rustc_expand/mbe/macro_rules.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
use std::borrow::Cow;
use std::collections::hash_map::Entry;
use std::{mem, slice};
use ast::token::IdentIsRaw;
use rustc_ast::token::NtPatKind::*;
use rustc_ast::token::TokenKind::*;
use rustc_ast::token::{self, Delimiter, NonterminalKind, Token, TokenKind};
use rustc_ast::tokenstream::{DelimSpan, TokenStream};
use rustc_ast::{self as ast, DUMMY_NODE_ID, NodeId};
use rustc_ast_pretty::pprust;
use rustc_attr::{self as attr, TransparencyError};
use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
use rustc_errors::{Applicability, ErrorGuaranteed};
use rustc_feature::Features;
use rustc_lint_defs::BuiltinLintDiag;
use rustc_lint_defs::builtin::{
RUST_2021_INCOMPATIBLE_OR_PATTERNS, SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
};
use rustc_parse::parser::{ParseNtResult, Parser, Recovery};
use rustc_session::Session;
use rustc_session::parse::ParseSess;
use rustc_span::Span;
use rustc_span::edition::Edition;
use rustc_span::hygiene::Transparency;
use rustc_span::symbol::{Ident, MacroRulesNormalizedIdent, kw, sym};
use tracing::{debug, instrument, trace, trace_span};
use super::diagnostics;
use super::macro_parser::{NamedMatches, NamedParseResult};
use crate::base::{
DummyResult, ExpandResult, ExtCtxt, MacResult, MacroExpanderResult, SyntaxExtension,
SyntaxExtensionKind, TTMacroExpander,
};
use crate::expand::{AstFragment, AstFragmentKind, ensure_complete_parse, parse_ast_fragment};
use crate::mbe;
use crate::mbe::diagnostics::{annotate_doc_comment, parse_failure_msg};
use crate::mbe::macro_check;
use crate::mbe::macro_parser::NamedMatch::*;
use crate::mbe::macro_parser::{Error, ErrorReported, Failure, MatcherLoc, Success, TtParser};
use crate::mbe::transcribe::transcribe;
pub(crate) struct ParserAnyMacro<'a> {
parser: Parser<'a>,
/// Span of the expansion site of the macro this parser is for
site_span: Span,
/// The ident of the macro we're parsing
macro_ident: Ident,
lint_node_id: NodeId,
is_trailing_mac: bool,
arm_span: Span,
/// Whether or not this macro is defined in the current crate
is_local: bool,
}
impl<'a> ParserAnyMacro<'a> {
pub(crate) fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
let ParserAnyMacro {
site_span,
macro_ident,
ref mut parser,
lint_node_id,
arm_span,
is_trailing_mac,
is_local,
} = *self;
let snapshot = &mut parser.create_snapshot_for_diagnostic();
let fragment = match parse_ast_fragment(parser, kind) {
Ok(f) => f,
Err(err) => {
let guar = diagnostics::emit_frag_parse_err(
err, parser, snapshot, site_span, arm_span, kind,
);
return kind.dummy(site_span, guar);
}
};
// We allow semicolons at the end of expressions -- e.g., the semicolon in
// `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
// but `m!()` is allowed in expression positions (cf. issue #34706).
if kind == AstFragmentKind::Expr && parser.token == token::Semi {
if is_local {
parser.psess.buffer_lint(
SEMICOLON_IN_EXPRESSIONS_FROM_MACROS,
parser.token.span,
lint_node_id,
BuiltinLintDiag::TrailingMacro(is_trailing_mac, macro_ident),
);
}
parser.bump();
}
// Make sure we don't have any tokens left to parse so we don't silently drop anything.
let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
ensure_complete_parse(parser, &path, kind.name(), site_span);
fragment
}
}
struct MacroRulesMacroExpander {
node_id: NodeId,
name: Ident,
span: Span,
transparency: Transparency,
lhses: Vec<Vec<MatcherLoc>>,
rhses: Vec<mbe::TokenTree>,
}
impl TTMacroExpander for MacroRulesMacroExpander {
fn expand<'cx>(
&self,
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
input: TokenStream,
) -> MacroExpanderResult<'cx> {
ExpandResult::Ready(expand_macro(
cx,
sp,
self.span,
self.node_id,
self.name,
self.transparency,
input,
&self.lhses,
&self.rhses,
))
}
}
struct DummyExpander(ErrorGuaranteed);
impl TTMacroExpander for DummyExpander {
fn expand<'cx>(
&self,
_: &'cx mut ExtCtxt<'_>,
span: Span,
_: TokenStream,
) -> ExpandResult<Box<dyn MacResult + 'cx>, ()> {
ExpandResult::Ready(DummyResult::any(span, self.0))
}
}
fn trace_macros_note(cx_expansions: &mut FxIndexMap<Span, Vec<String>>, sp: Span, message: String) {
let sp = sp.macro_backtrace().last().map_or(sp, |trace| trace.call_site);
cx_expansions.entry(sp).or_default().push(message);
}
pub(super) trait Tracker<'matcher> {
/// The contents of `ParseResult::Failure`.
type Failure;
/// Arm failed to match. If the token is `token::Eof`, it indicates an unexpected
/// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
/// The usize is the approximate position of the token in the input token stream.
fn build_failure(tok: Token, position: u32, msg: &'static str) -> Self::Failure;
/// This is called before trying to match next MatcherLoc on the current token.
fn before_match_loc(&mut self, _parser: &TtParser, _matcher: &'matcher MatcherLoc) {}
/// This is called after an arm has been parsed, either successfully or unsuccessfully. When
/// this is called, `before_match_loc` was called at least once (with a `MatcherLoc::Eof`).
fn after_arm(&mut self, _result: &NamedParseResult<Self::Failure>) {}
/// For tracing.
fn description() -> &'static str;
fn recovery() -> Recovery {
Recovery::Forbidden
}
fn set_expected_token(&mut self, _tok: &'matcher Token) {}
fn get_expected_token(&self) -> Option<&'matcher Token> {
None
}
}
/// A noop tracker that is used in the hot path of the expansion, has zero overhead thanks to
/// monomorphization.
pub(super) struct NoopTracker;
impl<'matcher> Tracker<'matcher> for NoopTracker {
type Failure = ();
fn build_failure(_tok: Token, _position: u32, _msg: &'static str) -> Self::Failure {}
fn description() -> &'static str {
"none"
}
}
/// Expands the rules based macro defined by `lhses` and `rhses` for a given
/// input `arg`.
