rustc_hir_typeck/fn_ctxt/_impl.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
use std::collections::hash_map::Entry;
use std::slice;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{Applicability, Diag, ErrorGuaranteed, MultiSpan, StashKey};
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ExprKind, GenericArg, HirId, Node, QPath};
use rustc_hir_analysis::hir_ty_lowering::errors::GenericsArgsErrExtend;
use rustc_hir_analysis::hir_ty_lowering::generics::{
check_generic_arg_count_for_call, lower_generic_args,
};
use rustc_hir_analysis::hir_ty_lowering::{
ExplicitLateBound, GenericArgCountMismatch, GenericArgCountResult, GenericArgsLowerer,
GenericPathSegment, HirTyLowerer, IsMethodCall, RegionInferReason,
};
use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
use rustc_infer::infer::{DefineOpaqueTypes, InferResult};
use rustc_lint::builtin::SELF_CONSTRUCTOR_FROM_OUTER_ITEM;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{
self, AdtKind, CanonicalUserType, GenericArgKind, GenericArgsRef, GenericParamDefKind,
IsIdentity, Ty, TyCtxt, UserArgs, UserSelfTy, UserType,
};
use rustc_middle::{bug, span_bug};
use rustc_session::lint;
use rustc_span::Span;
use rustc_span::def_id::LocalDefId;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::symbol::kw;
use rustc_target::abi::FieldIdx;
use rustc_trait_selection::error_reporting::infer::need_type_info::TypeAnnotationNeeded;
use rustc_trait_selection::traits::{
self, NormalizeExt, ObligationCauseCode, StructurallyNormalizeExt,
};
use tracing::{debug, instrument};
use crate::callee::{self, DeferredCallResolution};
use crate::errors::{self, CtorIsPrivate};
use crate::method::{self, MethodCallee};
use crate::{BreakableCtxt, Diverges, Expectation, FnCtxt, LoweredTy, rvalue_scopes};
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// Produces warning on the given node, if the current point in the
/// function is unreachable, and there hasn't been another warning.
pub(crate) fn warn_if_unreachable(&self, id: HirId, span: Span, kind: &str) {
let Diverges::Always { span: orig_span, custom_note } = self.diverges.get() else {
return;
};
match span.desugaring_kind() {
// If span arose from a desugaring of `if` or `while`, then it is the condition
// itself, which diverges, that we are about to lint on. This gives suboptimal
// diagnostics. Instead, stop here so that the `if`- or `while`-expression's
// block is linted instead.
Some(DesugaringKind::CondTemporary) => return,
// Don't lint if the result of an async block or async function is `!`.
// This does not affect the unreachable lints *within* the body.
Some(DesugaringKind::Async) => return,
// Don't lint *within* the `.await` operator, since that's all just desugaring
// junk. We only want to lint if there is a subsequent expression after the
// `.await` operator.
Some(DesugaringKind::Await) => return,
_ => {}
}
// Don't warn twice.
self.diverges.set(Diverges::WarnedAlways);
debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
let msg = format!("unreachable {kind}");
self.tcx().node_span_lint(lint::builtin::UNREACHABLE_CODE, id, span, |lint| {
lint.primary_message(msg.clone());
lint.span_label(span, msg).span_label(
orig_span,
custom_note.unwrap_or("any code following this expression is unreachable"),
);
})
}
/// Resolves type and const variables in `ty` if possible. Unlike the infcx
/// version (resolve_vars_if_possible), this version will
/// also select obligations if it seems useful, in an effort
/// to get more type information.
// FIXME(-Znext-solver): A lot of the calls to this method should
// probably be `try_structurally_resolve_type` or `structurally_resolve_type` instead.
#[instrument(skip(self), level = "debug", ret)]
pub(crate) fn resolve_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
// No Infer()? Nothing needs doing.
if !ty.has_non_region_infer() {
debug!("no inference var, nothing needs doing");
return ty;
}
// If `ty` is a type variable, see whether we already know what it is.
ty = self.resolve_vars_if_possible(ty);
if !ty.has_non_region_infer() {
debug!(?ty);
return ty;
}
// If not, try resolving pending obligations as much as
// possible. This can help substantially when there are
// indirect dependencies that don't seem worth tracking
// precisely.
self.select_obligations_where_possible(|_| {});
self.resolve_vars_if_possible(ty)
}
pub(crate) fn record_deferred_call_resolution(
&self,
closure_def_id: LocalDefId,
r: DeferredCallResolution<'tcx>,
) {
let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
deferred_call_resolutions.entry(closure_def_id).or_default().push(r);
}
pub(crate) fn remove_deferred_call_resolutions(
&self,
closure_def_id: LocalDefId,
) -> Vec<DeferredCallResolution<'tcx>> {
let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
deferred_call_resolutions.remove(&closure_def_id).unwrap_or_default()
}
fn tag(&self) -> String {
format!("{self:p}")
}
pub(crate) fn local_ty(&self, span: Span, nid: HirId) -> Ty<'tcx> {
self.locals.borrow().get(&nid).cloned().unwrap_or_else(|| {
span_bug!(span, "no type for local variable {}", self.tcx.hir().node_to_string(nid))
})
}
#[inline]
pub(crate) fn write_ty(&self, id: HirId, ty: Ty<'tcx>) {
debug!("write_ty({:?}, {:?}) in fcx {}", id, self.resolve_vars_if_possible(ty), self.tag());
let mut typeck = self.typeck_results.borrow_mut();
let mut node_ty = typeck.node_types_mut();
if let Some(ty) = node_ty.get(id)
&& let Err(e) = ty.error_reported()
{
// Do not overwrite nodes that were already marked as `{type error}`. This allows us to
// silence unnecessary errors from obligations that were set earlier than a type error
// was produced, but that is overwritten by later analysis. This happens in particular
// for `Sized` obligations introduced in gather_locals. (#117846)
self.set_tainted_by_errors(e);
return;
}
node_ty.insert(id, ty);
if let Err(e) = ty.error_reported() {
self.set_tainted_by_errors(e);
}
}
pub(crate) fn write_field_index(
&self,
hir_id: HirId,
index: FieldIdx,
nested_fields: Vec<(Ty<'tcx>, FieldIdx)>,
) {
self.typeck_results.borrow_mut().field_indices_mut().insert(hir_id, index);
if !nested_fields.is_empty() {
self.typeck_results.borrow_mut().nested_fields_mut().insert(hir_id, nested_fields);
}
}
#[instrument(level = "debug", skip(self))]
pub(crate) fn write_resolution(
&self,
hir_id: HirId,
r: Result<(DefKind, DefId), ErrorGuaranteed>,
) {
self.typeck_results.borrow_mut().type_dependent_defs_mut().insert(hir_id, r);
}
#[instrument(level = "debug", skip(self))]
pub(crate) fn write_method_call_and_enforce_effects(
&self,
hir_id: HirId,
span: Span,
method: MethodCallee<'tcx>,
) {
self.enforce_context_effects(span, method.def_id, method.args);
self.write_resolution(hir_id, Ok((DefKind::AssocFn, method.def_id)));
self.write_args(hir_id, method.args);
}
fn write_args(&self, node_id: HirId, args: GenericArgsRef<'tcx>) {
if !args.is_empty() {
debug!("write_args({:?}, {:?}) in fcx {}", node_id, args, self.tag());
self.typeck_results.borrow_mut().node_args_mut().insert(node_id, args);
}
}
/// Given the args that we just converted from the HIR, try to
/// canonicalize them and store them as user-given parameters
/// (i.e., parameters that must be respected by the NLL check).
