1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
use crate::callee::{self, DeferredCallResolution};
use crate::errors::CtorIsPrivate;
use crate::method::{self, MethodCallee, SelfSource};
use crate::rvalue_scopes;
use crate::{BreakableCtxt, Diverges, Expectation, FnCtxt, LoweredTy};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{Applicability, DiagnosticBuilder, ErrorGuaranteed, MultiSpan, StashKey};
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ExprKind, GenericArg, Node, QPath};
use rustc_hir_analysis::astconv::generics::{
    check_generic_arg_count_for_call, create_args_for_parent_generic_args,
};
use rustc_hir_analysis::astconv::{
    AstConv, CreateInstantiationsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
    GenericArgCountResult, IsMethodCall, PathSeg,
};
use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
use rustc_infer::infer::{DefineOpaqueTypes, InferResult};
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{
    self, AdtKind, CanonicalUserType, GenericParamDefKind, IsIdentity, Ty, TyCtxt, UserType,
};
use rustc_middle::ty::{GenericArgKind, GenericArgsRef, UserArgs, UserSelfTy};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::Span;
use rustc_target::abi::FieldIdx;
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::{
    self, NormalizeExt, ObligationCauseCode, ObligationCtxt, StructurallyNormalizeExt,
};

use std::collections::hash_map::Entry;
use std::slice;

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    /// Produces warning on the given node, if the current point in the
    /// function is unreachable, and there hasn't been another warning.
    pub(in super::super) fn warn_if_unreachable(&self, id: hir::HirId, span: Span, kind: &str) {
        // FIXME: Combine these two 'if' expressions into one once
        // let chains are implemented
        if let Diverges::Always { span: orig_span, custom_note } = self.diverges.get() {
            // If span arose from a desugaring of `if` or `while`, then it is the condition itself,
            // which diverges, that we are about to lint on. This gives suboptimal diagnostics.
            // Instead, stop here so that the `if`- or `while`-expression's block is linted instead.
            if !span.is_desugaring(DesugaringKind::CondTemporary)
                && !span.is_desugaring(DesugaringKind::Async)
                && !orig_span.is_desugaring(DesugaringKind::Await)
            {
                self.diverges.set(Diverges::WarnedAlways);

                debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);

                let msg = format!("unreachable {kind}");
                self.tcx().node_span_lint(
                    lint::builtin::UNREACHABLE_CODE,
                    id,
                    span,
                    msg.clone(),
                    |lint| {
                        lint.span_label(span, msg).span_label(
                            orig_span,
                            custom_note
                                .unwrap_or("any code following this expression is unreachable"),
                        );
                    },
                )
            }
        }
    }

    /// Resolves type and const variables in `ty` if possible. Unlike the infcx
    /// version (resolve_vars_if_possible), this version will
    /// also select obligations if it seems useful, in an effort
    /// to get more type information.
    // FIXME(-Znext-solver): A lot of the calls to this method should
    // probably be `try_structurally_resolve_type` or `structurally_resolve_type` instead.
    #[instrument(skip(self), level = "debug", ret)]
    pub(in super::super) fn resolve_vars_with_obligations(&self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
        // No Infer()? Nothing needs doing.
        if !ty.has_non_region_infer() {
            debug!("no inference var, nothing needs doing");
            return ty;
        }

        // If `ty` is a type variable, see whether we already know what it is.
        ty = self.resolve_vars_if_possible(ty);
        if !ty.has_non_region_infer() {
            debug!(?ty);
            return ty;
        }

        // If not, try resolving pending obligations as much as
        // possible. This can help substantially when there are
        // indirect dependencies that don't seem worth tracking
        // precisely.
        self.select_obligations_where_possible(|_| {});
        self.resolve_vars_if_possible(ty)
    }

    pub(in super::super) fn record_deferred_call_resolution(
        &self,
        closure_def_id: LocalDefId,
        r: DeferredCallResolution<'tcx>,
    ) {
        let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
        deferred_call_resolutions.entry(closure_def_id).or_default().push(r);
    }

    pub(in super::super) fn remove_deferred_call_resolutions(
        &self,
        closure_def_id: LocalDefId,
    ) -> Vec<DeferredCallResolution<'tcx>> {
        let mut deferred_call_resolutions = self.deferred_call_resolutions.borrow_mut();
        deferred_call_resolutions.remove(&closure_def_id).unwrap_or_default()
    }

    pub fn tag(&self) -> String {
        format!("{self:p}")
    }

    pub fn local_ty(&self, span: Span, nid: hir::HirId) -> Ty<'tcx> {
        self.locals.borrow().get(&nid).cloned().unwrap_or_else(|| {
            span_bug!(span, "no type for local variable {}", self.tcx.hir().node_to_string(nid))
        })
    }

    #[inline]
    pub fn write_ty(&self, id: hir::HirId, ty: Ty<'tcx>) {
        debug!("write_ty({:?}, {:?}) in fcx {}", id, self.resolve_vars_if_possible(ty), self.tag());
        self.typeck_results.borrow_mut().node_types_mut().insert(id, ty);

        if let Err(e) = ty.error_reported() {
            self.set_tainted_by_errors(e);
        }
    }

    pub fn write_field_index(
        &self,
        hir_id: hir::HirId,
        index: FieldIdx,
        nested_fields: Vec<(Ty<'tcx>, FieldIdx)>,
    ) {
        self.typeck_results.borrow_mut().field_indices_mut().insert(hir_id, index);
        if !nested_fields.is_empty() {
            self.typeck_results.borrow_mut().nested_fields_mut().insert(hir_id, nested_fields);
        }
    }

    #[instrument(level = "debug", skip(self))]
    pub(in super::super) fn write_resolution(
        &self,
        hir_id: hir::HirId,
        r: Result<(DefKind, DefId), ErrorGuaranteed>,
    ) {
        self.typeck_results.borrow_mut().type_dependent_defs_mut().insert(hir_id, r);
    }

    #[instrument(level = "debug", skip(self))]
    pub fn write_method_call_and_enforce_effects(
        &self,
        hir_id: hir::HirId,
        span: Span,
        method: MethodCallee<'tcx>,
    ) {
        self.enforce_context_effects(span, method.def_id, method.args);
        self.write_resolution(hir_id, Ok((DefKind::AssocFn, method.def_id)));
        self.write_args(hir_id, method.args);
    }

    pub fn write_args(&self, node_id: hir::HirId, args: GenericArgsRef<'tcx>) {
        if !args.is_empty() {
            debug!("write_args({:?}, {:?}) in fcx {}", node_id, args, self.tag());

            self.typeck_results.borrow_mut().node_args_mut().insert(node_id, args);
        }
    }

    /// Given the args that we just converted from the HIR, try to
    /// canonicalize them and store them as user-given parameters
    /// (i.e., parameters that must be respected by the NLL check).
    ///
    /// This should be invoked **before any unifications have
    /// occurred**, so that annotations like `Vec<_>` are preserved
    /// properly.
    #[instrument(skip(self), level = "debug")]
    pub fn write_user_type_annotation_from_args(
        &self,
        hir_id: hir::HirId,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
        user_self_ty: Option<UserSelfTy<'tcx>>,
    ) {
        debug!("fcx {}", self.tag());

        if Self::can_contain_user_lifetime_bounds((args, user_self_ty)) {
            let canonicalized = self.canonicalize_user_type_annotation(UserType::TypeOf(
                def_id,
                UserArgs { args, user_self_ty },
            ));
            debug!(?canonicalized);
            self.write_user_type_annotation(hir_id, canonicalized);
        }
    }