#[instrument(skip(cx, transparency, arg, lhses, rhses))]
fn expand_macro<'cx>(
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
def_span: Span,
node_id: NodeId,
name: Ident,
transparency: Transparency,
arg: TokenStream,
lhses: &[Vec<MatcherLoc>],
rhses: &[mbe::TokenTree],
) -> Box<dyn MacResult + 'cx> {
let psess = &cx.sess.psess;
// Macros defined in the current crate have a real node id,
// whereas macros from an external crate have a dummy id.
let is_local = node_id != DUMMY_NODE_ID;
if cx.trace_macros() {
let msg = format!("expanding `{}! {{ {} }}`", name, pprust::tts_to_string(&arg));
trace_macros_note(&mut cx.expansions, sp, msg);
}
// Track nothing for the best performance.
let try_success_result = try_match_macro(psess, name, &arg, lhses, &mut NoopTracker);
match try_success_result {
Ok((i, named_matches)) => {
let (rhs, rhs_span): (&mbe::Delimited, DelimSpan) = match &rhses[i] {
mbe::TokenTree::Delimited(span, _, delimited) => (&delimited, *span),
_ => cx.dcx().span_bug(sp, "malformed macro rhs"),
};
let arm_span = rhses[i].span();
// rhs has holes ( `$id` and `$(...)` that need filled)
let id = cx.current_expansion.id;
let tts = match transcribe(psess, &named_matches, rhs, rhs_span, transparency, id) {
Ok(tts) => tts,
Err(err) => {
let guar = err.emit();
return DummyResult::any(arm_span, guar);
}
};
if cx.trace_macros() {
let msg = format!("to `{}`", pprust::tts_to_string(&tts));
trace_macros_note(&mut cx.expansions, sp, msg);
}
let p = Parser::new(psess, tts, None);
if is_local {
cx.resolver.record_macro_rule_usage(node_id, i);
}
// Let the context choose how to interpret the result.
// Weird, but useful for X-macros.
Box::new(ParserAnyMacro {
parser: p,
// Pass along the original expansion site and the name of the macro
// so we can print a useful error message if the parse of the expanded
// macro leaves unparsed tokens.
site_span: sp,
macro_ident: name,
lint_node_id: cx.current_expansion.lint_node_id,
is_trailing_mac: cx.current_expansion.is_trailing_mac,
arm_span,
is_local,
})
}
Err(CanRetry::No(guar)) => {
debug!("Will not retry matching as an error was emitted already");
DummyResult::any(sp, guar)
}
Err(CanRetry::Yes) => {
// Retry and emit a better error.
let (span, guar) =
diagnostics::failed_to_match_macro(cx.psess(), sp, def_span, name, arg, lhses);
cx.trace_macros_diag();
DummyResult::any(span, guar)
}
}
}
pub(super) enum CanRetry {
Yes,
/// We are not allowed to retry macro expansion as a fatal error has been emitted already.
No(ErrorGuaranteed),
}
/// Try expanding the macro. Returns the index of the successful arm and its named_matches if it was successful,
/// and nothing if it failed. On failure, it's the callers job to use `track` accordingly to record all errors
/// correctly.
#[instrument(level = "debug", skip(psess, arg, lhses, track), fields(tracking = %T::description()))]
pub(super) fn try_match_macro<'matcher, T: Tracker<'matcher>>(
psess: &ParseSess,
name: Ident,
arg: &TokenStream,
lhses: &'matcher [Vec<MatcherLoc>],
track: &mut T,
) -> Result<(usize, NamedMatches), CanRetry> {
// We create a base parser that can be used for the "black box" parts.
// Every iteration needs a fresh copy of that parser. However, the parser
// is not mutated on many of the iterations, particularly when dealing with
// macros like this:
//
// macro_rules! foo {
// ("a") => (A);
// ("b") => (B);
// ("c") => (C);
// // ... etc. (maybe hundreds more)
// }
//
// as seen in the `html5ever` benchmark. We use a `Cow` so that the base
// parser is only cloned when necessary (upon mutation). Furthermore, we
// reinitialize the `Cow` with the base parser at the start of every
// iteration, so that any mutated parsers are not reused. This is all quite
// hacky, but speeds up the `html5ever` benchmark significantly. (Issue
// 68836 suggests a more comprehensive but more complex change to deal with
// this situation.)
let parser = parser_from_cx(psess, arg.clone(), T::recovery());
// Try each arm's matchers.
let mut tt_parser = TtParser::new(name);
for (i, lhs) in lhses.iter().enumerate() {
let _tracing_span = trace_span!("Matching arm", %i);
// Take a snapshot of the state of pre-expansion gating at this point.
