // If this detects a deadlock and the deadlock handler wants to resume this thread
            // we have to be in the `wait` call. This is ensured by the deadlock handler
            // getting the self.info lock.
            rayon_core::mark_blocked();
            jobserver::release_thread();
            waiter.condvar.wait(&mut info);
            // Release the lock before we potentially block in `acquire_thread`
            drop(info);
            jobserver::acquire_thread();
        }
    }

    /// Sets the latch and resumes all waiters on it
    fn set(&self) {
        let mut info = self.info.lock();
        debug_assert!(!info.complete);
        info.complete = true;
        let registry = rayon_core::Registry::current();
        for waiter in info.waiters.drain(..) {
            waiter.notify(&registry);
        }
    }

    /// Removes a single waiter from the list of waiters.
    /// This is used to break query cycles.
    fn extract_waiter(&self, waiter: usize) -> Arc<QueryWaiter> {
        let mut info = self.info.lock();
        debug_assert!(!info.complete);
        // Remove the waiter from the list of waiters
        info.waiters.remove(waiter)
    }
}

/// A resumable waiter of a query. The usize is the index into waiters in the query's latch
#[cfg(parallel_compiler)]
type Waiter = (QueryJobId, usize);

/// Visits all the non-resumable and resumable waiters of a query.
/// Only waiters in a query are visited.
/// `visit` is called for every waiter and is passed a query waiting on `query_ref`
/// and a span indicating the reason the query waited on `query_ref`.
/// If `visit` returns Some, this function returns.
/// For visits of non-resumable waiters it returns the return value of `visit`.
/// For visits of resumable waiters it returns Some(Some(Waiter)) which has the
/// required information to resume the waiter.
/// If all `visit` calls returns None, this function also returns None.
#[cfg(parallel_compiler)]
fn visit_waiters<F>(query_map: &QueryMap, query: QueryJobId, mut visit: F) -> Option<Option<Waiter>>
where
    F: FnMut(Span, QueryJobId) -> Option<Option<Waiter>>,
{
    // Visit the parent query which is a non-resumable waiter since it's on the same stack
    if let Some(parent) = query.parent(query_map) {
        if let Some(cycle) = visit(query.span(query_map), parent) {
            return Some(cycle);
        }
    }

    // Visit the explicit waiters which use condvars and are resumable
    if let Some(latch) = query.latch(query_map) {
        for (i, waiter) in latch.info.lock().waiters.iter().enumerate() {
            if let Some(waiter_query) = waiter.query {
                if visit(waiter.span, waiter_query).is_some() {
                    // Return a value which indicates that this waiter can be resumed
                    return Some(Some((query, i)));
                }
            }
        }
    }

    None
}

/// Look for query cycles by doing a depth first search starting at `query`.
/// `span` is the reason for the `query` to execute. This is initially DUMMY_SP.
/// If a cycle is detected, this initial value is replaced with the span causing
/// the cycle.
#[cfg(parallel_compiler)]
fn cycle_check(
    query_map: &QueryMap,
    query: QueryJobId,
    span: Span,
    stack: &mut Vec<(Span, QueryJobId)>,
    visited: &mut FxHashSet<QueryJobId>,
) -> Option<Option<Waiter>> {
    if !visited.insert(query) {
        return if let Some(p) = stack.iter().position(|q| q.1 == query) {
            // We detected a query cycle, fix up the initial span and return Some

            // Remove previous stack entries
            stack.drain(0..p);
            // Replace the span for the first query with the cycle cause
            stack[0].0 = span;
            Some(None)
        } else {
            None
        };
    }

    // Query marked as visited is added it to the stack
    stack.push((span, query));

    // Visit all the waiters
    let r = visit_waiters(query_map, query, |span, successor| {
        cycle_check(query_map, successor, span, stack, visited)
    });

    // Remove the entry in our stack if we didn't find a cycle
    if r.is_none() {
        stack.pop();
    }

    r
}

/// Finds out if there's a path to the compiler root (aka. code which isn't in a query)
/// from `query` without going through any of the queries in `visited`.
/// This is achieved with a depth first search.
#[cfg(parallel_compiler)]
fn connected_to_root(
    query_map: &QueryMap,
    query: QueryJobId,
    visited: &mut FxHashSet<QueryJobId>,
) -> bool {
    // We already visited this or we're deliberately ignoring it
    if !visited.insert(query) {
        return false;
    }

    // This query is connected to the root (it has no query parent), return true
    if query.parent(query_map).is_none() {
        return true;
    }

    visit_waiters(query_map, query, |_, successor| {
        connected_to_root(query_map, successor, visited).then_some(None)
    })
    .is_some()
}