    #[instrument(skip(self), level = "debug")]
    pub fn write_user_type_annotation(
        &self,
        hir_id: hir::HirId,
        canonical_user_type_annotation: CanonicalUserType<'tcx>,
    ) {
        debug!("fcx {}", self.tag());

        // FIXME: is_identity being on `UserType` and not `Canonical<UserType>` is awkward
        if !canonical_user_type_annotation.is_identity() {
            self.typeck_results
                .borrow_mut()
                .user_provided_types_mut()
                .insert(hir_id, canonical_user_type_annotation);
        } else {
            debug!("skipping identity args");
        }
    }

    #[instrument(skip(self, expr), level = "debug")]
    pub fn apply_adjustments(&self, expr: &hir::Expr<'_>, adj: Vec<Adjustment<'tcx>>) {
        debug!("expr = {:#?}", expr);

        if adj.is_empty() {
            return;
        }

        for a in &adj {
            if let Adjust::NeverToAny = a.kind {
                if a.target.is_ty_var() {
                    self.diverging_type_vars.borrow_mut().insert(a.target);
                    debug!("apply_adjustments: adding `{:?}` as diverging type var", a.target);
                }
            }
        }

        let autoborrow_mut = adj.iter().any(|adj| {
            matches!(
                adj,
                &Adjustment {
                    kind: Adjust::Borrow(AutoBorrow::Ref(_, AutoBorrowMutability::Mut { .. })),
                    ..
                }
            )
        });

        match self.typeck_results.borrow_mut().adjustments_mut().entry(expr.hir_id) {
            Entry::Vacant(entry) => {
                entry.insert(adj);
            }
            Entry::Occupied(mut entry) => {
                debug!(" - composing on top of {:?}", entry.get());
                match (&entry.get()[..], &adj[..]) {
                    // Applying any adjustment on top of a NeverToAny
                    // is a valid NeverToAny adjustment, because it can't
                    // be reached.
                    (&[Adjustment { kind: Adjust::NeverToAny, .. }], _) => return,
                    (
                        &[
                            Adjustment { kind: Adjust::Deref(_), .. },
                            Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(..)), .. },
                        ],
                        &[
                            Adjustment { kind: Adjust::Deref(_), .. },
                            .., // Any following adjustments are allowed.
                        ],
                    ) => {
                        // A reborrow has no effect before a dereference.
                    }
                    // FIXME: currently we never try to compose autoderefs
                    // and ReifyFnPointer/UnsafeFnPointer, but we could.
                    _ => {
                        self.dcx().span_delayed_bug(
                            expr.span,
                            format!(
                                "while adjusting {:?}, can't compose {:?} and {:?}",
                                expr,
                                entry.get(),
                                adj
                            ),
                        );
                    }
                }
                *entry.get_mut() = adj;
            }
        }

        // If there is an mutable auto-borrow, it is equivalent to `&mut <expr>`.
        // In this case implicit use of `Deref` and `Index` within `<expr>` should
        // instead be `DerefMut` and `IndexMut`, so fix those up.
        if autoborrow_mut {
            self.convert_place_derefs_to_mutable(expr);
        }
    }

    /// Instantiates and normalizes the bounds for a given item
    pub(in super::super) fn instantiate_bounds(
        &self,
        span: Span,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
    ) -> ty::InstantiatedPredicates<'tcx> {
        let bounds = self.tcx.predicates_of(def_id);
        let result = bounds.instantiate(self.tcx, args);
        let result = self.normalize(span, result);
        debug!("instantiate_bounds(bounds={:?}, args={:?}) = {:?}", bounds, args, result);
        result
    }

    pub(in super::super) fn normalize<T>(&self, span: Span, value: T) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        self.register_infer_ok_obligations(
            self.at(&self.misc(span), self.param_env).normalize(value),
        )
    }

    pub fn require_type_meets(
        &self,
        ty: Ty<'tcx>,
        span: Span,
        code: traits::ObligationCauseCode<'tcx>,
        def_id: DefId,
    ) {
        self.register_bound(ty, def_id, traits::ObligationCause::new(span, self.body_id, code));
    }

    pub fn require_type_is_sized(
        &self,
        ty: Ty<'tcx>,
        span: Span,
        code: traits::ObligationCauseCode<'tcx>,
    ) {
        if !ty.references_error() {
            let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
            self.require_type_meets(ty, span, code, lang_item);
        }
    }

    pub fn require_type_is_sized_deferred(
        &self,
        ty: Ty<'tcx>,
        span: Span,
        code: traits::ObligationCauseCode<'tcx>,
    ) {
        if !ty.references_error() {
            self.deferred_sized_obligations.borrow_mut().push((ty, span, code));
        }
    }

    pub fn register_bound(
        &self,
        ty: Ty<'tcx>,
        def_id: DefId,
        cause: traits::ObligationCause<'tcx>,
    ) {
        if !ty.references_error() {
            self.fulfillment_cx.borrow_mut().register_bound(
                self,
                self.param_env,
                ty,
                def_id,
                cause,
            );
        }
    }

    pub fn to_ty(&self, ast_t: &hir::Ty<'tcx>) -> LoweredTy<'tcx> {
        let t = self.astconv().ast_ty_to_ty(ast_t);
        self.register_wf_obligation(t.into(), ast_t.span, traits::WellFormed(None));
        LoweredTy::from_raw(self, ast_t.span, t)
    }

    pub fn to_ty_saving_user_provided_ty(&self, ast_ty: &hir::Ty<'tcx>) -> Ty<'tcx> {
        let ty = self.to_ty(ast_ty);
        debug!("to_ty_saving_user_provided_ty: ty={:?}", ty);

        if Self::can_contain_user_lifetime_bounds(ty.raw) {
            let c_ty = self.canonicalize_response(UserType::Ty(ty.raw));
            debug!("to_ty_saving_user_provided_ty: c_ty={:?}", c_ty);
            self.typeck_results.borrow_mut().user_provided_types_mut().insert(ast_ty.hir_id, c_ty);
        }

        ty.normalized
    }

    pub(super) fn user_args_for_adt(ty: LoweredTy<'tcx>) -> UserArgs<'tcx> {
        match (ty.raw.kind(), ty.normalized.kind()) {
            (ty::Adt(_, args), _) => UserArgs { args, user_self_ty: None },
            (_, ty::Adt(adt, args)) => UserArgs {
                args,
                user_self_ty: Some(UserSelfTy { impl_def_id: adt.did(), self_ty: ty.raw }),
            },
            _ => bug!("non-adt type {:?}", ty),
        }
    }

    pub fn array_length_to_const(&self, length: &hir::ArrayLen) -> ty::Const<'tcx> {
        match length {
            hir::ArrayLen::Infer(inf) => self.ct_infer(self.tcx.types.usize, None, inf.span),
            hir::ArrayLen::Body(anon_const) => {
                let span = self.tcx.def_span(anon_const.def_id);
                let c = ty::Const::from_anon_const(self.tcx, anon_const.def_id);
                self.register_wf_obligation(c.into(), span, ObligationCauseCode::WellFormed(None));
                self.normalize(span, c)
            }
        }
    }

    pub fn const_arg_to_const(
        &self,
        ast_c: &hir::AnonConst,
        param_def_id: DefId,
    ) -> ty::Const<'tcx> {
        let did = ast_c.def_id;
        self.tcx.feed_anon_const_type(did, self.tcx.type_of(param_def_id));
        let c = ty::Const::from_anon_const(self.tcx, did);
        self.register_wf_obligation(
            c.into(),
            self.tcx.hir().span(ast_c.hir_id),
            ObligationCauseCode::WellFormed(None),
        );
        c
    }

