rustc_ty_utils/layout.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
use std::fmt::Debug;
use std::iter;
use hir::def_id::DefId;
use rustc_hir as hir;
use rustc_index::bit_set::BitSet;
use rustc_index::{IndexSlice, IndexVec};
use rustc_middle::bug;
use rustc_middle::mir::{CoroutineLayout, CoroutineSavedLocal};
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
FloatExt, HasTyCtxt, IntegerExt, LayoutCx, LayoutError, LayoutOf, MAX_SIMD_LANES, TyAndLayout,
};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{
self, AdtDef, CoroutineArgsExt, EarlyBinder, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt,
};
use rustc_session::{DataTypeKind, FieldInfo, FieldKind, SizeKind, VariantInfo};
use rustc_span::sym;
use rustc_span::symbol::Symbol;
use rustc_target::abi::*;
use tracing::{debug, instrument, trace};
use crate::errors::{
MultipleArrayFieldsSimdType, NonPrimitiveSimdType, OversizedSimdType, ZeroLengthSimdType,
};
use crate::layout_sanity_check::sanity_check_layout;
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { layout_of, ..*providers };
}
#[instrument(skip(tcx, query), level = "debug")]
fn layout_of<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Result<TyAndLayout<'tcx>, &'tcx LayoutError<'tcx>> {
let (param_env, ty) = query.into_parts();
debug!(?ty);
// Optimization: We convert to RevealAll and convert opaque types in the where bounds
// to their hidden types. This reduces overall uncached invocations of `layout_of` and
// is thus a small performance improvement.
let param_env = param_env.with_reveal_all_normalized(tcx);
let unnormalized_ty = ty;
// FIXME: We might want to have two different versions of `layout_of`:
// One that can be called after typecheck has completed and can use
// `normalize_erasing_regions` here and another one that can be called
// before typecheck has completed and uses `try_normalize_erasing_regions`.
let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
Ok(t) => t,
Err(normalization_error) => {
return Err(tcx
.arena
.alloc(LayoutError::NormalizationFailure(ty, normalization_error)));
}
};
if ty != unnormalized_ty {
// Ensure this layout is also cached for the normalized type.
return tcx.layout_of(param_env.and(ty));
}
let cx = LayoutCx::new(tcx, param_env);
let layout = layout_of_uncached(&cx, ty)?;
let layout = TyAndLayout { ty, layout };
// If we are running with `-Zprint-type-sizes`, maybe record layouts
// for dumping later.
if cx.tcx().sess.opts.unstable_opts.print_type_sizes {
record_layout_for_printing(&cx, layout);
}
sanity_check_layout(&cx, &layout);
Ok(layout)
}
fn error<'tcx>(cx: &LayoutCx<'tcx>, err: LayoutError<'tcx>) -> &'tcx LayoutError<'tcx> {
cx.tcx().arena.alloc(err)
}
fn map_error<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
err: LayoutCalculatorError<TyAndLayout<'tcx>>,
) -> &'tcx LayoutError<'tcx> {
let err = match err {
LayoutCalculatorError::SizeOverflow => {
// This is sometimes not a compile error in `check` builds.
// See `tests/ui/limits/huge-enum.rs` for an example.
LayoutError::SizeOverflow(ty)
}
LayoutCalculatorError::UnexpectedUnsized(field) => {
// This is sometimes not a compile error if there are trivially false where clauses.
// See `tests/ui/layout/trivial-bounds-sized.rs` for an example.
assert!(field.layout.is_unsized(), "invalid layout error {err:#?}");
if !field.ty.is_sized(cx.tcx(), cx.param_env) {
cx.tcx().dcx().delayed_bug(format!(
"encountered unexpected unsized field in layout of {ty:?}: {field:#?}"
));
}
LayoutError::Unknown(ty)
}
LayoutCalculatorError::EmptyUnion => {
// This is always a compile error.
cx.tcx().dcx().delayed_bug(format!("computed layout of empty union: {ty:?}"));
LayoutError::Unknown(ty)
}
};
error(cx, err)
}
fn univariant_uninterned<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
fields: &IndexSlice<FieldIdx, TyAndLayout<'tcx>>,
repr: &ReprOptions,
kind: StructKind,
) -> Result<LayoutS<FieldIdx, VariantIdx>, &'tcx LayoutError<'tcx>> {
let pack = repr.pack;
if pack.is_some() && repr.align.is_some() {
cx.tcx().dcx().bug("struct cannot be packed and aligned");
}
cx.calc.univariant(fields, repr, kind).map_err(|err| map_error(cx, ty, err))
}
fn layout_of_uncached<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>> {
// Types that reference `ty::Error` pessimistically don't have a meaningful layout.