// This is used so that if a matcher is not `Success(..)`ful,
// then the spans which became gated when parsing the unsuccessful matcher
// are not recorded. On the first `Success(..)`ful matcher, the spans are merged.
let mut gated_spans_snapshot = mem::take(&mut *psess.gated_spans.spans.borrow_mut());
let result = tt_parser.parse_tt(&mut Cow::Borrowed(&parser), lhs, track);
track.after_arm(&result);
match result {
Success(named_matches) => {
debug!("Parsed arm successfully");
// The matcher was `Success(..)`ful.
// Merge the gated spans from parsing the matcher with the preexisting ones.
psess.gated_spans.merge(gated_spans_snapshot);
return Ok((i, named_matches));
}
Failure(_) => {
trace!("Failed to match arm, trying the next one");
// Try the next arm.
}
Error(_, _) => {
debug!("Fatal error occurred during matching");
// We haven't emitted an error yet, so we can retry.
return Err(CanRetry::Yes);
}
ErrorReported(guarantee) => {
debug!("Fatal error occurred and was reported during matching");
// An error has been reported already, we cannot retry as that would cause duplicate errors.
return Err(CanRetry::No(guarantee));
}
}
// The matcher was not `Success(..)`ful.
// Restore to the state before snapshotting and maybe try again.
mem::swap(&mut gated_spans_snapshot, &mut psess.gated_spans.spans.borrow_mut());
}
Err(CanRetry::Yes)
}
// Note that macro-by-example's input is also matched against a token tree:
// $( $lhs:tt => $rhs:tt );+
//
// Holy self-referential!
/// Converts a macro item into a syntax extension.
pub fn compile_declarative_macro(
sess: &Session,
features: &Features,
macro_def: &ast::MacroDef,
ident: Ident,
attrs: &[ast::Attribute],
span: Span,
node_id: NodeId,
edition: Edition,
) -> (SyntaxExtension, Vec<(usize, Span)>) {
let mk_syn_ext = |expander| {
SyntaxExtension::new(
sess,
features,
SyntaxExtensionKind::LegacyBang(expander),
span,
Vec::new(),
edition,
ident.name,
attrs,
node_id != DUMMY_NODE_ID,
)
};
let dummy_syn_ext = |guar| (mk_syn_ext(Box::new(DummyExpander(guar))), Vec::new());
let dcx = sess.dcx();
let lhs_nm = Ident::new(sym::lhs, span);
let rhs_nm = Ident::new(sym::rhs, span);
let tt_spec = Some(NonterminalKind::TT);
let macro_rules = macro_def.macro_rules;
// Parse the macro_rules! invocation
// The pattern that macro_rules matches.
// The grammar for macro_rules! is:
// $( $lhs:tt => $rhs:tt );+
// ...quasiquoting this would be nice.
// These spans won't matter, anyways
let argument_gram = vec![
mbe::TokenTree::Sequence(DelimSpan::dummy(), mbe::SequenceRepetition {
tts: vec![
mbe::TokenTree::MetaVarDecl(span, lhs_nm, tt_spec),
mbe::TokenTree::token(token::FatArrow, span),
mbe::TokenTree::MetaVarDecl(span, rhs_nm, tt_spec),
],
separator: Some(Token::new(if macro_rules { token::Semi } else { token::Comma }, span)),
kleene: mbe::KleeneToken::new(mbe::KleeneOp::OneOrMore, span),
num_captures: 2,
}),
// to phase into semicolon-termination instead of semicolon-separation
mbe::TokenTree::Sequence(DelimSpan::dummy(), mbe::SequenceRepetition {
tts: vec![mbe::TokenTree::token(
if macro_rules { token::Semi } else { token::Comma },
span,
)],
separator: None,
kleene: mbe::KleeneToken::new(mbe::KleeneOp::ZeroOrMore, span),
num_captures: 0,
}),
];
// Convert it into `MatcherLoc` form.
let argument_gram = mbe::macro_parser::compute_locs(&argument_gram);
let create_parser = || {
let body = macro_def.body.tokens.clone();
Parser::new(&sess.psess, body, rustc_parse::MACRO_ARGUMENTS)
};
let parser = create_parser();
let mut tt_parser =
TtParser::new(Ident::with_dummy_span(if macro_rules { kw::MacroRules } else { kw::Macro }));
let argument_map =
match tt_parser.parse_tt(&mut Cow::Owned(parser), &argument_gram, &mut NoopTracker) {
Success(m) => m,
Failure(()) => {
// The fast `NoopTracker` doesn't have any info on failure, so we need to retry it
// with another one that gives us the information we need.
// For this we need to reclone the macro body as the previous parser consumed it.
let retry_parser = create_parser();
let mut track = diagnostics::FailureForwarder::new();
let parse_result =
tt_parser.parse_tt(&mut Cow::Owned(retry_parser), &argument_gram, &mut track);
let Failure((token, _, msg)) = parse_result else {
unreachable!("matcher returned something other than Failure after retry");
};
let s = parse_failure_msg(&token, track.get_expected_token());
let sp = token.span.substitute_dummy(span);
let mut err = sess.dcx().struct_span_err(sp, s);
err.span_label(sp, msg);
annotate_doc_comment(&mut err, sess.source_map(), sp);
let guar = err.emit();
return dummy_syn_ext(guar);
}
Error(sp, msg) => {
let guar = sess.dcx().span_err(sp.substitute_dummy(span), msg);
return dummy_syn_ext(guar);
}
ErrorReported(guar) => {
return dummy_syn_ext(guar);
}
};
let mut guar = None;
let mut check_emission = |ret: Result<(), ErrorGuaranteed>| guar = guar.or(ret.err());
// Extract the arguments:
let lhses = match &argument_map[&MacroRulesNormalizedIdent::new(lhs_nm)] {
MatchedSeq(s) => s
.iter()
.map(|m| {
if let MatchedSingle(ParseNtResult::Tt(tt)) = m {
let tt = mbe::quoted::parse(
&TokenStream::new(vec![tt.clone()]),
true,
sess,
node_id,
features,
edition,
)
.pop()
.unwrap();
// We don't handle errors here, the driver will abort
// after parsing/expansion. We can report every error in every macro this way.