    // If the type given by the user has free regions, save it for later, since
    // NLL would like to enforce those. Also pass in types that involve
    // projections, since those can resolve to `'static` bounds (modulo #54940,
    // which hopefully will be fixed by the time you see this comment, dear
    // reader, although I have my doubts). Also pass in types with inference
    // types, because they may be repeated. Other sorts of things are already
    // sufficiently enforced with erased regions. =)
    fn can_contain_user_lifetime_bounds<T>(t: T) -> bool
    where
        T: TypeVisitable<TyCtxt<'tcx>>,
    {
        t.has_free_regions() || t.has_projections() || t.has_infer_types()
    }

    pub fn node_ty(&self, id: hir::HirId) -> Ty<'tcx> {
        match self.typeck_results.borrow().node_types().get(id) {
            Some(&t) => t,
            None if let Some(e) = self.tainted_by_errors() => Ty::new_error(self.tcx, e),
            None => {
                bug!(
                    "no type for node {} in fcx {}",
                    self.tcx.hir().node_to_string(id),
                    self.tag()
                );
            }
        }
    }

    pub fn node_ty_opt(&self, id: hir::HirId) -> Option<Ty<'tcx>> {
        match self.typeck_results.borrow().node_types().get(id) {
            Some(&t) => Some(t),
            None if let Some(e) = self.tainted_by_errors() => Some(Ty::new_error(self.tcx, e)),
            None => None,
        }
    }

    /// Registers an obligation for checking later, during regionck, that `arg` is well-formed.
    pub fn register_wf_obligation(
        &self,
        arg: ty::GenericArg<'tcx>,
        span: Span,
        code: traits::ObligationCauseCode<'tcx>,
    ) {
        // WF obligations never themselves fail, so no real need to give a detailed cause:
        let cause = traits::ObligationCause::new(span, self.body_id, code);
        self.register_predicate(traits::Obligation::new(
            self.tcx,
            cause,
            self.param_env,
            ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg))),
        ));
    }

    /// Registers obligations that all `args` are well-formed.
    pub fn add_wf_bounds(&self, args: GenericArgsRef<'tcx>, expr: &hir::Expr<'_>) {
        for arg in args.iter().filter(|arg| {
            matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
        }) {
            self.register_wf_obligation(arg, expr.span, traits::WellFormed(None));
        }
    }

    // FIXME(arielb1): use this instead of field.ty everywhere
    // Only for fields! Returns <none> for methods>
    // Indifferent to privacy flags
    pub fn field_ty(
        &self,
        span: Span,
        field: &'tcx ty::FieldDef,
        args: GenericArgsRef<'tcx>,
    ) -> Ty<'tcx> {
        self.normalize(span, field.ty(self.tcx, args))
    }

    pub(in super::super) fn resolve_rvalue_scopes(&self, def_id: DefId) {
        let scope_tree = self.tcx.region_scope_tree(def_id);
        let rvalue_scopes = { rvalue_scopes::resolve_rvalue_scopes(self, scope_tree, def_id) };
        let mut typeck_results = self.inh.typeck_results.borrow_mut();
        typeck_results.rvalue_scopes = rvalue_scopes;
    }

    /// Unify the inference variables corresponding to coroutine witnesses, and save all the
    /// predicates that were stalled on those inference variables.
    ///
    /// This process allows to conservatively save all predicates that do depend on the coroutine
    /// interior types, for later processing by `check_coroutine_obligations`.
    ///
    /// We must not attempt to select obligations after this method has run, or risk query cycle
    /// ICE.
    #[instrument(level = "debug", skip(self))]
    pub(in super::super) fn resolve_coroutine_interiors(&self) {
        // Try selecting all obligations that are not blocked on inference variables.
        // Once we start unifying coroutine witnesses, trying to select obligations on them will
        // trigger query cycle ICEs, as doing so requires MIR.
        self.select_obligations_where_possible(|_| {});

        let coroutines = std::mem::take(&mut *self.deferred_coroutine_interiors.borrow_mut());
        debug!(?coroutines);

        for &(expr_def_id, body_id, interior) in coroutines.iter() {
            debug!(?expr_def_id);

            // Create the `CoroutineWitness` type that we will unify with `interior`.
            let args = ty::GenericArgs::identity_for_item(
                self.tcx,
                self.tcx.typeck_root_def_id(expr_def_id.to_def_id()),
            );
            let witness = Ty::new_coroutine_witness(self.tcx, expr_def_id.to_def_id(), args);

            // Unify `interior` with `witness` and collect all the resulting obligations.
            let span = self.tcx.hir().body(body_id).value.span;
            let ok = self
                .at(&self.misc(span), self.param_env)
                .eq(DefineOpaqueTypes::No, interior, witness)
                .expect("Failed to unify coroutine interior type");
            let mut obligations = ok.obligations;

            // Also collect the obligations that were unstalled by this unification.
            obligations
                .extend(self.fulfillment_cx.borrow_mut().drain_unstalled_obligations(&self.infcx));

            let obligations = obligations.into_iter().map(|o| (o.predicate, o.cause)).collect();
            debug!(?obligations);
            self.typeck_results
                .borrow_mut()
                .coroutine_interior_predicates
                .insert(expr_def_id, obligations);
        }
    }

    #[instrument(skip(self), level = "debug")]
    pub(in super::super) fn report_ambiguity_errors(&self) {
        let mut errors = self.fulfillment_cx.borrow_mut().collect_remaining_errors(self);

        if !errors.is_empty() {
            self.adjust_fulfillment_errors_for_expr_obligation(&mut errors);
            let errors_causecode = errors
                .iter()
                .map(|e| (e.obligation.cause.span, e.root_obligation.cause.code().clone()))
                .collect::<Vec<_>>();
            self.err_ctxt().report_fulfillment_errors(errors);
            self.collect_unused_stmts_for_coerce_return_ty(errors_causecode);
        }
    }

    /// Select as many obligations as we can at present.
    pub(in super::super) fn select_obligations_where_possible(
        &self,
        mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
    ) {
        let mut result = self.fulfillment_cx.borrow_mut().select_where_possible(self);
        if !result.is_empty() {
            mutate_fulfillment_errors(&mut result);
            self.adjust_fulfillment_errors_for_expr_obligation(&mut result);
            self.err_ctxt().report_fulfillment_errors(result);
        }
    }

    /// For the overloaded place expressions (`*x`, `x[3]`), the trait
    /// returns a type of `&T`, but the actual type we assign to the
    /// *expression* is `T`. So this function just peels off the return
    /// type by one layer to yield `T`.
    pub(in super::super) fn make_overloaded_place_return_type(
        &self,
        method: MethodCallee<'tcx>,
    ) -> ty::TypeAndMut<'tcx> {
        // extract method return type, which will be &T;
        let ret_ty = method.sig.output();