// Deterministically pick an query from a list
#[cfg(parallel_compiler)]
fn pick_query<'a, T, F>(query_map: &QueryMap, queries: &'a [T], f: F) -> &'a T
where
    F: Fn(&T) -> (Span, QueryJobId),
{
    // Deterministically pick an entry point
    // FIXME: Sort this instead
    queries
        .iter()
        .min_by_key(|v| {
            let (span, query) = f(v);
            let hash = query.query(query_map).hash;
            // Prefer entry points which have valid spans for nicer error messages
            // We add an integer to the tuple ensuring that entry points
            // with valid spans are picked first
            let span_cmp = if span == DUMMY_SP { 1 } else { 0 };
            (span_cmp, hash)
        })
        .unwrap()
}

/// Looks for query cycles starting from the last query in `jobs`.
/// If a cycle is found, all queries in the cycle is removed from `jobs` and
/// the function return true.
/// If a cycle was not found, the starting query is removed from `jobs` and
/// the function returns false.
#[cfg(parallel_compiler)]
fn remove_cycle(
    query_map: &QueryMap,
    jobs: &mut Vec<QueryJobId>,
    wakelist: &mut Vec<Arc<QueryWaiter>>,
) -> bool {
    let mut visited = FxHashSet::default();
    let mut stack = Vec::new();
    // Look for a cycle starting with the last query in `jobs`
    if let Some(waiter) =
        cycle_check(query_map, jobs.pop().unwrap(), DUMMY_SP, &mut stack, &mut visited)
    {
        // The stack is a vector of pairs of spans and queries; reverse it so that
        // the earlier entries require later entries
        let (mut spans, queries): (Vec<_>, Vec<_>) = stack.into_iter().rev().unzip();

        // Shift the spans so that queries are matched with the span for their waitee
        spans.rotate_right(1);

        // Zip them back together
        let mut stack: Vec<_> = iter::zip(spans, queries).collect();

        // Remove the queries in our cycle from the list of jobs to look at
        for r in &stack {
            if let Some(pos) = jobs.iter().position(|j| j == &r.1) {
                jobs.remove(pos);
            }
        }

        // Find the queries in the cycle which are
        // connected to queries outside the cycle
        let entry_points = stack
            .iter()
            .filter_map(|&(span, query)| {
                if query.parent(query_map).is_none() {
                    // This query is connected to the root (it has no query parent)
                    Some((span, query, None))
                } else {
                    let mut waiters = Vec::new();
                    // Find all the direct waiters who lead to the root
                    visit_waiters(query_map, query, |span, waiter| {
                        // Mark all the other queries in the cycle as already visited
                        let mut visited = FxHashSet::from_iter(stack.iter().map(|q| q.1));

                        if connected_to_root(query_map, waiter, &mut visited) {
                            waiters.push((span, waiter));
                        }

                        None
                    });
                    if waiters.is_empty() {
                        None
                    } else {
                        // Deterministically pick one of the waiters to show to the user
                        let waiter = *pick_query(query_map, &waiters, |s| *s);
                        Some((span, query, Some(waiter)))
                    }
                }
            })
            .collect::<Vec<(Span, QueryJobId, Option<(Span, QueryJobId)>)>>();

        // Deterministically pick an entry point
        let (_, entry_point, usage) = pick_query(query_map, &entry_points, |e| (e.0, e.1));

        // Shift the stack so that our entry point is first
        let entry_point_pos = stack.iter().position(|(_, query)| query == entry_point);
        if let Some(pos) = entry_point_pos {
            stack.rotate_left(pos);
        }

        let usage = usage.as_ref().map(|(span, query)| (*span, query.query(query_map)));

        // Create the cycle error
        let error = CycleError {
            usage,
            cycle: stack
                .iter()
                .map(|&(s, ref q)| QueryInfo { span: s, query: q.query(query_map) })
                .collect(),
        };

        // We unwrap `waiter` here since there must always be one
        // edge which is resumable / waited using a query latch
        let (waitee_query, waiter_idx) = waiter.unwrap();

        // Extract the waiter we want to resume
        let waiter = waitee_query.latch(query_map).unwrap().extract_waiter(waiter_idx);

        // Set the cycle error so it will be picked up when resumed
        *waiter.cycle.lock() = Some(error);