///
/// This should be invoked **before any unifications have
/// occurred**, so that annotations like `Vec<_>` are preserved
/// properly.
#[instrument(skip(self), level = "debug")]
pub(crate) fn write_user_type_annotation_from_args(
&self,
hir_id: HirId,
def_id: DefId,
args: GenericArgsRef<'tcx>,
user_self_ty: Option<UserSelfTy<'tcx>>,
) {
debug!("fcx {}", self.tag());
if Self::can_contain_user_lifetime_bounds((args, user_self_ty)) {
let canonicalized =
self.canonicalize_user_type_annotation(UserType::TypeOf(def_id, UserArgs {
args,
user_self_ty,
}));
debug!(?canonicalized);
self.write_user_type_annotation(hir_id, canonicalized);
}
}
#[instrument(skip(self), level = "debug")]
pub(crate) fn write_user_type_annotation(
&self,
hir_id: HirId,
canonical_user_type_annotation: CanonicalUserType<'tcx>,
) {
debug!("fcx {}", self.tag());
// FIXME: is_identity being on `UserType` and not `Canonical<UserType>` is awkward
if !canonical_user_type_annotation.is_identity() {
self.typeck_results
.borrow_mut()
.user_provided_types_mut()
.insert(hir_id, canonical_user_type_annotation);
} else {
debug!("skipping identity args");
}
}
#[instrument(skip(self, expr), level = "debug")]
pub(crate) fn apply_adjustments(&self, expr: &hir::Expr<'_>, adj: Vec<Adjustment<'tcx>>) {
debug!("expr = {:#?}", expr);
if adj.is_empty() {
return;
}
for a in &adj {
if let Adjust::NeverToAny = a.kind {
if a.target.is_ty_var() {
self.diverging_type_vars.borrow_mut().insert(a.target);
debug!("apply_adjustments: adding `{:?}` as diverging type var", a.target);
}
}
}
let autoborrow_mut = adj.iter().any(|adj| {
matches!(adj, &Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(_, AutoBorrowMutability::Mut { .. })),
..
})
});
match self.typeck_results.borrow_mut().adjustments_mut().entry(expr.hir_id) {
Entry::Vacant(entry) => {
entry.insert(adj);
}
Entry::Occupied(mut entry) => {
debug!(" - composing on top of {:?}", entry.get());
match (&mut entry.get_mut()[..], &adj[..]) {
(
[Adjustment { kind: Adjust::NeverToAny, target }],
&[.., Adjustment { target: new_target, .. }],
) => {
// NeverToAny coercion can target any type, so instead of adding a new
// adjustment on top we can change the target.
//
// This is required for things like `a == a` (where `a: !`) to produce
// valid MIR -- we need borrow adjustment from things like `==` to change
// the type to `&!` (or `&()` depending on the fallback). This might be
// relevant even in unreachable code.
*target = new_target;
}
(
&mut [
Adjustment { kind: Adjust::Deref(_), .. },
Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
],
&[
Adjustment { kind: Adjust::Deref(_), .. },
.., // Any following adjustments are allowed.
],
) => {
// A reborrow has no effect before a dereference, so we can safely replace adjustments.
*entry.get_mut() = adj;
}
_ => {
// FIXME: currently we never try to compose autoderefs
// and ReifyFnPointer/UnsafeFnPointer, but we could.
self.dcx().span_delayed_bug(
expr.span,
format!(
"while adjusting {:?}, can't compose {:?} and {:?}",
expr,
entry.get(),
adj
),
);
*entry.get_mut() = adj;
}
}
}
}
// If there is an mutable auto-borrow, it is equivalent to `&mut <expr>`.
// In this case implicit use of `Deref` and `Index` within `<expr>` should
// instead be `DerefMut` and `IndexMut`, so fix those up.
if autoborrow_mut {
self.convert_place_derefs_to_mutable(expr);
}
}
/// Instantiates and normalizes the bounds for a given item
pub(crate) fn instantiate_bounds(
&self,
span: Span,
def_id: DefId,
args: GenericArgsRef<'tcx>,
) -> ty::InstantiatedPredicates<'tcx> {
let bounds = self.tcx.predicates_of(def_id);
let result = bounds.instantiate(self.tcx, args);
let result = self.normalize(span, result);
debug!("instantiate_bounds(bounds={:?}, args={:?}) = {:?}", bounds, args, result);
result
}
pub(crate) fn normalize<T>(&self, span: Span, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
self.register_infer_ok_obligations(
self.at(&self.misc(span), self.param_env).normalize(value),
)
}
pub(crate) fn require_type_meets(
&self,
ty: Ty<'tcx>,
span: Span,
code: traits::ObligationCauseCode<'tcx>,
def_id: DefId,
) {
self.register_bound(ty, def_id, traits::ObligationCause::new(span, self.body_id, code));
}
pub(crate) fn require_type_is_sized(
&self,
ty: Ty<'tcx>,
span: Span,
code: traits::ObligationCauseCode<'tcx>,
) {
if !ty.references_error() {
let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
self.require_type_meets(ty, span, code, lang_item);
}
}
pub(crate) fn require_type_is_sized_deferred(
&self,
ty: Ty<'tcx>,
span: Span,
code: traits::ObligationCauseCode<'tcx>,
) {
if !ty.references_error() {
self.deferred_sized_obligations.borrow_mut().push((ty, span, code));
}
}
pub(crate) fn require_type_has_static_alignment(
&self,
ty: Ty<'tcx>,
span: Span,
code: traits::ObligationCauseCode<'tcx>,
) {
if !ty.references_error() {
let tail = self.tcx.struct_tail_raw(
ty,
|ty| {
if self.next_trait_solver() {
self.try_structurally_resolve_type(span, ty)
} else {
self.normalize(span, ty)
}
},
|| {},
);
// Sized types have static alignment, and so do slices.
if tail.is_trivially_sized(self.tcx) || matches!(tail.kind(), ty::Slice(..)) {
// Nothing else is required here.