check_emission(check_lhs_nt_follows(sess, node_id, &tt));
return tt;
}
sess.dcx().span_bug(span, "wrong-structured lhs")
})
.collect::<Vec<mbe::TokenTree>>(),
_ => sess.dcx().span_bug(span, "wrong-structured lhs"),
};
let rhses = match &argument_map[&MacroRulesNormalizedIdent::new(rhs_nm)] {
MatchedSeq(s) => s
.iter()
.map(|m| {
if let MatchedSingle(ParseNtResult::Tt(tt)) = m {
return mbe::quoted::parse(
&TokenStream::new(vec![tt.clone()]),
false,
sess,
node_id,
features,
edition,
)
.pop()
.unwrap();
}
sess.dcx().span_bug(span, "wrong-structured rhs")
})
.collect::<Vec<mbe::TokenTree>>(),
_ => sess.dcx().span_bug(span, "wrong-structured rhs"),
};
for rhs in &rhses {
check_emission(check_rhs(sess, rhs));
}
// Don't abort iteration early, so that errors for multiple lhses can be reported.
for lhs in &lhses {
check_emission(check_lhs_no_empty_seq(sess, slice::from_ref(lhs)));
}
check_emission(macro_check::check_meta_variables(&sess.psess, node_id, span, &lhses, &rhses));
let (transparency, transparency_error) = attr::find_transparency(attrs, macro_rules);
match transparency_error {
Some(TransparencyError::UnknownTransparency(value, span)) => {
dcx.span_err(span, format!("unknown macro transparency: `{value}`"));
}
Some(TransparencyError::MultipleTransparencyAttrs(old_span, new_span)) => {
dcx.span_err(vec![old_span, new_span], "multiple macro transparency attributes");
}
None => {}
}
if let Some(guar) = guar {
// To avoid warning noise, only consider the rules of this
// macro for the lint, if all rules are valid.
return dummy_syn_ext(guar);
}
// Compute the spans of the macro rules for unused rule linting.
// Also, we are only interested in non-foreign macros.
let rule_spans = if node_id != DUMMY_NODE_ID {
lhses
.iter()
.zip(rhses.iter())
.enumerate()
// If the rhs contains an invocation like compile_error!,
// don't consider the rule for the unused rule lint.
.filter(|(_idx, (_lhs, rhs))| !has_compile_error_macro(rhs))
// We only take the span of the lhs here,
// so that the spans of created warnings are smaller.
.map(|(idx, (lhs, _rhs))| (idx, lhs.span()))
.collect::<Vec<_>>()
} else {
Vec::new()
};
// Convert the lhses into `MatcherLoc` form, which is better for doing the
// actual matching.
let lhses = lhses
.iter()
.map(|lhs| {
// Ignore the delimiters around the matcher.
match lhs {
mbe::TokenTree::Delimited(.., delimited) => {
mbe::macro_parser::compute_locs(&delimited.tts)
}
_ => sess.dcx().span_bug(span, "malformed macro lhs"),
}
})
.collect();
let expander = Box::new(MacroRulesMacroExpander {
name: ident,
span,
node_id,
transparency,
lhses,
rhses,
});
(mk_syn_ext(expander), rule_spans)
}
fn check_lhs_nt_follows(
sess: &Session,
node_id: NodeId,
lhs: &mbe::TokenTree,
) -> Result<(), ErrorGuaranteed> {
// lhs is going to be like TokenTree::Delimited(...), where the
// entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
if let mbe::TokenTree::Delimited(.., delimited) = lhs {
check_matcher(sess, node_id, &delimited.tts)
} else {
let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
Err(sess.dcx().span_err(lhs.span(), msg))
}
}
fn is_empty_token_tree(sess: &Session, seq: &mbe::SequenceRepetition) -> bool {
if seq.separator.is_some() {
false
} else {
let mut is_empty = true;
let mut iter = seq.tts.iter().peekable();
while let Some(tt) = iter.next() {
match tt {
mbe::TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Vis)) => {}
mbe::TokenTree::Token(t @ Token { kind: DocComment(..), .. }) => {
let mut now = t;
while let Some(&mbe::TokenTree::Token(
next @ Token { kind: DocComment(..), .. },
)) = iter.peek()
{
now = next;
iter.next();
}
let span = t.span.to(now.span);
sess.dcx().span_note(span, "doc comments are ignored in matcher position");
}
mbe::TokenTree::Sequence(_, sub_seq)
if (sub_seq.kleene.op == mbe::KleeneOp::ZeroOrMore
|| sub_seq.kleene.op == mbe::KleeneOp::ZeroOrOne) => {}
_ => is_empty = false,
}
}
is_empty
}
}
/// Checks that the lhs contains no repetition which could match an empty token
/// tree, because then the matcher would hang indefinitely.
fn check_lhs_no_empty_seq(sess: &Session, tts: &[mbe::TokenTree]) -> Result<(), ErrorGuaranteed> {
use mbe::TokenTree;
for tt in tts {
match tt {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => (),
TokenTree::Delimited(.., del) => check_lhs_no_empty_seq(sess, &del.tts)?,
TokenTree::Sequence(span, seq) => {
if is_empty_token_tree(sess, seq) {
let sp = span.entire();
let guar = sess.dcx().span_err(sp, "repetition matches empty token tree");
return Err(guar);
}
check_lhs_no_empty_seq(sess, &seq.tts)?