// The only side-effect of this is possibly worse diagnostics in case the layout
// was actually computable (like if the `ty::Error` showed up only in a `PhantomData`).
if let Err(guar) = ty.error_reported() {
return Err(error(cx, LayoutError::ReferencesError(guar)));
}
let tcx = cx.tcx();
let param_env = cx.param_env;
let dl = cx.data_layout();
let scalar_unit = |value: Primitive| {
let size = value.size(dl);
assert!(size.bits() <= 128);
Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
};
let scalar = |value: Primitive| tcx.mk_layout(LayoutS::scalar(cx, scalar_unit(value)));
let univariant =
|fields: &IndexSlice<FieldIdx, TyAndLayout<'tcx>>, repr: &ReprOptions, kind| {
Ok(tcx.mk_layout(univariant_uninterned(cx, ty, fields, repr, kind)?))
};
debug_assert!(!ty.has_non_region_infer());
Ok(match *ty.kind() {
ty::Pat(ty, pat) => {
let layout = cx.layout_of(ty)?.layout;
let mut layout = LayoutS::clone(&layout.0);
match *pat {
ty::PatternKind::Range { start, end, include_end } => {
if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &mut layout.abi {
if let Some(start) = start {
scalar.valid_range_mut().start = start
.try_eval_bits(tcx, param_env)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
}
if let Some(end) = end {
let mut end = end
.try_eval_bits(tcx, param_env)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
if !include_end {
end = end.wrapping_sub(1);
}
scalar.valid_range_mut().end = end;
}
let niche = Niche {
offset: Size::ZERO,
value: scalar.primitive(),
valid_range: scalar.valid_range(cx),
};
layout.largest_niche = Some(niche);
tcx.mk_layout(layout)
} else {
bug!("pattern type with range but not scalar layout: {ty:?}, {layout:?}")
}
}
}
}
// Basic scalars.
ty::Bool => tcx.mk_layout(LayoutS::scalar(cx, Scalar::Initialized {
value: Int(I8, false),
valid_range: WrappingRange { start: 0, end: 1 },
})),
ty::Char => tcx.mk_layout(LayoutS::scalar(cx, Scalar::Initialized {
value: Int(I32, false),
valid_range: WrappingRange { start: 0, end: 0x10FFFF },
})),
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
ty::Float(fty) => scalar(Float(Float::from_float_ty(fty))),
ty::FnPtr(..) => {
let mut ptr = scalar_unit(Pointer(dl.instruction_address_space));
ptr.valid_range_mut().start = 1;
tcx.mk_layout(LayoutS::scalar(cx, ptr))
}
// The never type.
ty::Never => tcx.mk_layout(cx.calc.layout_of_never_type()),
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(pointee, _) => {
let mut data_ptr = scalar_unit(Pointer(AddressSpace::DATA));
if !ty.is_unsafe_ptr() {
data_ptr.valid_range_mut().start = 1;
}
let pointee = tcx.normalize_erasing_regions(param_env, pointee);
if pointee.is_sized(tcx, param_env) {
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
}
let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type()
// Projection eagerly bails out when the pointee references errors,
// fall back to structurally deducing metadata.
&& !pointee.references_error()
{
let pointee_metadata = Ty::new_projection(tcx, metadata_def_id, [pointee]);
let metadata_ty =
match tcx.try_normalize_erasing_regions(param_env, pointee_metadata) {
Ok(metadata_ty) => metadata_ty,
Err(mut err) => {
// Usually `<Ty as Pointee>::Metadata` can't be normalized because
// its struct tail cannot be normalized either, so try to get a
// more descriptive layout error here, which will lead to less confusing
// diagnostics.