} else {
// We can't be sure, let's required full `Sized`.
let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
self.require_type_meets(ty, span, code, lang_item);
}
}
}
pub(crate) fn register_bound(
&self,
ty: Ty<'tcx>,
def_id: DefId,
cause: traits::ObligationCause<'tcx>,
) {
if !ty.references_error() {
self.fulfillment_cx.borrow_mut().register_bound(
self,
self.param_env,
ty,
def_id,
cause,
);
}
}
pub(crate) fn lower_ty(&self, hir_ty: &hir::Ty<'tcx>) -> LoweredTy<'tcx> {
let ty = self.lowerer().lower_ty(hir_ty);
self.register_wf_obligation(ty.into(), hir_ty.span, ObligationCauseCode::WellFormed(None));
LoweredTy::from_raw(self, hir_ty.span, ty)
}
#[instrument(level = "debug", skip_all)]
pub(crate) fn lower_ty_saving_user_provided_ty(&self, hir_ty: &hir::Ty<'tcx>) -> Ty<'tcx> {
let ty = self.lower_ty(hir_ty);
debug!(?ty);
if Self::can_contain_user_lifetime_bounds(ty.raw) {
let c_ty = self.canonicalize_response(UserType::Ty(ty.raw));
debug!(?c_ty);
self.typeck_results.borrow_mut().user_provided_types_mut().insert(hir_ty.hir_id, c_ty);
}
ty.normalized
}
pub(super) fn user_args_for_adt(ty: LoweredTy<'tcx>) -> UserArgs<'tcx> {
match (ty.raw.kind(), ty.normalized.kind()) {
(ty::Adt(_, args), _) => UserArgs { args, user_self_ty: None },
(_, ty::Adt(adt, args)) => UserArgs {
args,
user_self_ty: Some(UserSelfTy { impl_def_id: adt.did(), self_ty: ty.raw }),
},
_ => bug!("non-adt type {:?}", ty),
}
}
pub(crate) fn lower_array_length(&self, length: &hir::ArrayLen<'tcx>) -> ty::Const<'tcx> {
match length {
hir::ArrayLen::Infer(inf) => self.ct_infer(None, inf.span),
hir::ArrayLen::Body(const_arg) => {
let span = const_arg.span();
let c = ty::Const::from_const_arg(self.tcx, const_arg, ty::FeedConstTy::No);
self.register_wf_obligation(c.into(), span, ObligationCauseCode::WellFormed(None));
self.normalize(span, c)
}
}
}
pub(crate) fn lower_const_arg(
&self,
const_arg: &'tcx hir::ConstArg<'tcx>,
param_def_id: DefId,
) -> ty::Const<'tcx> {
let ct =
ty::Const::from_const_arg(self.tcx, const_arg, ty::FeedConstTy::Param(param_def_id));
self.register_wf_obligation(
ct.into(),
self.tcx.hir().span(const_arg.hir_id),
ObligationCauseCode::WellFormed(None),
);
ct
}
// If the type given by the user has free regions, save it for later, since
// NLL would like to enforce those. Also pass in types that involve
// projections, since those can resolve to `'static` bounds (modulo #54940,
// which hopefully will be fixed by the time you see this comment, dear
// reader, although I have my doubts). Also pass in types with inference
// types, because they may be repeated. Other sorts of things are already
// sufficiently enforced with erased regions. =)
fn can_contain_user_lifetime_bounds<T>(t: T) -> bool
where
T: TypeVisitable<TyCtxt<'tcx>>,
{
t.has_free_regions() || t.has_aliases() || t.has_infer_types()
}
pub(crate) fn node_ty(&self, id: HirId) -> Ty<'tcx> {
match self.typeck_results.borrow().node_types().get(id) {
Some(&t) => t,
None if let Some(e) = self.tainted_by_errors() => Ty::new_error(self.tcx, e),
None => {
bug!(
"no type for node {} in fcx {}",
self.tcx.hir().node_to_string(id),
self.tag()
);
}
}
}
pub(crate) fn node_ty_opt(&self, id: HirId) -> Option<Ty<'tcx>> {
match self.typeck_results.borrow().node_types().get(id) {
Some(&t) => Some(t),
None if let Some(e) = self.tainted_by_errors() => Some(Ty::new_error(self.tcx, e)),
None => None,
}
}
/// Registers an obligation for checking later, during regionck, that `arg` is well-formed.
pub(crate) fn register_wf_obligation(
&self,
arg: ty::GenericArg<'tcx>,
span: Span,
code: traits::ObligationCauseCode<'tcx>,
) {
// WF obligations never themselves fail, so no real need to give a detailed cause:
let cause = traits::ObligationCause::new(span, self.body_id, code);
self.register_predicate(traits::Obligation::new(
self.tcx,
cause,
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg))),
));
}
/// Registers obligations that all `args` are well-formed.
pub(crate) fn add_wf_bounds(&self, args: GenericArgsRef<'tcx>, expr: &hir::Expr<'_>) {
for arg in args.iter().filter(|arg| {
matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
}) {
self.register_wf_obligation(arg, expr.span, ObligationCauseCode::WellFormed(None));
}
}
// FIXME(arielb1): use this instead of field.ty everywhere
// Only for fields! Returns <none> for methods>
// Indifferent to privacy flags
pub(crate) fn field_ty(
&self,
span: Span,
field: &'tcx ty::FieldDef,
args: GenericArgsRef<'tcx>,
) -> Ty<'tcx> {
self.normalize(span, field.ty(self.tcx, args))
}
pub(crate) fn resolve_rvalue_scopes(&self, def_id: DefId) {
let scope_tree = self.tcx.region_scope_tree(def_id);
let rvalue_scopes = { rvalue_scopes::resolve_rvalue_scopes(self, scope_tree, def_id) };
let mut typeck_results = self.typeck_results.borrow_mut();
typeck_results.rvalue_scopes = rvalue_scopes;
}
/// Unify the inference variables corresponding to coroutine witnesses, and save all the
/// predicates that were stalled on those inference variables.
///
/// This process allows to conservatively save all predicates that do depend on the coroutine
/// interior types, for later processing by `check_coroutine_obligations`.
///
/// We must not attempt to select obligations after this method has run, or risk query cycle
/// ICE.
#[instrument(level = "debug", skip(self))]
pub(crate) fn resolve_coroutine_interiors(&self) {
// Try selecting all obligations that are not blocked on inference variables.