}
}
}
Ok(())
}
fn check_rhs(sess: &Session, rhs: &mbe::TokenTree) -> Result<(), ErrorGuaranteed> {
match *rhs {
mbe::TokenTree::Delimited(..) => Ok(()),
_ => Err(sess.dcx().span_err(rhs.span(), "macro rhs must be delimited")),
}
}
fn check_matcher(
sess: &Session,
node_id: NodeId,
matcher: &[mbe::TokenTree],
) -> Result<(), ErrorGuaranteed> {
let first_sets = FirstSets::new(matcher);
let empty_suffix = TokenSet::empty();
check_matcher_core(sess, node_id, &first_sets, matcher, &empty_suffix)?;
Ok(())
}
fn has_compile_error_macro(rhs: &mbe::TokenTree) -> bool {
match rhs {
mbe::TokenTree::Delimited(.., d) => {
let has_compile_error = d.tts.array_windows::<3>().any(|[ident, bang, args]| {
if let mbe::TokenTree::Token(ident) = ident
&& let TokenKind::Ident(ident, _) = ident.kind
&& ident == sym::compile_error
&& let mbe::TokenTree::Token(bang) = bang
&& let TokenKind::Not = bang.kind
&& let mbe::TokenTree::Delimited(.., del) = args
&& del.delim != Delimiter::Invisible
{
true
} else {
false
}
});
if has_compile_error { true } else { d.tts.iter().any(has_compile_error_macro) }
}
_ => false,
}
}
// `The FirstSets` for a matcher is a mapping from subsequences in the
// matcher to the FIRST set for that subsequence.
//
// This mapping is partially precomputed via a backwards scan over the
// token trees of the matcher, which provides a mapping from each
// repetition sequence to its *first* set.
//
// (Hypothetically, sequences should be uniquely identifiable via their
// spans, though perhaps that is false, e.g., for macro-generated macros
// that do not try to inject artificial span information. My plan is
// to try to catch such cases ahead of time and not include them in
// the precomputed mapping.)
struct FirstSets<'tt> {
// this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
// span in the original matcher to the First set for the inner sequence `tt ...`.
//
// If two sequences have the same span in a matcher, then map that
// span to None (invalidating the mapping here and forcing the code to
// use a slow path).
first: FxHashMap<Span, Option<TokenSet<'tt>>>,
}
impl<'tt> FirstSets<'tt> {
fn new(tts: &'tt [mbe::TokenTree]) -> FirstSets<'tt> {
use mbe::TokenTree;
let mut sets = FirstSets { first: FxHashMap::default() };
build_recur(&mut sets, tts);
return sets;
// walks backward over `tts`, returning the FIRST for `tts`
// and updating `sets` at the same time for all sequence
// substructure we find within `tts`.
fn build_recur<'tt>(sets: &mut FirstSets<'tt>, tts: &'tt [TokenTree]) -> TokenSet<'tt> {
let mut first = TokenSet::empty();
for tt in tts.iter().rev() {
match tt {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => {
first.replace_with(TtHandle::TtRef(tt));
}
TokenTree::Delimited(span, _, delimited) => {
build_recur(sets, &delimited.tts);
first.replace_with(TtHandle::from_token_kind(
token::OpenDelim(delimited.delim),
span.open,
));
}
TokenTree::Sequence(sp, seq_rep) => {
let subfirst = build_recur(sets, &seq_rep.tts);
match sets.first.entry(sp.entire()) {
Entry::Vacant(vac) => {
vac.insert(Some(subfirst.clone()));
}
Entry::Occupied(mut occ) => {
// if there is already an entry, then a span must have collided.
// This should not happen with typical macro_rules macros,
// but syntax extensions need not maintain distinct spans,
// so distinct syntax trees can be assigned the same span.
// In such a case, the map cannot be trusted; so mark this
// entry as unusable.
occ.insert(None);
}
}
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TtHandle::from_token(sep.clone()));
}
// Reverse scan: Sequence comes before `first`.
if subfirst.maybe_empty
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
{
// If sequence is potentially empty, then
// union them (preserving first emptiness).
first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
} else {
// Otherwise, sequence guaranteed
// non-empty; replace first.
first = subfirst;
}
}
}
}
first
}
}
// walks forward over `tts` until all potential FIRST tokens are
// identified.
fn first(&self, tts: &'tt [mbe::TokenTree]) -> TokenSet<'tt> {
use mbe::TokenTree;
let mut first = TokenSet::empty();
for tt in tts.iter() {
assert!(first.maybe_empty);
match tt {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => {
first.add_one(TtHandle::TtRef(tt));
return first;
}
TokenTree::Delimited(span, _, delimited) => {
first.add_one(TtHandle::from_token_kind(
token::OpenDelim(delimited.delim),
span.open,
));
return first;
}
TokenTree::Sequence(sp, seq_rep) => {
let subfirst_owned;
let subfirst = match self.first.get(&sp.entire()) {
Some(Some(subfirst)) => subfirst,
Some(&None) => {
subfirst_owned = self.first(&seq_rep.tts);
&subfirst_owned
}
None => {
panic!("We missed a sequence during FirstSets construction");
}
};
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TtHandle::from_token(sep.clone()));
}
assert!(first.maybe_empty);
first.add_all(subfirst);
if subfirst.maybe_empty
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
{
// Continue scanning for more first
// tokens, but also make sure we
// restore empty-tracking state.
first.maybe_empty = true;
continue;
} else {
return first;
}
}
}
}
// we only exit the loop if `tts` was empty or if every
// element of `tts` matches the empty sequence.
assert!(first.maybe_empty);
first
}
}
// Most `mbe::TokenTree`s are preexisting in the matcher, but some are defined
// implicitly, such as opening/closing delimiters and sequence repetition ops.