        // method returns &T, but the type as visible to user is T, so deref
        ret_ty.builtin_deref(true).unwrap()
    }

    #[instrument(skip(self), level = "debug")]
    fn self_type_matches_expected_vid(&self, self_ty: Ty<'tcx>, expected_vid: ty::TyVid) -> bool {
        let self_ty = self.shallow_resolve(self_ty);
        debug!(?self_ty);

        match *self_ty.kind() {
            ty::Infer(ty::TyVar(found_vid)) => {
                let found_vid = self.root_var(found_vid);
                debug!("self_type_matches_expected_vid - found_vid={:?}", found_vid);
                expected_vid == found_vid
            }
            _ => false,
        }
    }

    #[instrument(skip(self), level = "debug")]
    pub(in super::super) fn obligations_for_self_ty<'b>(
        &'b self,
        self_ty: ty::TyVid,
    ) -> impl DoubleEndedIterator<Item = traits::PredicateObligation<'tcx>> + Captures<'tcx> + 'b
    {
        let ty_var_root = self.root_var(self_ty);
        trace!("pending_obligations = {:#?}", self.fulfillment_cx.borrow().pending_obligations());

        self.fulfillment_cx.borrow().pending_obligations().into_iter().filter_map(
            move |obligation| match &obligation.predicate.kind().skip_binder() {
                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data))
                    if self.self_type_matches_expected_vid(
                        data.projection_ty.self_ty(),
                        ty_var_root,
                    ) =>
                {
                    Some(obligation)
                }
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(data))
                    if self.self_type_matches_expected_vid(data.self_ty(), ty_var_root) =>
                {
                    Some(obligation)
                }

                ty::PredicateKind::Clause(ty::ClauseKind::Trait(..))
                | ty::PredicateKind::Clause(ty::ClauseKind::Projection(..))
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
                | ty::PredicateKind::Subtype(..)
                | ty::PredicateKind::Coerce(..)
                | ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..))
                | ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(..))
                | ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(..))
                | ty::PredicateKind::ObjectSafe(..)
                | ty::PredicateKind::NormalizesTo(..)
                | ty::PredicateKind::AliasRelate(..)
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
                | ty::PredicateKind::ConstEquate(..)
                | ty::PredicateKind::Ambiguous => None,
            },
        )
    }

    pub(in super::super) fn type_var_is_sized(&self, self_ty: ty::TyVid) -> bool {
        let sized_did = self.tcx.lang_items().sized_trait();
        self.obligations_for_self_ty(self_ty).any(|obligation| {
            match obligation.predicate.kind().skip_binder() {
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
                    Some(data.def_id()) == sized_did
                }
                _ => false,
            }
        })
    }

    pub(in super::super) fn err_args(&self, len: usize) -> Vec<Ty<'tcx>> {
        let ty_error = Ty::new_misc_error(self.tcx);
        vec![ty_error; len]
    }

    /// Unifies the output type with the expected type early, for more coercions
    /// and forward type information on the input expressions.
    #[instrument(skip(self, call_span), level = "debug")]
    pub(in super::super) fn expected_inputs_for_expected_output(
        &self,
        call_span: Span,
        expected_ret: Expectation<'tcx>,
        formal_ret: Ty<'tcx>,
        formal_args: &[Ty<'tcx>],
    ) -> Option<Vec<Ty<'tcx>>> {
        let formal_ret = self.resolve_vars_with_obligations(formal_ret);
        let ret_ty = expected_ret.only_has_type(self)?;

        // HACK(oli-obk): This is a hack to keep RPIT and TAIT in sync wrt their behaviour.
        // Without it, the inference
        // variable will get instantiated with the opaque type. The inference variable often
        // has various helpful obligations registered for it that help closures figure out their
        // signature. If we infer the inference var to the opaque type, the closure won't be able
        // to find those obligations anymore, and it can't necessarily find them from the opaque
        // type itself. We could be more powerful with inference if we *combined* the obligations
        // so that we got both the obligations from the opaque type and the ones from the inference
        // variable. That will accept more code than we do right now, so we need to carefully consider
        // the implications.
        // Note: this check is pessimistic, as the inference type could be matched with something other
        // than the opaque type, but then we need a new `TypeRelation` just for this specific case and
        // can't re-use `sup` below.
        // See tests/ui/impl-trait/hidden-type-is-opaque.rs and
        // tests/ui/impl-trait/hidden-type-is-opaque-2.rs for examples that hit this path.
        if formal_ret.has_infer_types() {
            for ty in ret_ty.walk() {
                if let ty::GenericArgKind::Type(ty) = ty.unpack()
                    && let ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) = *ty.kind()
                    && let Some(def_id) = def_id.as_local()
                    && self.opaque_type_origin(def_id).is_some()
                {
                    return None;
                }
            }
        }

        let expect_args = self
            .fudge_inference_if_ok(|| {
                let ocx = ObligationCtxt::new(self);

                // Attempt to apply a subtyping relationship between the formal
                // return type (likely containing type variables if the function
                // is polymorphic) and the expected return type.
                // No argument expectations are produced if unification fails.
                let origin = self.misc(call_span);
                ocx.sup(&origin, self.param_env, ret_ty, formal_ret)?;
                if !ocx.select_where_possible().is_empty() {
                    return Err(TypeError::Mismatch);
                }

                // Record all the argument types, with the args
                // produced from the above subtyping unification.
                Ok(Some(formal_args.iter().map(|&ty| self.resolve_vars_if_possible(ty)).collect()))
            })
            .unwrap_or_default();
        debug!(?formal_args, ?formal_ret, ?expect_args, ?expected_ret);
        expect_args
    }

    pub(in super::super) fn resolve_lang_item_path(
        &self,
        lang_item: hir::LangItem,
        span: Span,
        hir_id: hir::HirId,
    ) -> (Res, Ty<'tcx>) {
        let def_id = self.tcx.require_lang_item(lang_item, Some(span));
        let def_kind = self.tcx.def_kind(def_id);

        let item_ty = if let DefKind::Variant = def_kind {
            self.tcx.type_of(self.tcx.parent(def_id))
        } else {
            self.tcx.type_of(def_id)
        };
        let args = self.fresh_args_for_item(span, def_id);
        let ty = item_ty.instantiate(self.tcx, args);

        self.write_args(hir_id, args);
        self.write_resolution(hir_id, Ok((def_kind, def_id)));

        let code = match lang_item {
            hir::LangItem::IntoFutureIntoFuture => {
                if let hir::Node::Expr(into_future_call) = self.tcx.parent_hir_node(hir_id)
                    && let hir::ExprKind::Call(_, [arg0]) = &into_future_call.kind
                {
                    Some(ObligationCauseCode::AwaitableExpr(arg0.hir_id))
                } else {
                    None
                }
            }
            hir::LangItem::IteratorNext | hir::LangItem::IntoIterIntoIter => {
                Some(ObligationCauseCode::ForLoopIterator)
            }
            hir::LangItem::TryTraitFromOutput
            | hir::LangItem::TryTraitFromResidual
            | hir::LangItem::TryTraitBranch => Some(ObligationCauseCode::QuestionMark),
            _ => None,
        };
        if let Some(code) = code {
            self.add_required_obligations_with_code(span, def_id, args, move |_, _| code.clone());
        } else {
            self.add_required_obligations_for_hir(span, def_id, args, hir_id);
        }