// Once we start unifying coroutine witnesses, trying to select obligations on them will
// trigger query cycle ICEs, as doing so requires MIR.
self.select_obligations_where_possible(|_| {});
let coroutines = std::mem::take(&mut *self.deferred_coroutine_interiors.borrow_mut());
debug!(?coroutines);
for &(expr_def_id, body_id, interior) in coroutines.iter() {
debug!(?expr_def_id);
// Create the `CoroutineWitness` type that we will unify with `interior`.
let args = ty::GenericArgs::identity_for_item(
self.tcx,
self.tcx.typeck_root_def_id(expr_def_id.to_def_id()),
);
let witness = Ty::new_coroutine_witness(self.tcx, expr_def_id.to_def_id(), args);
// Unify `interior` with `witness` and collect all the resulting obligations.
let span = self.tcx.hir().body(body_id).value.span;
let ty::Infer(ty::InferTy::TyVar(_)) = interior.kind() else {
span_bug!(span, "coroutine interior witness not infer: {:?}", interior.kind())
};
let ok = self
.at(&self.misc(span), self.param_env)
// Will never define opaque types, as all we do is instantiate a type variable.
.eq(DefineOpaqueTypes::Yes, interior, witness)
.expect("Failed to unify coroutine interior type");
let mut obligations = ok.obligations;
// Also collect the obligations that were unstalled by this unification.
obligations
.extend(self.fulfillment_cx.borrow_mut().drain_unstalled_obligations(&self.infcx));
let obligations = obligations.into_iter().map(|o| (o.predicate, o.cause));
self.typeck_results.borrow_mut().coroutine_stalled_predicates.extend(obligations);
}
}
#[instrument(skip(self), level = "debug")]
pub(crate) fn report_ambiguity_errors(&self) {
let mut errors = self.fulfillment_cx.borrow_mut().collect_remaining_errors(self);
if !errors.is_empty() {
self.adjust_fulfillment_errors_for_expr_obligation(&mut errors);
let errors_causecode = errors
.iter()
.map(|e| (e.obligation.cause.span, e.root_obligation.cause.code().clone()))
.collect::<Vec<_>>();
self.err_ctxt().report_fulfillment_errors(errors);
self.collect_unused_stmts_for_coerce_return_ty(errors_causecode);
}
}
/// Select as many obligations as we can at present.
pub(crate) fn select_obligations_where_possible(
&self,
mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
) {
let mut result = self.fulfillment_cx.borrow_mut().select_where_possible(self);
if !result.is_empty() {
mutate_fulfillment_errors(&mut result);
self.adjust_fulfillment_errors_for_expr_obligation(&mut result);
self.err_ctxt().report_fulfillment_errors(result);
}
}
/// For the overloaded place expressions (`*x`, `x[3]`), the trait
/// returns a type of `&T`, but the actual type we assign to the
/// *expression* is `T`. So this function just peels off the return
/// type by one layer to yield `T`.
pub(crate) fn make_overloaded_place_return_type(&self, method: MethodCallee<'tcx>) -> Ty<'tcx> {
// extract method return type, which will be &T;
let ret_ty = method.sig.output();
// method returns &T, but the type as visible to user is T, so deref
ret_ty.builtin_deref(true).unwrap()
}
pub(crate) fn type_var_is_sized(&self, self_ty: ty::TyVid) -> bool {
let sized_did = self.tcx.lang_items().sized_trait();
self.obligations_for_self_ty(self_ty).into_iter().any(|obligation| {
match obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
Some(data.def_id()) == sized_did
}
_ => false,
}
})
}
pub(crate) fn err_args(&self, len: usize, guar: ErrorGuaranteed) -> Vec<Ty<'tcx>> {
let ty_error = Ty::new_error(self.tcx, guar);
vec![ty_error; len]
}
pub(crate) fn resolve_lang_item_path(
&self,
lang_item: hir::LangItem,
span: Span,
hir_id: HirId,
) -> (Res, Ty<'tcx>) {
let def_id = self.tcx.require_lang_item(lang_item, Some(span));
let def_kind = self.tcx.def_kind(def_id);
let item_ty = if let DefKind::Variant = def_kind {
self.tcx.type_of(self.tcx.parent(def_id))
} else {
self.tcx.type_of(def_id)
};
let args = self.fresh_args_for_item(span, def_id);
let ty = item_ty.instantiate(self.tcx, args);
self.write_args(hir_id, args);
self.write_resolution(hir_id, Ok((def_kind, def_id)));
let code = match lang_item {
hir::LangItem::IntoFutureIntoFuture => {
if let hir::Node::Expr(into_future_call) = self.tcx.parent_hir_node(hir_id)
&& let hir::ExprKind::Call(_, [arg0]) = &into_future_call.kind
{
Some(ObligationCauseCode::AwaitableExpr(arg0.hir_id))
} else {
None
}
}
hir::LangItem::IteratorNext | hir::LangItem::IntoIterIntoIter => {
Some(ObligationCauseCode::ForLoopIterator)
}
hir::LangItem::TryTraitFromOutput
| hir::LangItem::TryTraitFromResidual
| hir::LangItem::TryTraitBranch => Some(ObligationCauseCode::QuestionMark),
_ => None,
};
if let Some(code) = code {
self.add_required_obligations_with_code(span, def_id, args, move |_, _| code.clone());
} else {
self.add_required_obligations_for_hir(span, def_id, args, hir_id);
}
(Res::Def(def_kind, def_id), ty)
}
/// Resolves an associated value path into a base type and associated constant, or method
/// resolution. The newly resolved definition is written into `type_dependent_defs`.
#[instrument(level = "trace", skip(self), ret)]
pub(crate) fn resolve_ty_and_res_fully_qualified_call(
&self,
qpath: &'tcx QPath<'tcx>,
hir_id: HirId,
span: Span,
) -> (Res, Option<LoweredTy<'tcx>>, &'tcx [hir::PathSegment<'tcx>]) {
let (ty, qself, item_segment) = match *qpath {
QPath::Resolved(ref opt_qself, path) => {
return (
path.res,
opt_qself.as_ref().map(|qself| self.lower_ty(qself)),
path.segments,
);
}
QPath::TypeRelative(ref qself, ref segment) => {
// Don't use `self.lower_ty`, since this will register a WF obligation.
// If we're trying to call a nonexistent method on a trait
// (e.g. `MyTrait::missing_method`), then resolution will
// give us a `QPath::TypeRelative` with a trait object as
// `qself`. In that case, we want to avoid registering a WF obligation
// for `dyn MyTrait`, since we don't actually need the trait
// to be dyn-compatible.