// This type encapsulates both kinds. It implements `Clone` while avoiding the
// need for `mbe::TokenTree` to implement `Clone`.
#[derive(Debug)]
enum TtHandle<'tt> {
/// This is used in most cases.
TtRef(&'tt mbe::TokenTree),
/// This is only used for implicit token trees. The `mbe::TokenTree` *must*
/// be `mbe::TokenTree::Token`. No other variants are allowed. We store an
/// `mbe::TokenTree` rather than a `Token` so that `get()` can return a
/// `&mbe::TokenTree`.
Token(mbe::TokenTree),
}
impl<'tt> TtHandle<'tt> {
fn from_token(tok: Token) -> Self {
TtHandle::Token(mbe::TokenTree::Token(tok))
}
fn from_token_kind(kind: TokenKind, span: Span) -> Self {
TtHandle::from_token(Token::new(kind, span))
}
// Get a reference to a token tree.
fn get(&'tt self) -> &'tt mbe::TokenTree {
match self {
TtHandle::TtRef(tt) => tt,
TtHandle::Token(token_tt) => token_tt,
}
}
}
impl<'tt> PartialEq for TtHandle<'tt> {
fn eq(&self, other: &TtHandle<'tt>) -> bool {
self.get() == other.get()
}
}
impl<'tt> Clone for TtHandle<'tt> {
fn clone(&self) -> Self {
match self {
TtHandle::TtRef(tt) => TtHandle::TtRef(tt),
// This variant *must* contain a `mbe::TokenTree::Token`, and not
// any other variant of `mbe::TokenTree`.
TtHandle::Token(mbe::TokenTree::Token(tok)) => {
TtHandle::Token(mbe::TokenTree::Token(tok.clone()))
}
_ => unreachable!(),
}
}
}
// A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s
// (for macro-by-example syntactic variables). It also carries the
// `maybe_empty` flag; that is true if and only if the matcher can
// match an empty token sequence.
//
// The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
// which has corresponding FIRST = {$a:expr, c, d}.
// Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
//
// (Notably, we must allow for *-op to occur zero times.)
#[derive(Clone, Debug)]
struct TokenSet<'tt> {
tokens: Vec<TtHandle<'tt>>,
maybe_empty: bool,
}
impl<'tt> TokenSet<'tt> {
// Returns a set for the empty sequence.
fn empty() -> Self {
TokenSet { tokens: Vec::new(), maybe_empty: true }
}
// Returns the set `{ tok }` for the single-token (and thus
// non-empty) sequence [tok].
fn singleton(tt: TtHandle<'tt>) -> Self {
TokenSet { tokens: vec![tt], maybe_empty: false }
}
// Changes self to be the set `{ tok }`.
// Since `tok` is always present, marks self as non-empty.
fn replace_with(&mut self, tt: TtHandle<'tt>) {
self.tokens.clear();
self.tokens.push(tt);
self.maybe_empty = false;
}
// Changes self to be the empty set `{}`; meant for use when
// the particular token does not matter, but we want to
// record that it occurs.
fn replace_with_irrelevant(&mut self) {
self.tokens.clear();
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`, marking sequence as non-empty.
fn add_one(&mut self, tt: TtHandle<'tt>) {
if !self.tokens.contains(&tt) {
self.tokens.push(tt);
}
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
fn add_one_maybe(&mut self, tt: TtHandle<'tt>) {
if !self.tokens.contains(&tt) {
self.tokens.push(tt);
}
}
// Adds all elements of `other` to this.
//
// (Since this is a set, we filter out duplicates.)
//
// If `other` is potentially empty, then preserves the previous
// setting of the empty flag of `self`. If `other` is guaranteed
// non-empty, then `self` is marked non-empty.
fn add_all(&mut self, other: &Self) {
for tt in &other.tokens {
if !self.tokens.contains(tt) {
self.tokens.push(tt.clone());
}
}
if !other.maybe_empty {
self.maybe_empty = false;
}
}
}
// Checks that `matcher` is internally consistent and that it
// can legally be followed by a token `N`, for all `N` in `follow`.
// (If `follow` is empty, then it imposes no constraint on
// the `matcher`.)
//
// Returns the set of NT tokens that could possibly come last in
// `matcher`. (If `matcher` matches the empty sequence, then
// `maybe_empty` will be set to true.)
//
// Requires that `first_sets` is pre-computed for `matcher`;
// see `FirstSets::new`.
fn check_matcher_core<'tt>(
sess: &Session,
node_id: NodeId,
first_sets: &FirstSets<'tt>,
matcher: &'tt [mbe::TokenTree],
follow: &TokenSet<'tt>,
) -> Result<TokenSet<'tt>, ErrorGuaranteed> {
use mbe::TokenTree;
let mut last = TokenSet::empty();
let mut errored = Ok(());
// 2. For each token and suffix [T, SUFFIX] in M:
// ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
// then ensure T can also be followed by any element of FOLLOW.
'each_token: for i in 0..matcher.len() {
let token = &matcher[i];
let suffix = &matcher[i + 1..];
let build_suffix_first = || {
let mut s = first_sets.first(suffix);
if s.maybe_empty {
s.add_all(follow);
}
s
};
// (we build `suffix_first` on demand below; you can tell
// which cases are supposed to fall through by looking for the
// initialization of this variable.)
let suffix_first;
// First, update `last` so that it corresponds to the set
// of NT tokens that might end the sequence `... token`.
match token {
TokenTree::Token(..)
| TokenTree::MetaVar(..)