        (Res::Def(def_kind, def_id), ty)
    }

    /// Resolves an associated value path into a base type and associated constant, or method
    /// resolution. The newly resolved definition is written into `type_dependent_defs`.
    pub fn resolve_ty_and_res_fully_qualified_call(
        &self,
        qpath: &'tcx QPath<'tcx>,
        hir_id: hir::HirId,
        span: Span,
        args: Option<&'tcx [hir::Expr<'tcx>]>,
    ) -> (Res, Option<LoweredTy<'tcx>>, &'tcx [hir::PathSegment<'tcx>]) {
        debug!(
            "resolve_ty_and_res_fully_qualified_call: qpath={:?} hir_id={:?} span={:?}",
            qpath, hir_id, span
        );
        let (ty, qself, item_segment) = match *qpath {
            QPath::Resolved(ref opt_qself, path) => {
                return (
                    path.res,
                    opt_qself.as_ref().map(|qself| self.to_ty(qself)),
                    path.segments,
                );
            }
            QPath::TypeRelative(ref qself, ref segment) => {
                // Don't use `self.to_ty`, since this will register a WF obligation.
                // If we're trying to call a nonexistent method on a trait
                // (e.g. `MyTrait::missing_method`), then resolution will
                // give us a `QPath::TypeRelative` with a trait object as
                // `qself`. In that case, we want to avoid registering a WF obligation
                // for `dyn MyTrait`, since we don't actually need the trait
                // to be object-safe.
                // We manually call `register_wf_obligation` in the success path
                // below.
                let ty = self.astconv().ast_ty_to_ty_in_path(qself);
                (LoweredTy::from_raw(self, span, ty), qself, segment)
            }
            QPath::LangItem(..) => {
                bug!("`resolve_ty_and_res_fully_qualified_call` called on `LangItem`")
            }
        };
        if let Some(&cached_result) = self.typeck_results.borrow().type_dependent_defs().get(hir_id)
        {
            self.register_wf_obligation(ty.raw.into(), qself.span, traits::WellFormed(None));
            // Return directly on cache hit. This is useful to avoid doubly reporting
            // errors with default match binding modes. See #44614.
            let def = cached_result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id));
            return (def, Some(ty), slice::from_ref(&**item_segment));
        }
        let item_name = item_segment.ident;
        let result = self
            .resolve_fully_qualified_call(span, item_name, ty.normalized, qself.span, hir_id)
            .map(|r| {
                // lint bare trait if the method is found in the trait
                if span.edition().at_least_rust_2021()
                    && let Some(diag) =
                        self.dcx().steal_diagnostic(qself.span, StashKey::TraitMissingMethod)
                {
                    diag.emit();
                }
                r
            })
            .or_else(|error| {
                let guar = self
                    .dcx()
                    .span_delayed_bug(span, "method resolution should've emitted an error");
                let result = match error {
                    method::MethodError::PrivateMatch(kind, def_id, _) => Ok((kind, def_id)),
                    _ => Err(guar),
                };

                let trait_missing_method =
                    matches!(error, method::MethodError::NoMatch(_)) && ty.normalized.is_trait();
                // If we have a path like `MyTrait::missing_method`, then don't register
                // a WF obligation for `dyn MyTrait` when method lookup fails. Otherwise,
                // register a WF obligation so that we can detect any additional
                // errors in the self type.
                if !trait_missing_method {
                    self.register_wf_obligation(
                        ty.raw.into(),
                        qself.span,
                        traits::WellFormed(None),
                    );
                }

                // emit or cancel the diagnostic for bare traits
                if span.edition().at_least_rust_2021()
                    && let Some(diag) =
                        self.dcx().steal_diagnostic(qself.span, StashKey::TraitMissingMethod)
                {
                    if trait_missing_method {
                        // cancel the diag for bare traits when meeting `MyTrait::missing_method`
                        diag.cancel();
                    } else {
                        diag.emit();
                    }
                }

                if item_name.name != kw::Empty {
                    if let Some(e) = self.report_method_error(
                        span,
                        ty.normalized,
                        item_name,
                        SelfSource::QPath(qself),
                        error,
                        args,
                        Expectation::NoExpectation,
                        trait_missing_method && span.edition().at_least_rust_2021(), // emits missing method for trait only after edition 2021
                    ) {
                        e.emit();
                    }
                }

                result
            });

        if result.is_ok() {
            self.register_wf_obligation(ty.raw.into(), qself.span, traits::WellFormed(None));
        }

        // Write back the new resolution.
        self.write_resolution(hir_id, result);
        (
            result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)),
            Some(ty),
            slice::from_ref(&**item_segment),
        )
    }

    /// Given a function `Node`, return its  `HirId` and `FnDecl` if it exists. Given a closure
    /// that is the child of a function, return that function's `HirId` and `FnDecl` instead.
    /// This may seem confusing at first, but this is used in diagnostics for `async fn`,
    /// for example, where most of the type checking actually happens within a nested closure,
    /// but we often want access to the parent function's signature.
    ///
    /// Otherwise, return false.
    pub(in super::super) fn get_node_fn_decl(
        &self,
        node: Node<'tcx>,
    ) -> Option<(hir::HirId, &'tcx hir::FnDecl<'tcx>, Ident, bool)> {
        match node {
            Node::Item(&hir::Item {
                ident,
                kind: hir::ItemKind::Fn(ref sig, ..),
                owner_id,
                ..
            }) => {
                // This is less than ideal, it will not suggest a return type span on any
                // method called `main`, regardless of whether it is actually the entry point,
                // but it will still present it as the reason for the expected type.
                Some((
                    hir::HirId::make_owner(owner_id.def_id),
                    &sig.decl,
                    ident,
                    ident.name != sym::main,
                ))
            }
            Node::TraitItem(&hir::TraitItem {
                ident,
                kind: hir::TraitItemKind::Fn(ref sig, ..),
                owner_id,
                ..
            }) => Some((hir::HirId::make_owner(owner_id.def_id), &sig.decl, ident, true)),
            Node::ImplItem(&hir::ImplItem {
                ident,
                kind: hir::ImplItemKind::Fn(ref sig, ..),
                owner_id,
                ..
            }) => Some((hir::HirId::make_owner(owner_id.def_id), &sig.decl, ident, false)),
            Node::Expr(&hir::Expr {
                hir_id,
                kind:
                    hir::ExprKind::Closure(hir::Closure {
                        kind: hir::ClosureKind::Coroutine(..), ..
                    }),
                ..
            }) => {
                let (ident, sig, owner_id) = match self.tcx.parent_hir_node(hir_id) {
                    Node::Item(&hir::Item {
                        ident,
                        kind: hir::ItemKind::Fn(ref sig, ..),
                        owner_id,
                        ..
                    }) => (ident, sig, owner_id),
                    Node::TraitItem(&hir::TraitItem {
                        ident,
                        kind: hir::TraitItemKind::Fn(ref sig, ..),
                        owner_id,
                        ..
                    }) => (ident, sig, owner_id),
                    Node::ImplItem(&hir::ImplItem {
                        ident,
                        kind: hir::ImplItemKind::Fn(ref sig, ..),
                        owner_id,
                        ..
                    }) => (ident, sig, owner_id),
                    _ => return None,
                };
                Some((
                    hir::HirId::make_owner(owner_id.def_id),
                    &sig.decl,
                    ident,
                    ident.name != sym::main,
                ))
            }
            _ => None,
        }
    }