// We manually call `register_wf_obligation` in the success path
// below.
let ty = self.lowerer().lower_ty(qself);
(LoweredTy::from_raw(self, span, ty), qself, segment)
}
QPath::LangItem(..) => {
bug!("`resolve_ty_and_res_fully_qualified_call` called on `LangItem`")
}
};
if let Some(&cached_result) = self.typeck_results.borrow().type_dependent_defs().get(hir_id)
{
self.register_wf_obligation(
ty.raw.into(),
qself.span,
ObligationCauseCode::WellFormed(None),
);
// Return directly on cache hit. This is useful to avoid doubly reporting
// errors with default match binding modes. See #44614.
let def = cached_result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id));
return (def, Some(ty), slice::from_ref(&**item_segment));
}
let item_name = item_segment.ident;
let result = self
.resolve_fully_qualified_call(span, item_name, ty.normalized, qself.span, hir_id)
.map(|r| {
// lint bare trait if the method is found in the trait
if span.edition().at_least_rust_2021() {
self.dcx().try_steal_modify_and_emit_err(
qself.span,
StashKey::TraitMissingMethod,
|_err| {},
);
}
r
})
.or_else(|error| {
let guar = self
.dcx()
.span_delayed_bug(span, "method resolution should've emitted an error");
let result = match error {
method::MethodError::PrivateMatch(kind, def_id, _) => Ok((kind, def_id)),
_ => Err(guar),
};
let trait_missing_method =
matches!(error, method::MethodError::NoMatch(_)) && ty.normalized.is_trait();
// If we have a path like `MyTrait::missing_method`, then don't register
// a WF obligation for `dyn MyTrait` when method lookup fails. Otherwise,
// register a WF obligation so that we can detect any additional
// errors in the self type.
if !trait_missing_method {
self.register_wf_obligation(
ty.raw.into(),
qself.span,
ObligationCauseCode::WellFormed(None),
);
}
// Emit the diagnostic for bare traits. (We used to cancel for slightly better
// error messages, but cancelling stashed diagnostics is no longer allowed because
// it causes problems when tracking whether errors have actually occurred.)
if span.edition().at_least_rust_2021() {
self.dcx().try_steal_modify_and_emit_err(
qself.span,
StashKey::TraitMissingMethod,
|_err| {},
);
}
if item_name.name != kw::Empty {
self.report_method_error(
hir_id,
ty.normalized,
error,
Expectation::NoExpectation,
trait_missing_method && span.edition().at_least_rust_2021(), // emits missing method for trait only after edition 2021
);
}
result
});
if result.is_ok() {
self.register_wf_obligation(
ty.raw.into(),
qself.span,
ObligationCauseCode::WellFormed(None),
);
}
// Write back the new resolution.
self.write_resolution(hir_id, result);
(
result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)),
Some(ty),
slice::from_ref(&**item_segment),
)
}
/// Given a `HirId`, return the `HirId` of the enclosing function and its `FnDecl`.
pub(crate) fn get_fn_decl(
&self,
blk_id: HirId,
) -> Option<(LocalDefId, &'tcx hir::FnDecl<'tcx>)> {
// Get enclosing Fn, if it is a function or a trait method, unless there's a `loop` or
// `while` before reaching it, as block tail returns are not available in them.
self.tcx.hir().get_fn_id_for_return_block(blk_id).and_then(|item_id| {
match self.tcx.hir_node(item_id) {
Node::Item(&hir::Item {
kind: hir::ItemKind::Fn(ref sig, ..), owner_id, ..
}) => Some((owner_id.def_id, sig.decl)),
Node::TraitItem(&hir::TraitItem {
kind: hir::TraitItemKind::Fn(ref sig, ..),
owner_id,
..
}) => Some((owner_id.def_id, sig.decl)),
Node::ImplItem(&hir::ImplItem {
kind: hir::ImplItemKind::Fn(ref sig, ..),
owner_id,
..
}) => Some((owner_id.def_id, sig.decl)),
Node::Expr(&hir::Expr {
hir_id,
kind: hir::ExprKind::Closure(&hir::Closure { def_id, kind, fn_decl, .. }),
..
}) => {
match kind {
hir::ClosureKind::CoroutineClosure(_) => {
// FIXME(async_closures): Implement this.
return None;
}
hir::ClosureKind::Closure => Some((def_id, fn_decl)),
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
_,
hir::CoroutineSource::Fn,
)) => {
let (sig, owner_id) = match self.tcx.parent_hir_node(hir_id) {
Node::Item(&hir::Item {
kind: hir::ItemKind::Fn(ref sig, ..),
owner_id,
..
}) => (sig, owner_id),
Node::TraitItem(&hir::TraitItem {
kind: hir::TraitItemKind::Fn(ref sig, ..),
owner_id,
..
}) => (sig, owner_id),
Node::ImplItem(&hir::ImplItem {
kind: hir::ImplItemKind::Fn(ref sig, ..),
owner_id,
..
}) => (sig, owner_id),
_ => return None,
};
Some((owner_id.def_id, sig.decl))
}
_ => None,
}
}
_ => None,
}
})
}
pub(crate) fn note_internal_mutation_in_method(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'_>,
expected: Option<Ty<'tcx>>,
found: Ty<'tcx>,
) {
if found != self.tcx.types.unit {
return;
}
let ExprKind::MethodCall(path_segment, rcvr, ..) = expr.kind else {
return;
};
let rcvr_has_the_expected_type = self
.typeck_results
.borrow()
.expr_ty_adjusted_opt(rcvr)
.zip(expected)
.is_some_and(|(ty, expected_ty)| expected_ty.peel_refs() == ty.peel_refs());
let prev_call_mutates_and_returns_unit = || {
self.typeck_results
.borrow()
.type_dependent_def_id(expr.hir_id)
.map(|def_id| self.tcx.fn_sig(def_id).skip_binder().skip_binder())
.and_then(|sig| sig.inputs_and_output.split_last())
.is_some_and(|(output, inputs)| {
output.is_unit()
&& inputs
.get(0)
.and_then(|self_ty| self_ty.ref_mutability())
.is_some_and(rustc_ast::Mutability::is_mut)
})
};
if !(rcvr_has_the_expected_type || prev_call_mutates_and_returns_unit()) {
return;
}
let mut sp = MultiSpan::from_span(path_segment.ident.span);
sp.push_span_label(
path_segment.ident.span,
format!("this call modifies {} in-place", match rcvr.kind {
ExprKind::Path(QPath::Resolved(None, hir::Path { segments: [segment], .. })) =>
format!("`{}`", segment.ident),
_ => "its receiver".to_string(),
}),
);
let modifies_rcvr_note =
format!("method `{}` modifies its receiver in-place", path_segment.ident);
if rcvr_has_the_expected_type {
sp.push_span_label(
rcvr.span,
"you probably want to use this value after calling the method...",
);
err.span_note(sp, modifies_rcvr_note);
err.note(format!("...instead of the `()` output of method `{}`", path_segment.ident));
} else if let ExprKind::MethodCall(..) = rcvr.kind {
err.span_note(
sp,
modifies_rcvr_note + ", it is not meant to be used in method chains.",
);
} else {
err.span_note(sp, modifies_rcvr_note);
}
}
// Instantiates the given path, which must refer to an item with the given
// number of type parameters and type.