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => {
if token_can_be_followed_by_any(token) {
// don't need to track tokens that work with any,
last.replace_with_irrelevant();
// ... and don't need to check tokens that can be
// followed by anything against SUFFIX.
continue 'each_token;
} else {
last.replace_with(TtHandle::TtRef(token));
suffix_first = build_suffix_first();
}
}
TokenTree::Delimited(span, _, d) => {
let my_suffix = TokenSet::singleton(TtHandle::from_token_kind(
token::CloseDelim(d.delim),
span.close,
));
check_matcher_core(sess, node_id, first_sets, &d.tts, &my_suffix)?;
// don't track non NT tokens
last.replace_with_irrelevant();
// also, we don't need to check delimited sequences
// against SUFFIX
continue 'each_token;
}
TokenTree::Sequence(_, seq_rep) => {
suffix_first = build_suffix_first();
// The trick here: when we check the interior, we want
// to include the separator (if any) as a potential
// (but not guaranteed) element of FOLLOW. So in that
// case, we make a temp copy of suffix and stuff
// delimiter in there.
//
// FIXME: Should I first scan suffix_first to see if
// delimiter is already in it before I go through the
// work of cloning it? But then again, this way I may
// get a "tighter" span?
let mut new;
let my_suffix = if let Some(sep) = &seq_rep.separator {
new = suffix_first.clone();
new.add_one_maybe(TtHandle::from_token(sep.clone()));
&new
} else {
&suffix_first
};
// At this point, `suffix_first` is built, and
// `my_suffix` is some TokenSet that we can use
// for checking the interior of `seq_rep`.
let next = check_matcher_core(sess, node_id, first_sets, &seq_rep.tts, my_suffix)?;
if next.maybe_empty {
last.add_all(&next);
} else {
last = next;
}
// the recursive call to check_matcher_core already ran the 'each_last
// check below, so we can just keep going forward here.
continue 'each_token;
}
}
// (`suffix_first` guaranteed initialized once reaching here.)
// Now `last` holds the complete set of NT tokens that could
// end the sequence before SUFFIX. Check that every one works with `suffix`.
for tt in &last.tokens {
if let &TokenTree::MetaVarDecl(span, name, Some(kind)) = tt.get() {
for next_token in &suffix_first.tokens {
let next_token = next_token.get();
// Check if the old pat is used and the next token is `|`
// to warn about incompatibility with Rust 2021.
// We only emit this lint if we're parsing the original
// definition of this macro_rules, not while (re)parsing
// the macro when compiling another crate that is using the
// macro. (See #86567.)
// Macros defined in the current crate have a real node id,
// whereas macros from an external crate have a dummy id.
if node_id != DUMMY_NODE_ID
&& matches!(kind, NonterminalKind::Pat(PatParam { inferred: true }))
&& matches!(
next_token,
TokenTree::Token(token) if *token == BinOp(token::BinOpToken::Or)
)
{
// It is suggestion to use pat_param, for example: $x:pat -> $x:pat_param.
let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
span,
name,
Some(NonterminalKind::Pat(PatParam { inferred: false })),
));
sess.psess.buffer_lint(
RUST_2021_INCOMPATIBLE_OR_PATTERNS,
span,
ast::CRATE_NODE_ID,
BuiltinLintDiag::OrPatternsBackCompat(span, suggestion),
);
}
match is_in_follow(next_token, kind) {
IsInFollow::Yes => {}
IsInFollow::No(possible) => {
let may_be = if last.tokens.len() == 1 && suffix_first.tokens.len() == 1
{
"is"
} else {
"may be"
};
let sp = next_token.span();
let mut err = sess.dcx().struct_span_err(
sp,
format!(
"`${name}:{frag}` {may_be} followed by `{next}`, which \
is not allowed for `{frag}` fragments",
name = name,
frag = kind,
next = quoted_tt_to_string(next_token),
may_be = may_be
),
);
err.span_label(sp, format!("not allowed after `{kind}` fragments"));
if kind == NonterminalKind::Pat(PatWithOr)
&& sess.psess.edition.at_least_rust_2021()
&& next_token.is_token(&BinOp(token::BinOpToken::Or))
{
let suggestion = quoted_tt_to_string(&TokenTree::MetaVarDecl(
span,
name,
Some(NonterminalKind::Pat(PatParam { inferred: false })),
));
err.span_suggestion(
span,
"try a `pat_param` fragment specifier instead",
suggestion,
Applicability::MaybeIncorrect,
);
}
let msg = "allowed there are: ";
match possible {
&[] => {}
&[t] => {
err.note(format!(
"only {t} is allowed after `{kind}` fragments",
));
}
ts => {
err.note(format!(
"{}{} or {}",
msg,
ts[..ts.len() - 1].to_vec().join(", "),
ts[ts.len() - 1],
));
}
}
errored = Err(err.emit());
}
}
}
}
}
}
errored?;
Ok(last)
}
fn token_can_be_followed_by_any(tok: &mbe::TokenTree) -> bool {
if let mbe::TokenTree::MetaVarDecl(_, _, Some(kind)) = *tok {
frag_can_be_followed_by_any(kind)
} else {
// (Non NT's can always be followed by anything in matchers.)
true
}
}
/// Returns `true` if a fragment of type `frag` can be followed by any sort of
/// token. We use this (among other things) as a useful approximation
/// for when `frag` can be followed by a repetition like `$(...)*` or
/// `$(...)+`. In general, these can be a bit tricky to reason about,
/// so we adopt a conservative position that says that any fragment
/// specifier which consumes at most one token tree can be followed by
/// a fragment specifier (indeed, these fragments can be followed by
/// ANYTHING without fear of future compatibility hazards).