    /// Given a `HirId`, return the `HirId` of the enclosing function, its `FnDecl`, and whether a
    /// suggestion can be made, `None` otherwise.
    pub fn get_fn_decl(
        &self,
        blk_id: hir::HirId,
    ) -> Option<(hir::HirId, &'tcx hir::FnDecl<'tcx>, bool)> {
        // Get enclosing Fn, if it is a function or a trait method, unless there's a `loop` or
        // `while` before reaching it, as block tail returns are not available in them.
        self.tcx.hir().get_return_block(blk_id).and_then(|blk_id| {
            let parent = self.tcx.hir_node(blk_id);
            self.get_node_fn_decl(parent)
                .map(|(fn_id, fn_decl, _, is_main)| (fn_id, fn_decl, is_main))
        })
    }

    pub(in super::super) fn note_internal_mutation_in_method(
        &self,
        err: &mut DiagnosticBuilder<'_>,
        expr: &hir::Expr<'_>,
        expected: Option<Ty<'tcx>>,
        found: Ty<'tcx>,
    ) {
        if found != self.tcx.types.unit {
            return;
        }

        let ExprKind::MethodCall(path_segment, rcvr, ..) = expr.kind else {
            return;
        };

        let rcvr_has_the_expected_type = self
            .typeck_results
            .borrow()
            .expr_ty_adjusted_opt(rcvr)
            .zip(expected)
            .is_some_and(|(ty, expected_ty)| expected_ty.peel_refs() == ty.peel_refs());

        let prev_call_mutates_and_returns_unit = || {
            self.typeck_results
                .borrow()
                .type_dependent_def_id(expr.hir_id)
                .map(|def_id| self.tcx.fn_sig(def_id).skip_binder().skip_binder())
                .and_then(|sig| sig.inputs_and_output.split_last())
                .is_some_and(|(output, inputs)| {
                    output.is_unit()
                        && inputs
                            .get(0)
                            .and_then(|self_ty| self_ty.ref_mutability())
                            .is_some_and(rustc_ast::Mutability::is_mut)
                })
        };

        if !(rcvr_has_the_expected_type || prev_call_mutates_and_returns_unit()) {
            return;
        }

        let mut sp = MultiSpan::from_span(path_segment.ident.span);
        sp.push_span_label(
            path_segment.ident.span,
            format!(
                "this call modifies {} in-place",
                match rcvr.kind {
                    ExprKind::Path(QPath::Resolved(
                        None,
                        hir::Path { segments: [segment], .. },
                    )) => format!("`{}`", segment.ident),
                    _ => "its receiver".to_string(),
                }
            ),
        );

        let modifies_rcvr_note =
            format!("method `{}` modifies its receiver in-place", path_segment.ident);
        if rcvr_has_the_expected_type {
            sp.push_span_label(
                rcvr.span,
                "you probably want to use this value after calling the method...",
            );
            err.span_note(sp, modifies_rcvr_note);
            err.note(format!("...instead of the `()` output of method `{}`", path_segment.ident));
        } else if let ExprKind::MethodCall(..) = rcvr.kind {
            err.span_note(
                sp,
                modifies_rcvr_note + ", it is not meant to be used in method chains.",
            );
        } else {
            err.span_note(sp, modifies_rcvr_note);
        }
    }

    // Instantiates the given path, which must refer to an item with the given
    // number of type parameters and type.
    #[instrument(skip(self, span), level = "debug")]
    pub fn instantiate_value_path(
        &self,
        segments: &'tcx [hir::PathSegment<'tcx>],
        self_ty: Option<LoweredTy<'tcx>>,
        res: Res,
        span: Span,
        path_span: Span,
        hir_id: hir::HirId,
    ) -> (Ty<'tcx>, Res) {
        let tcx = self.tcx;

        let path_segs = match res {
            Res::Local(_) | Res::SelfCtor(_) => vec![],
            Res::Def(kind, def_id) => self.astconv().def_ids_for_value_path_segments(
                segments,
                self_ty.map(|ty| ty.raw),
                kind,
                def_id,
                span,
            ),
            _ => bug!("instantiate_value_path on {:?}", res),
        };

        let mut user_self_ty = None;
        let mut is_alias_variant_ctor = false;
        match res {
            Res::Def(DefKind::Ctor(CtorOf::Variant, _), _) if let Some(self_ty) = self_ty => {
                let adt_def = self_ty.normalized.ty_adt_def().unwrap();
                user_self_ty =
                    Some(UserSelfTy { impl_def_id: adt_def.did(), self_ty: self_ty.raw });
                is_alias_variant_ctor = true;
            }
            Res::Def(DefKind::AssocFn | DefKind::AssocConst, def_id) => {
                let assoc_item = tcx.associated_item(def_id);
                let container = assoc_item.container;
                let container_id = assoc_item.container_id(tcx);
                debug!(?def_id, ?container, ?container_id);
                match container {
                    ty::TraitContainer => {
                        if let Err(e) = callee::check_legal_trait_for_method_call(
                            tcx,
                            path_span,
                            None,
                            span,
                            container_id,
                        ) {
                            self.set_tainted_by_errors(e);
                        }
                    }
                    ty::ImplContainer => {
                        if segments.len() == 1 {
                            // `<T>::assoc` will end up here, and so
                            // can `T::assoc`. It this came from an
                            // inherent impl, we need to record the
                            // `T` for posterity (see `UserSelfTy` for
                            // details).
                            let self_ty = self_ty.expect("UFCS sugared assoc missing Self").raw;
                            user_self_ty = Some(UserSelfTy { impl_def_id: container_id, self_ty });
                        }
                    }
                }
            }
            _ => {}
        }

        // Now that we have categorized what space the parameters for each
        // segment belong to, let's sort out the parameters that the user
        // provided (if any) into their appropriate spaces. We'll also report
        // errors if type parameters are provided in an inappropriate place.

        let generic_segs: FxHashSet<_> = path_segs.iter().map(|PathSeg(_, index)| index).collect();
        let generics_has_err = self.astconv().prohibit_generics(
            segments.iter().enumerate().filter_map(|(index, seg)| {
                if !generic_segs.contains(&index) || is_alias_variant_ctor {
                    Some(seg)
                } else {
                    None
                }
            }),
            |_| {},
        );

        if let Res::Local(hid) = res {
            let ty = self.local_ty(span, hid);
            let ty = self.normalize(span, ty);
            self.write_ty(hir_id, ty);
            return (ty, res);
        }

        if generics_has_err {
            // Don't try to infer type parameters when prohibited generic arguments were given.
            user_self_ty = None;
        }

        // Now we have to compare the types that the user *actually*
        // provided against the types that were *expected*. If the user
        // did not provide any types, then we want to instantiate inference
        // variables. If the user provided some types, we may still need
        // to add defaults. If the user provided *too many* types, that's
        // a problem.

        let mut infer_args_for_err = FxHashSet::default();

        let mut explicit_late_bound = ExplicitLateBound::No;
        for &PathSeg(def_id, index) in &path_segs {
            let seg = &segments[index];
            let generics = tcx.generics_of(def_id);