        // Put the waiter on the list of things to resume
        wakelist.push(waiter);

        true
    } else {
        false
    }
}

/// Detects query cycles by using depth first search over all active query jobs.
/// If a query cycle is found it will break the cycle by finding an edge which
/// uses a query latch and then resuming that waiter.
/// There may be multiple cycles involved in a deadlock, so this searches
/// all active queries for cycles before finally resuming all the waiters at once.
#[cfg(parallel_compiler)]
pub fn break_query_cycles(query_map: QueryMap, registry: &rayon_core::Registry) {
    let mut wakelist = Vec::new();
    let mut jobs: Vec<QueryJobId> = query_map.keys().cloned().collect();

    let mut found_cycle = false;

    while jobs.len() > 0 {
        if remove_cycle(&query_map, &mut jobs, &mut wakelist) {
            found_cycle = true;
        }
    }

    // Check that a cycle was found. It is possible for a deadlock to occur without
    // a query cycle if a query which can be waited on uses Rayon to do multithreading
    // internally. Such a query (X) may be executing on 2 threads (A and B) and A may
    // wait using Rayon on B. Rayon may then switch to executing another query (Y)
    // which in turn will wait on X causing a deadlock. We have a false dependency from
    // X to Y due to Rayon waiting and a true dependency from Y to X. The algorithm here
    // only considers the true dependency and won't detect a cycle.
    if !found_cycle {
        panic!(
            "deadlock detected as we're unable to find a query cycle to break\n\
            current query map:\n{:#?}",
            query_map
        );
    }

    // FIXME: Ensure this won't cause a deadlock before we return
    for waiter in wakelist.into_iter() {
        waiter.notify(registry);
    }
}

#[inline(never)]
#[cold]
pub fn report_cycle<'a>(
    sess: &'a Session,
    CycleError { usage, cycle: stack }: &CycleError,
) -> Diag<'a> {
    assert!(!stack.is_empty());

    let span = stack[0].query.default_span(stack[1 % stack.len()].span);

    let mut cycle_stack = Vec::new();

    use crate::error::StackCount;
    let stack_count = if stack.len() == 1 { StackCount::Single } else { StackCount::Multiple };

    for i in 1..stack.len() {
        let query = &stack[i].query;
        let span = query.default_span(stack[(i + 1) % stack.len()].span);
        cycle_stack.push(CycleStack { span, desc: query.description.to_owned() });
    }

    let mut cycle_usage = None;
    if let Some((span, ref query)) = *usage {
        cycle_usage = Some(crate::error::CycleUsage {
            span: query.default_span(span),
            usage: query.description.to_string(),
        });
    }

    let alias = if stack.iter().all(|entry| matches!(entry.query.def_kind, Some(DefKind::TyAlias)))
    {
        Some(crate::error::Alias::Ty)
    } else if stack.iter().all(|entry| entry.query.def_kind == Some(DefKind::TraitAlias)) {
        Some(crate::error::Alias::Trait)
    } else {
        None
    };

    let cycle_diag = crate::error::Cycle {
        span,
        cycle_stack,
        stack_bottom: stack[0].query.description.to_owned(),
        alias,
        cycle_usage,
        stack_count,
        note_span: (),
    };

    sess.dcx().create_err(cycle_diag)
}

pub fn print_query_stack<Qcx: QueryContext>(
    qcx: Qcx,
    mut current_query: Option<QueryJobId>,
    dcx: DiagCtxtHandle<'_>,
    num_frames: Option<usize>,
    mut file: Option<std::fs::File>,
) -> usize {
    // Be careful relying on global state here: this code is called from
    // a panic hook, which means that the global `DiagCtxt` may be in a weird
    // state if it was responsible for triggering the panic.
    let mut count_printed = 0;
    let mut count_total = 0;
    let query_map = qcx.collect_active_jobs();

    if let Some(ref mut file) = file {
        let _ = writeln!(file, "\n\nquery stack during panic:");
    }
    while let Some(query) = current_query {
        let Some(query_info) = query_map.get(&query) else {
            break;
        };
        if Some(count_printed) < num_frames || num_frames.is_none() {
            // Only print to stderr as many stack frames as `num_frames` when present.
            // FIXME: needs translation
            #[allow(rustc::diagnostic_outside_of_impl)]
            #[allow(rustc::untranslatable_diagnostic)]
            dcx.struct_failure_note(format!(
                "#{} [{:?}] {}",
                count_printed, query_info.query.dep_kind, query_info.query.description
            ))
            .with_span(query_info.job.span)
            .emit();
            count_printed += 1;
        }

        if let Some(ref mut file) = file {
            let _ = writeln!(
                file,
                "#{} [{}] {}",
                count_total,
                qcx.dep_context().dep_kind_info(query_info.query.dep_kind).name,
                query_info.query.description
            );
        }

        current_query = query_info.job.parent;
        count_total += 1;
    }

    if let Some(ref mut file) = file {
        let _ = writeln!(file, "end of query stack");
    }
    count_printed
}