fn frag_can_be_followed_by_any(kind: NonterminalKind) -> bool {
matches!(
kind,
NonterminalKind::Item // always terminated by `}` or `;`
| NonterminalKind::Block // exactly one token tree
| NonterminalKind::Ident // exactly one token tree
| NonterminalKind::Literal // exactly one token tree
| NonterminalKind::Meta // exactly one token tree
| NonterminalKind::Lifetime // exactly one token tree
| NonterminalKind::TT // exactly one token tree
)
}
enum IsInFollow {
Yes,
No(&'static [&'static str]),
}
/// Returns `true` if `frag` can legally be followed by the token `tok`. For
/// fragments that can consume an unbounded number of tokens, `tok`
/// must be within a well-defined follow set. This is intended to
/// guarantee future compatibility: for example, without this rule, if
/// we expanded `expr` to include a new binary operator, we might
/// break macros that were relying on that binary operator as a
/// separator.
// when changing this do not forget to update doc/book/macros.md!
fn is_in_follow(tok: &mbe::TokenTree, kind: NonterminalKind) -> IsInFollow {
use mbe::TokenTree;
if let TokenTree::Token(Token { kind: token::CloseDelim(_), .. }) = *tok {
// closing a token tree can never be matched by any fragment;
// iow, we always require that `(` and `)` match, etc.
IsInFollow::Yes
} else {
match kind {
NonterminalKind::Item => {
// since items *must* be followed by either a `;` or a `}`, we can
// accept anything after them
IsInFollow::Yes
}
NonterminalKind::Block => {
// anything can follow block, the braces provide an easy boundary to
// maintain
IsInFollow::Yes
}
NonterminalKind::Stmt | NonterminalKind::Expr(_) => {
const TOKENS: &[&str] = &["`=>`", "`,`", "`;`"];
match tok {
TokenTree::Token(token) => match token.kind {
FatArrow | Comma | Semi => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
},
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::Pat(PatParam { .. }) => {
const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`|`", "`if`", "`in`"];
match tok {
TokenTree::Token(token) => match token.kind {
FatArrow | Comma | Eq | BinOp(token::Or) => IsInFollow::Yes,
Ident(name, IdentIsRaw::No) if name == kw::If || name == kw::In => {
IsInFollow::Yes
}
_ => IsInFollow::No(TOKENS),
},
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::Pat(PatWithOr) => {
const TOKENS: &[&str] = &["`=>`", "`,`", "`=`", "`if`", "`in`"];
match tok {
TokenTree::Token(token) => match token.kind {
FatArrow | Comma | Eq => IsInFollow::Yes,
Ident(name, IdentIsRaw::No) if name == kw::If || name == kw::In => {
IsInFollow::Yes
}
_ => IsInFollow::No(TOKENS),
},
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::Path | NonterminalKind::Ty => {
const TOKENS: &[&str] = &[
"`{`", "`[`", "`=>`", "`,`", "`>`", "`=`", "`:`", "`;`", "`|`", "`as`",
"`where`",
];
match tok {
TokenTree::Token(token) => match token.kind {
OpenDelim(Delimiter::Brace)
| OpenDelim(Delimiter::Bracket)
| Comma
| FatArrow
| Colon
| Eq
| Gt
| BinOp(token::Shr)
| Semi
| BinOp(token::Or) => IsInFollow::Yes,
Ident(name, IdentIsRaw::No) if name == kw::As || name == kw::Where => {
IsInFollow::Yes
}
_ => IsInFollow::No(TOKENS),
},
TokenTree::MetaVarDecl(_, _, Some(NonterminalKind::Block)) => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
}
}
NonterminalKind::Ident | NonterminalKind::Lifetime => {
// being a single token, idents and lifetimes are harmless
IsInFollow::Yes
}
NonterminalKind::Literal => {
// literals may be of a single token, or two tokens (negative numbers)
IsInFollow::Yes
}
NonterminalKind::Meta | NonterminalKind::TT => {
// being either a single token or a delimited sequence, tt is
// harmless
IsInFollow::Yes
}
NonterminalKind::Vis => {
// Explicitly disallow `priv`, on the off chance it comes back.
const TOKENS: &[&str] = &["`,`", "an ident", "a type"];
match tok {
TokenTree::Token(token) => match token.kind {
Comma => IsInFollow::Yes,
Ident(_, IdentIsRaw::Yes) => IsInFollow::Yes,
Ident(name, _) if name != kw::Priv => IsInFollow::Yes,
_ => {
if token.can_begin_type() {
IsInFollow::Yes
} else {
IsInFollow::No(TOKENS)
}
}
},
TokenTree::MetaVarDecl(
_,
_,
Some(NonterminalKind::Ident | NonterminalKind::Ty | NonterminalKind::Path),
) => IsInFollow::Yes,
_ => IsInFollow::No(TOKENS),
}
}
}
}
}
fn quoted_tt_to_string(tt: &mbe::TokenTree) -> String {
match tt {
mbe::TokenTree::Token(token) => pprust::token_to_string(token).into(),
mbe::TokenTree::MetaVar(_, name) => format!("${name}"),
mbe::TokenTree::MetaVarDecl(_, name, Some(kind)) => format!("${name}:{kind}"),
mbe::TokenTree::MetaVarDecl(_, name, None) => format!("${name}:"),
_ => panic!(
"{}",
"unexpected mbe::TokenTree::{Sequence or Delimited} \
in follow set checker"
),
}
}
pub(super) fn parser_from_cx(
psess: &ParseSess,
mut tts: TokenStream,
recovery: Recovery,
) -> Parser<'_> {
tts.desugar_doc_comments();
Parser::new(psess, tts, rustc_parse::MACRO_ARGUMENTS).recovery(recovery)
}