            // Argument-position `impl Trait` is treated as a normal generic
            // parameter internally, but we don't allow users to specify the
            // parameter's value explicitly, so we have to do some error-
            // checking here.
            let arg_count =
                check_generic_arg_count_for_call(tcx, def_id, generics, seg, IsMethodCall::No);

            if let ExplicitLateBound::Yes = arg_count.explicit_late_bound {
                explicit_late_bound = ExplicitLateBound::Yes;
            }

            if let Err(GenericArgCountMismatch { reported: Some(e), .. }) = arg_count.correct {
                infer_args_for_err.insert(index);
                self.set_tainted_by_errors(e); // See issue #53251.
            }
        }

        let has_self =
            path_segs.last().is_some_and(|PathSeg(def_id, _)| tcx.generics_of(*def_id).has_self);

        let (res, self_ctor_args) = if let Res::SelfCtor(impl_def_id) = res {
            let ty = LoweredTy::from_raw(
                self,
                span,
                tcx.at(span).type_of(impl_def_id).instantiate_identity(),
            );
            match ty.normalized.ty_adt_def() {
                Some(adt_def) if adt_def.has_ctor() => {
                    let (ctor_kind, ctor_def_id) = adt_def.non_enum_variant().ctor.unwrap();
                    // Check the visibility of the ctor.
                    let vis = tcx.visibility(ctor_def_id);
                    if !vis.is_accessible_from(tcx.parent_module(hir_id).to_def_id(), tcx) {
                        tcx.dcx()
                            .emit_err(CtorIsPrivate { span, def: tcx.def_path_str(adt_def.did()) });
                    }
                    let new_res = Res::Def(DefKind::Ctor(CtorOf::Struct, ctor_kind), ctor_def_id);
                    let user_args = Self::user_args_for_adt(ty);
                    user_self_ty = user_args.user_self_ty;
                    (new_res, Some(user_args.args))
                }
                _ => {
                    let mut err = tcx.dcx().struct_span_err(
                        span,
                        "the `Self` constructor can only be used with tuple or unit structs",
                    );
                    if let Some(adt_def) = ty.normalized.ty_adt_def() {
                        match adt_def.adt_kind() {
                            AdtKind::Enum => {
                                err.help("did you mean to use one of the enum's variants?");
                            }
                            AdtKind::Struct | AdtKind::Union => {
                                err.span_suggestion(
                                    span,
                                    "use curly brackets",
                                    "Self { /* fields */ }",
                                    Applicability::HasPlaceholders,
                                );
                            }
                        }
                    }
                    let reported = err.emit();
                    return (Ty::new_error(tcx, reported), res);
                }
            }
        } else {
            (res, None)
        };
        let def_id = res.def_id();

        let arg_count = GenericArgCountResult {
            explicit_late_bound,
            correct: if infer_args_for_err.is_empty() {
                Ok(())
            } else {
                Err(GenericArgCountMismatch::default())
            },
        };

        struct CreateCtorInstantiationsContext<'a, 'tcx> {
            fcx: &'a FnCtxt<'a, 'tcx>,
            span: Span,
            path_segs: &'a [PathSeg],
            infer_args_for_err: &'a FxHashSet<usize>,
            segments: &'tcx [hir::PathSegment<'tcx>],
        }
        impl<'tcx, 'a> CreateInstantiationsForGenericArgsCtxt<'a, 'tcx>
            for CreateCtorInstantiationsContext<'a, 'tcx>
        {
            fn args_for_def_id(
                &mut self,
                def_id: DefId,
            ) -> (Option<&'a hir::GenericArgs<'tcx>>, bool) {
                if let Some(&PathSeg(_, index)) =
                    self.path_segs.iter().find(|&PathSeg(did, _)| *did == def_id)
                {
                    // If we've encountered an `impl Trait`-related error, we're just
                    // going to infer the arguments for better error messages.
                    if !self.infer_args_for_err.contains(&index) {
                        // Check whether the user has provided generic arguments.
                        if let Some(data) = self.segments[index].args {
                            return (Some(data), self.segments[index].infer_args);
                        }
                    }
                    return (None, self.segments[index].infer_args);
                }

                (None, true)
            }

            fn provided_kind(
                &mut self,
                param: &ty::GenericParamDef,
                arg: &GenericArg<'tcx>,
            ) -> ty::GenericArg<'tcx> {
                match (&param.kind, arg) {
                    (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
                        self.fcx.astconv().ast_region_to_region(lt, Some(param)).into()
                    }
                    (GenericParamDefKind::Type { .. }, GenericArg::Type(ty)) => {
                        self.fcx.to_ty(ty).raw.into()
                    }
                    (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
                        self.fcx.const_arg_to_const(&ct.value, param.def_id).into()
                    }
                    (GenericParamDefKind::Type { .. }, GenericArg::Infer(inf)) => {
                        self.fcx.ty_infer(Some(param), inf.span).into()
                    }
                    (
                        &GenericParamDefKind::Const { has_default, is_host_effect },
                        GenericArg::Infer(inf),
                    ) => {
                        let tcx = self.fcx.tcx();

                        if has_default && is_host_effect {
                            self.fcx.var_for_effect(param)
                        } else {
                            self.fcx
                                .ct_infer(
                                    tcx.type_of(param.def_id)
                                        .no_bound_vars()
                                        .expect("const parameter types cannot be generic"),
                                    Some(param),
                                    inf.span,
                                )
                                .into()
                        }
                    }
                    _ => unreachable!(),
                }
            }

            fn inferred_kind(
                &mut self,
                args: Option<&[ty::GenericArg<'tcx>]>,
                param: &ty::GenericParamDef,
                infer_args: bool,
            ) -> ty::GenericArg<'tcx> {
                let tcx = self.fcx.tcx();
                match param.kind {
                    GenericParamDefKind::Lifetime => {
                        self.fcx.re_infer(Some(param), self.span).unwrap().into()
                    }
                    GenericParamDefKind::Type { has_default, .. } => {
                        if !infer_args && has_default {
                            // If we have a default, then it doesn't matter that we're not
                            // inferring the type arguments: we provide the default where any
                            // is missing.
                            tcx.type_of(param.def_id).instantiate(tcx, args.unwrap()).into()
                        } else {
                            // If no type arguments were provided, we have to infer them.
                            // This case also occurs as a result of some malformed input, e.g.
                            // a lifetime argument being given instead of a type parameter.
                            // Using inference instead of `Error` gives better error messages.
                            self.fcx.var_for_def(self.span, param)
                        }
                    }
                    GenericParamDefKind::Const { has_default, is_host_effect } => {
                        if has_default {
                            // N.B. this is a bit of a hack. `infer_args` is passed depending on
                            // whether the user has provided generic args. E.g. for `Vec::new`
                            // we would have to infer the generic types. However, for `Vec::<T>::new`
                            // where the allocator param `A` has a default we will *not* infer. But
                            // for effect params this is a different story: if the user has not written
                            // anything explicit for the effect param, we always need to try to infer
                            // it before falling back to default, such that a `const fn` such as
                            // `needs_drop::<()>` can still be called in const contexts. (if we defaulted
                            // instead of inferred, typeck would error)
                            if is_host_effect {
                                return self.fcx.var_for_effect(param);
                            } else if !infer_args {
                                return tcx
                                    .const_param_default(param.def_id)
                                    .instantiate(tcx, args.unwrap())
                                    .into();
                            }
                        }