#[instrument(skip(self, span), level = "debug")]
pub(crate) fn instantiate_value_path(
&self,
segments: &'tcx [hir::PathSegment<'tcx>],
self_ty: Option<LoweredTy<'tcx>>,
res: Res,
span: Span,
path_span: Span,
hir_id: HirId,
) -> (Ty<'tcx>, Res) {
let tcx = self.tcx;
let generic_segments = match res {
Res::Local(_) | Res::SelfCtor(_) => vec![],
Res::Def(kind, def_id) => self.lowerer().probe_generic_path_segments(
segments,
self_ty.map(|ty| ty.raw),
kind,
def_id,
span,
),
_ => bug!("instantiate_value_path on {:?}", res),
};
let mut user_self_ty = None;
let mut is_alias_variant_ctor = false;
match res {
Res::Def(DefKind::Ctor(CtorOf::Variant, _), _) if let Some(self_ty) = self_ty => {
let adt_def = self_ty.normalized.ty_adt_def().unwrap();
user_self_ty =
Some(UserSelfTy { impl_def_id: adt_def.did(), self_ty: self_ty.raw });
is_alias_variant_ctor = true;
}
Res::Def(DefKind::AssocFn | DefKind::AssocConst, def_id) => {
let assoc_item = tcx.associated_item(def_id);
let container = assoc_item.container;
let container_id = assoc_item.container_id(tcx);
debug!(?def_id, ?container, ?container_id);
match container {
ty::TraitContainer => {
if let Err(e) = callee::check_legal_trait_for_method_call(
tcx,
path_span,
None,
span,
container_id,
self.body_id.to_def_id(),
) {
self.set_tainted_by_errors(e);
}
}
ty::ImplContainer => {
if segments.len() == 1 {
// `<T>::assoc` will end up here, and so
// can `T::assoc`. If this came from an
// inherent impl, we need to record the
// `T` for posterity (see `UserSelfTy` for
// details).
let self_ty = self_ty.expect("UFCS sugared assoc missing Self").raw;
user_self_ty = Some(UserSelfTy { impl_def_id: container_id, self_ty });
}
}
}
}
_ => {}
}
// Now that we have categorized what space the parameters for each
// segment belong to, let's sort out the parameters that the user
// provided (if any) into their appropriate spaces. We'll also report
// errors if type parameters are provided in an inappropriate place.
let indices: FxHashSet<_> =
generic_segments.iter().map(|GenericPathSegment(_, index)| index).collect();
let generics_err = self.lowerer().prohibit_generic_args(
segments.iter().enumerate().filter_map(|(index, seg)| {
if !indices.contains(&index) || is_alias_variant_ctor { Some(seg) } else { None }
}),
GenericsArgsErrExtend::None,
);
if let Res::Local(hid) = res {
let ty = self.local_ty(span, hid);
let ty = self.normalize(span, ty);
self.write_ty(hir_id, ty);
return (ty, res);
}
if let Err(_) = generics_err {
// Don't try to infer type parameters when prohibited generic arguments were given.
user_self_ty = None;
}
// Now we have to compare the types that the user *actually*
// provided against the types that were *expected*. If the user
// did not provide any types, then we want to instantiate inference
// variables. If the user provided some types, we may still need
// to add defaults. If the user provided *too many* types, that's
// a problem.
let mut infer_args_for_err = None;
let mut explicit_late_bound = ExplicitLateBound::No;
for &GenericPathSegment(def_id, index) in &generic_segments {
let seg = &segments[index];
let generics = tcx.generics_of(def_id);
// Argument-position `impl Trait` is treated as a normal generic
// parameter internally, but we don't allow users to specify the
// parameter's value explicitly, so we have to do some error-
// checking here.
let arg_count =
check_generic_arg_count_for_call(self, def_id, generics, seg, IsMethodCall::No);
if let ExplicitLateBound::Yes = arg_count.explicit_late_bound {
explicit_late_bound = ExplicitLateBound::Yes;
}
if let Err(GenericArgCountMismatch { reported, .. }) = arg_count.correct {
infer_args_for_err
.get_or_insert_with(|| (reported, FxHashSet::default()))
.1
.insert(index);
self.set_tainted_by_errors(reported); // See issue #53251.
}
}
let has_self = generic_segments
.last()
.is_some_and(|GenericPathSegment(def_id, _)| tcx.generics_of(*def_id).has_self);
let (res, self_ctor_args) = if let Res::SelfCtor(impl_def_id) = res {
let ty = LoweredTy::from_raw(
self,
span,
tcx.at(span).type_of(impl_def_id).instantiate_identity(),
);
// Firstly, check that this SelfCtor even comes from the item we're currently
// typechecking. This can happen because we never validated the resolution of
// SelfCtors, and when we started doing so, we noticed regressions. After
// sufficiently long time, we can remove this check and turn it into a hard
// error in `validate_res_from_ribs` -- it's just difficult to tell whether the
// self type has any generic types during rustc_resolve, which is what we use
// to determine if this is a hard error or warning.
if std::iter::successors(Some(self.body_id.to_def_id()), |def_id| {
self.tcx.generics_of(def_id).parent
})
.all(|def_id| def_id != impl_def_id)
{
let sugg = ty.normalized.ty_adt_def().map(|def| errors::ReplaceWithName {
span: path_span,
name: self.tcx.item_name(def.did()).to_ident_string(),
});
if ty.raw.has_param() {
let guar = self.dcx().emit_err(errors::SelfCtorFromOuterItem {
span: path_span,
impl_span: tcx.def_span(impl_def_id),
sugg,
});
return (Ty::new_error(self.tcx, guar), res);
} else {
self.tcx.emit_node_span_lint(
SELF_CONSTRUCTOR_FROM_OUTER_ITEM,
hir_id,
path_span,
errors::SelfCtorFromOuterItemLint {
impl_span: tcx.def_span(impl_def_id),
sugg,
},
);
}
}
match ty.normalized.ty_adt_def() {
Some(adt_def) if adt_def.has_ctor() => {
let (ctor_kind, ctor_def_id) = adt_def.non_enum_variant().ctor.unwrap();
// Check the visibility of the ctor.