                        self.fcx.var_for_def(self.span, param)
                    }
                }
            }
        }

        let args_raw = self_ctor_args.unwrap_or_else(|| {
            create_args_for_parent_generic_args(
                tcx,
                def_id,
                &[],
                has_self,
                self_ty.map(|s| s.raw),
                &arg_count,
                &mut CreateCtorInstantiationsContext {
                    fcx: self,
                    span,
                    path_segs: &path_segs,
                    infer_args_for_err: &infer_args_for_err,
                    segments,
                },
            )
        });

        // First, store the "user args" for later.
        self.write_user_type_annotation_from_args(hir_id, def_id, args_raw, user_self_ty);

        // Normalize only after registering type annotations.
        let args = self.normalize(span, args_raw);

        self.add_required_obligations_for_hir(span, def_id, args, hir_id);

        // Instantiate the values for the type parameters into the type of
        // the referenced item.
        let ty = tcx.type_of(def_id);
        assert!(!args.has_escaping_bound_vars());
        assert!(!ty.skip_binder().has_escaping_bound_vars());
        let ty_instantiated = self.normalize(span, ty.instantiate(tcx, args));

        if let Some(UserSelfTy { impl_def_id, self_ty }) = user_self_ty {
            // In the case of `Foo<T>::method` and `<Foo<T>>::method`, if `method`
            // is inherent, there is no `Self` parameter; instead, the impl needs
            // type parameters, which we can infer by unifying the provided `Self`
            // with the instantiated impl type.
            // This also occurs for an enum variant on a type alias.
            let impl_ty = self.normalize(span, tcx.type_of(impl_def_id).instantiate(tcx, args));
            let self_ty = self.normalize(span, self_ty);
            match self.at(&self.misc(span), self.param_env).eq(
                DefineOpaqueTypes::No,
                impl_ty,
                self_ty,
            ) {
                Ok(ok) => self.register_infer_ok_obligations(ok),
                Err(_) => {
                    self.dcx().span_delayed_bug(
                        span,
                        format!(
                        "instantiate_value_path: (UFCS) {self_ty:?} was a subtype of {impl_ty:?} but now is not?",
                    ),
                    );
                }
            }
        }

        debug!("instantiate_value_path: type of {:?} is {:?}", hir_id, ty_instantiated);
        self.write_args(hir_id, args);

        (ty_instantiated, res)
    }

    /// Add all the obligations that are required, instantiated and normalized appropriately.
    pub(crate) fn add_required_obligations_for_hir(
        &self,
        span: Span,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
        hir_id: hir::HirId,
    ) {
        self.add_required_obligations_with_code(span, def_id, args, |idx, span| {
            if span.is_dummy() {
                ObligationCauseCode::ExprItemObligation(def_id, hir_id, idx)
            } else {
                ObligationCauseCode::ExprBindingObligation(def_id, span, hir_id, idx)
            }
        })
    }

    #[instrument(level = "debug", skip(self, code, span, args))]
    fn add_required_obligations_with_code(
        &self,
        span: Span,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
        code: impl Fn(usize, Span) -> ObligationCauseCode<'tcx>,
    ) {
        let param_env = self.param_env;

        let bounds = self.instantiate_bounds(span, def_id, args);

        for obligation in traits::predicates_for_generics(
            |idx, predicate_span| {
                traits::ObligationCause::new(span, self.body_id, code(idx, predicate_span))
            },
            param_env,
            bounds,
        ) {
            self.register_predicate(obligation);
        }
    }

    /// Try to resolve `ty` to a structural type, normalizing aliases.
    ///
    /// In case there is still ambiguity, the returned type may be an inference
    /// variable. This is different from `structurally_resolve_type` which errors
    /// in this case.
    #[instrument(level = "debug", skip(self, sp), ret)]
    pub fn try_structurally_resolve_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
        let ty = self.resolve_vars_with_obligations(ty);

        if self.next_trait_solver()
            && let ty::Alias(..) = ty.kind()
        {
            // We need to use a separate variable here as otherwise the temporary for
            // `self.fulfillment_cx.borrow_mut()` is alive in the `Err` branch, resulting
            // in a reentrant borrow, causing an ICE.
            let result = self
                .at(&self.misc(sp), self.param_env)
                .structurally_normalize(ty, &mut **self.fulfillment_cx.borrow_mut());
            match result {
                Ok(normalized_ty) => normalized_ty,
                Err(errors) => {
                    let guar = self.err_ctxt().report_fulfillment_errors(errors);
                    return Ty::new_error(self.tcx, guar);
                }
            }
        } else {
            ty
        }
    }

    /// Resolves `ty` by a single level if `ty` is a type variable.
    ///
    /// When the new solver is enabled, this will also attempt to normalize
    /// the type if it's a projection (note that it will not deeply normalize
    /// projections within the type, just the outermost layer of the type).
    ///
    /// If no resolution is possible, then an error is reported.
    /// Numeric inference variables may be left unresolved.
    pub fn structurally_resolve_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
        let ty = self.try_structurally_resolve_type(sp, ty);

        if !ty.is_ty_var() {
            ty
        } else {
            let e = self.tainted_by_errors().unwrap_or_else(|| {
                self.err_ctxt()
                    .emit_inference_failure_err(self.body_id, sp, ty.into(), E0282, true)
                    .emit()
            });
            let err = Ty::new_error(self.tcx, e);
            self.demand_suptype(sp, err, ty);
            err
        }
    }

    pub(in super::super) fn with_breakable_ctxt<F: FnOnce() -> R, R>(
        &self,
        id: hir::HirId,
        ctxt: BreakableCtxt<'tcx>,
        f: F,
    ) -> (BreakableCtxt<'tcx>, R) {
        let index;
        {
            let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
            index = enclosing_breakables.stack.len();
            enclosing_breakables.by_id.insert(id, index);
            enclosing_breakables.stack.push(ctxt);
        }
        let result = f();
        let ctxt = {
            let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
            debug_assert!(enclosing_breakables.stack.len() == index + 1);
            // FIXME(#120456) - is `swap_remove` correct?
            enclosing_breakables.by_id.swap_remove(&id).expect("missing breakable context");
            enclosing_breakables.stack.pop().expect("missing breakable context")
        };
        (ctxt, result)
    }

    /// Instantiate a QueryResponse in a probe context, without a
    /// good ObligationCause.
    pub(in super::super) fn probe_instantiate_query_response(
        &self,
        span: Span,
        original_values: &OriginalQueryValues<'tcx>,
        query_result: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>,
    ) -> InferResult<'tcx, Ty<'tcx>> {
        self.instantiate_query_response_and_region_obligations(
            &traits::ObligationCause::misc(span, self.body_id),
            self.param_env,
            original_values,
            query_result,
        )
    }

    /// Returns `true` if an expression is contained inside the LHS of an assignment expression.
    pub(in super::super) fn expr_in_place(&self, mut expr_id: hir::HirId) -> bool {
        let mut contained_in_place = false;

        while let hir::Node::Expr(parent_expr) = self.tcx.parent_hir_node(expr_id) {
            match &parent_expr.kind {
                hir::ExprKind::Assign(lhs, ..) | hir::ExprKind::AssignOp(_, lhs, ..) => {
                    if lhs.hir_id == expr_id {
                        contained_in_place = true;
                        break;
                    }
                }
                _ => (),
            }
            expr_id = parent_expr.hir_id;
        }

        contained_in_place
    }
}