let vis = tcx.visibility(ctor_def_id);
if !vis.is_accessible_from(tcx.parent_module(hir_id).to_def_id(), tcx) {
self.dcx()
.emit_err(CtorIsPrivate { span, def: tcx.def_path_str(adt_def.did()) });
}
let new_res = Res::Def(DefKind::Ctor(CtorOf::Struct, ctor_kind), ctor_def_id);
let user_args = Self::user_args_for_adt(ty);
user_self_ty = user_args.user_self_ty;
(new_res, Some(user_args.args))
}
_ => {
let mut err = self.dcx().struct_span_err(
span,
"the `Self` constructor can only be used with tuple or unit structs",
);
if let Some(adt_def) = ty.normalized.ty_adt_def() {
match adt_def.adt_kind() {
AdtKind::Enum => {
err.help("did you mean to use one of the enum's variants?");
}
AdtKind::Struct | AdtKind::Union => {
err.span_suggestion(
span,
"use curly brackets",
"Self { /* fields */ }",
Applicability::HasPlaceholders,
);
}
}
}
let reported = err.emit();
return (Ty::new_error(tcx, reported), res);
}
}
} else {
(res, None)
};
let def_id = res.def_id();
let (correct, infer_args_for_err) = match infer_args_for_err {
Some((reported, args)) => {
(Err(GenericArgCountMismatch { reported, invalid_args: vec![] }), args)
}
None => (Ok(()), Default::default()),
};
let arg_count = GenericArgCountResult { explicit_late_bound, correct };
struct CtorGenericArgsCtxt<'a, 'tcx> {
fcx: &'a FnCtxt<'a, 'tcx>,
span: Span,
generic_segments: &'a [GenericPathSegment],
infer_args_for_err: &'a FxHashSet<usize>,
segments: &'tcx [hir::PathSegment<'tcx>],
}
impl<'a, 'tcx> GenericArgsLowerer<'a, 'tcx> for CtorGenericArgsCtxt<'a, 'tcx> {
fn args_for_def_id(
&mut self,
def_id: DefId,
) -> (Option<&'a hir::GenericArgs<'tcx>>, bool) {
if let Some(&GenericPathSegment(_, index)) =
self.generic_segments.iter().find(|&GenericPathSegment(did, _)| *did == def_id)
{
// If we've encountered an `impl Trait`-related error, we're just
// going to infer the arguments for better error messages.
if !self.infer_args_for_err.contains(&index) {
// Check whether the user has provided generic arguments.
if let Some(data) = self.segments[index].args {
return (Some(data), self.segments[index].infer_args);
}
}
return (None, self.segments[index].infer_args);
}
(None, true)
}
fn provided_kind(
&mut self,
_preceding_args: &[ty::GenericArg<'tcx>],
param: &ty::GenericParamDef,
arg: &GenericArg<'tcx>,
) -> ty::GenericArg<'tcx> {
match (¶m.kind, arg) {
(GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => self
.fcx
.lowerer()
.lower_lifetime(lt, RegionInferReason::Param(param))
.into(),
(GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
self.fcx.lower_ty(ty).raw.into()
}
(GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
self.fcx.lower_const_arg(ct, param.def_id).into()
}
(GenericParamDefKind::Type { .. }, GenericArg::Infer(inf)) => {
self.fcx.ty_infer(Some(param), inf.span).into()
}
(
&GenericParamDefKind::Const { has_default, is_host_effect, .. },
GenericArg::Infer(inf),
) => {
if has_default && is_host_effect {
self.fcx.var_for_effect(param)
} else {
self.fcx.ct_infer(Some(param), inf.span).into()
}
}
_ => unreachable!(),
}
}
fn inferred_kind(
&mut self,
preceding_args: &[ty::GenericArg<'tcx>],
param: &ty::GenericParamDef,
infer_args: bool,
) -> ty::GenericArg<'tcx> {
let tcx = self.fcx.tcx();
match param.kind {
GenericParamDefKind::Lifetime => self
.fcx
.re_infer(
self.span,
rustc_hir_analysis::hir_ty_lowering::RegionInferReason::Param(param),
)
.into(),
GenericParamDefKind::Type { has_default, .. } => {
if !infer_args && has_default {
// If we have a default, then it doesn't matter that we're not
// inferring the type arguments: we provide the default where any
// is missing.
tcx.type_of(param.def_id).instantiate(tcx, preceding_args).into()
} else {
// If no type arguments were provided, we have to infer them.
// This case also occurs as a result of some malformed input, e.g.
// a lifetime argument being given instead of a type parameter.
// Using inference instead of `Error` gives better error messages.
self.fcx.var_for_def(self.span, param)
}
}
GenericParamDefKind::Const { has_default, is_host_effect, .. } => {
if has_default {
// N.B. this is a bit of a hack. `infer_args` is passed depending on
// whether the user has provided generic args. E.g. for `Vec::new`
// we would have to infer the generic types. However, for `Vec::<T>::new`
// where the allocator param `A` has a default we will *not* infer. But
// for effect params this is a different story: if the user has not written
// anything explicit for the effect param, we always need to try to infer
// it before falling back to default, such that a `const fn` such as
// `needs_drop::<()>` can still be called in const contexts. (if we defaulted
// instead of inferred, typeck would error)
if is_host_effect {
return self.fcx.var_for_effect(param);
} else if !infer_args {
return tcx
.const_param_default(param.def_id)
.instantiate(tcx, preceding_args)
.into();
}
}
self.fcx.var_for_def(self.span, param)
}
}
}
}
let args_raw = self_ctor_args.unwrap_or_else(|| {
lower_generic_args(
self,
def_id,
&[],
has_self,
self_ty.map(|s| s.raw),
&arg_count,
&mut CtorGenericArgsCtxt {
fcx: self,
span,
generic_segments: &generic_segments,
infer_args_for_err: &infer_args_for_err,
segments,
},
)
});
// First, store the "user args" for later.
self.write_user_type_annotation_from_args(hir_id, def_id, args_raw, user_self_ty);
// Normalize only after registering type annotations.
let args = self.normalize(span, args_raw);
self.add_required_obligations_for_hir(span, def_id, args, hir_id);
// Instantiate the values for the type parameters into the type of
// the referenced item.
let ty = tcx.type_of(def_id);
assert!(!args.has_escaping_bound_vars());
assert!(!ty.skip_binder().has_escaping_bound_vars());
let ty_instantiated = self.normalize(span, ty.instantiate(tcx, args));
if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty {
// In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
// is inherent, there is no `Self` parameter; instead, the impl needs
// type parameters, which we can infer by unifying the provided `Self`
// with the instantiated impl type.
// This also occurs for an enum variant on a type alias.
let impl_ty = self.normalize(span, tcx.type_of(impl_def_id).instantiate(tcx, args));
let self_ty = self.normalize(span, self_ty);
match self.at(&self.misc(span), self.param_env).eq(
DefineOpaqueTypes::Yes,
impl_ty,
self_ty,
) {
Ok(ok) => self.register_infer_ok_obligations(ok),
Err(_) => {
self.dcx().span_bug(
span,
format!(
"instantiate_value_path: (UFCS) {self_ty:?} was a subtype of {impl_ty:?} but now is not?",
),
);
}
}
}
debug!("instantiate_value_path: type of {:?} is {:?}", hir_id, ty_instantiated);
self.write_args(hir_id, args);
(ty_instantiated, res)
}
/// Add all the obligations that are required, instantiated and normalized appropriately.
pub(crate) fn add_required_obligations_for_hir(
&self,
span: Span,
def_id: DefId,
args: GenericArgsRef<'tcx>,
hir_id: HirId,
) {
self.add_required_obligations_with_code(span, def_id, args, |idx, span| {
ObligationCauseCode::WhereClauseInExpr(def_id, span, hir_id, idx)
})
}
#[instrument(level = "debug", skip(self, code, span, args))]
fn add_required_obligations_with_code(
&self,
span: Span,
def_id: DefId,
args: GenericArgsRef<'tcx>,
code: impl Fn(usize, Span) -> ObligationCauseCode<'tcx>,
) {
let param_env = self.param_env;
let bounds = self.instantiate_bounds(span, def_id, args);
for obligation in traits::predicates_for_generics(
|idx, predicate_span| {
traits::ObligationCause::new(span, self.body_id, code(idx, predicate_span))
},
param_env,
bounds,
) {
self.register_predicate(obligation);
}
}
/// Try to resolve `ty` to a structural type, normalizing aliases.
///
/// In case there is still ambiguity, the returned type may be an inference
/// variable. This is different from `structurally_resolve_type` which errors
/// in this case.
#[instrument(level = "debug", skip(self, sp), ret)]
pub(crate) fn try_structurally_resolve_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
let ty = self.resolve_vars_with_obligations(ty);
if self.next_trait_solver()
&& let ty::Alias(..) = ty.kind()
{
// We need to use a separate variable here as otherwise the temporary for
// `self.fulfillment_cx.borrow_mut()` is alive in the `Err` branch, resulting
// in a reentrant borrow, causing an ICE.
let result = self
.at(&self.misc(sp), self.param_env)
.structurally_normalize(ty, &mut **self.fulfillment_cx.borrow_mut());
match result {
Ok(normalized_ty) => normalized_ty,
Err(errors) => {
let guar = self.err_ctxt().report_fulfillment_errors(errors);
return Ty::new_error(self.tcx, guar);
}
}
} else {
ty
}
}
#[instrument(level = "debug", skip(self, sp), ret)]
pub(crate) fn try_structurally_resolve_const(
&self,
sp: Span,
ct: ty::Const<'tcx>,
) -> ty::Const<'tcx> {
// FIXME(min_const_generic_exprs): We could process obligations here if `ct` is a var.
if self.next_trait_solver()
&& let ty::ConstKind::Unevaluated(..) = ct.kind()
{
// We need to use a separate variable here as otherwise the temporary for
// `self.fulfillment_cx.borrow_mut()` is alive in the `Err` branch, resulting
// in a reentrant borrow, causing an ICE.
let result = self
.at(&self.misc(sp), self.param_env)
.structurally_normalize_const(ct, &mut **self.fulfillment_cx.borrow_mut());
match result {
Ok(normalized_ct) => normalized_ct,
Err(errors) => {
let guar = self.err_ctxt().report_fulfillment_errors(errors);
return ty::Const::new_error(self.tcx, guar);
}
}
} else if self.tcx.features().generic_const_exprs {
ct.normalize(self.tcx, self.param_env)
} else {
ct
}
}
/// Resolves `ty` by a single level if `ty` is a type variable.
///
/// When the new solver is enabled, this will also attempt to normalize
/// the type if it's a projection (note that it will not deeply normalize
/// projections within the type, just the outermost layer of the type).
///
/// If no resolution is possible, then an error is reported.
/// Numeric inference variables may be left unresolved.
pub(crate) fn structurally_resolve_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
let ty = self.try_structurally_resolve_type(sp, ty);
if !ty.is_ty_var() {
ty
} else {
let e = self.tainted_by_errors().unwrap_or_else(|| {
self.err_ctxt()
.emit_inference_failure_err(
self.body_id,
sp,
ty.into(),
TypeAnnotationNeeded::E0282,
true,
)
.emit()
});
let err = Ty::new_error(self.tcx, e);
self.demand_suptype(sp, err, ty);
err
}
}
pub(crate) fn with_breakable_ctxt<F: FnOnce() -> R, R>(
&self,
id: HirId,
ctxt: BreakableCtxt<'tcx>,
f: F,
) -> (BreakableCtxt<'tcx>, R) {
let index;
{
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
index = enclosing_breakables.stack.len();
enclosing_breakables.by_id.insert(id, index);
enclosing_breakables.stack.push(ctxt);
}
let result = f();
let ctxt = {
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
debug_assert!(enclosing_breakables.stack.len() == index + 1);
// FIXME(#120456) - is `swap_remove` correct?
enclosing_breakables.by_id.swap_remove(&id).expect("missing breakable context");
enclosing_breakables.stack.pop().expect("missing breakable context")
};
(ctxt, result)
}
/// Instantiate a QueryResponse in a probe context, without a
/// good ObligationCause.
pub(crate) fn probe_instantiate_query_response(
&self,
span: Span,
original_values: &OriginalQueryValues<'tcx>,
query_result: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>,
) -> InferResult<'tcx, Ty<'tcx>> {
self.instantiate_query_response_and_region_obligations(
&traits::ObligationCause::misc(span, self.body_id),
self.param_env,
original_values,
query_result,
)
}
/// Returns `true` if an expression is contained inside the LHS of an assignment expression.
pub(crate) fn expr_in_place(&self, mut expr_id: HirId) -> bool {
let mut contained_in_place = false;
while let hir::Node::Expr(parent_expr) = self.tcx.parent_hir_node(expr_id) {
match &parent_expr.kind {
hir::ExprKind::Assign(lhs, ..) | hir::ExprKind::AssignOp(_, lhs, ..) => {
if lhs.hir_id == expr_id {
contained_in_place = true;
break;
}
}
_ => (),
}
expr_id = parent_expr.hir_id;
}
contained_in_place
}
}