//
// We use the raw struct tail function here to get the first tail
// that is an alias, which is likely the cause of the normalization
// error.
match tcx.try_normalize_erasing_regions(
param_env,
tcx.struct_tail_raw(pointee, |ty| ty, || {}),
) {
Ok(_) => {}
Err(better_err) => {
err = better_err;
}
}
return Err(error(cx, LayoutError::NormalizationFailure(pointee, err)));
}
};
let metadata_layout = cx.layout_of(metadata_ty)?;
// If the metadata is a 1-zst, then the pointer is thin.
if metadata_layout.is_1zst() {
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
}
let Abi::Scalar(metadata) = metadata_layout.abi else {
return Err(error(cx, LayoutError::Unknown(pointee)));
};
metadata
} else {
let unsized_part = tcx.struct_tail_for_codegen(pointee, param_env);
match unsized_part.kind() {
ty::Foreign(..) => {
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
}
ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
ty::Dynamic(..) => {
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
vtable.valid_range_mut().start = 1;
vtable
}
_ => {
return Err(error(cx, LayoutError::Unknown(pointee)));
}
}
};
// Effectively a (ptr, meta) tuple.
tcx.mk_layout(cx.calc.scalar_pair(data_ptr, metadata))
}
ty::Dynamic(_, _, ty::DynStar) => {
let mut data = scalar_unit(Pointer(AddressSpace::DATA));
data.valid_range_mut().start = 0;
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
vtable.valid_range_mut().start = 1;
tcx.mk_layout(cx.calc.scalar_pair(data, vtable))
}
// Arrays and slices.
ty::Array(element, mut count) => {
if count.has_aliases() {
count = tcx.normalize_erasing_regions(param_env, count);
if count.has_aliases() {
return Err(error(cx, LayoutError::Unknown(ty)));
}
}
let count = count
.try_eval_target_usize(tcx, param_env)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
let element = cx.layout_of(element)?;
let size = element
.size
.checked_mul(count, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
let abi = if count != 0 && ty.is_privately_uninhabited(tcx, param_env) {
Abi::Uninhabited
} else {
Abi::Aggregate { sized: true }
};
let largest_niche = if count != 0 { element.largest_niche } else { None };
tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count },
abi,
largest_niche,
align: element.align,
size,
max_repr_align: None,
unadjusted_abi_align: element.align.abi,
})
}
ty::Slice(element) => {
let element = cx.layout_of(element)?;
tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count: 0 },
abi: Abi::Aggregate { sized: false },
largest_niche: None,
align: element.align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: element.align.abi,
})
}
ty::Str => tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
abi: Abi::Aggregate { sized: false },
largest_niche: None,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
}),
// Odd unit types.
ty::FnDef(..) => {
univariant(IndexSlice::empty(), &ReprOptions::default(), StructKind::AlwaysSized)?
}
ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
let mut unit = univariant_uninterned(
cx,
ty,
IndexSlice::empty(),
&ReprOptions::default(),
StructKind::AlwaysSized,
)?;
match unit.abi {
Abi::Aggregate { ref mut sized } => *sized = false,
_ => bug!(),
}
tcx.mk_layout(unit)
}
ty::Coroutine(def_id, args) => coroutine_layout(cx, ty, def_id, args)?,
ty::Closure(_, args) => {
let tys = args.as_closure().upvar_tys();
univariant(
&tys.iter().map(|ty| cx.layout_of(ty)).try_collect::<IndexVec<_, _>>()?,
&ReprOptions::default(),
StructKind::AlwaysSized,
)?
}
ty::CoroutineClosure(_, args) => {
let tys = args.as_coroutine_closure().upvar_tys();
univariant(
&tys.iter().map(|ty| cx.layout_of(ty)).try_collect::<IndexVec<_, _>>()?,
&ReprOptions::default(),
StructKind::AlwaysSized,
)?
}
ty::Tuple(tys) => {
let kind =
if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
univariant(
&tys.iter().map(|k| cx.layout_of(k)).try_collect::<IndexVec<_, _>>()?,
&ReprOptions::default(),
kind,
)?
}
// SIMD vector types.
ty::Adt(def, args) if def.repr().simd() => {
if !def.is_struct() {
// Should have yielded E0517 by now.
tcx.dcx().delayed_bug("#[repr(simd)] was applied to an ADT that is not a struct");
return Err(error(cx, LayoutError::Unknown(ty)));
}
let fields = &def.non_enum_variant().fields;
// Supported SIMD vectors are homogeneous ADTs with at least one field:
//
// * #[repr(simd)] struct S(T, T, T, T);
// * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
// * #[repr(simd)] struct S([T; 4])
//
// where T is a primitive scalar (integer/float/pointer).
// SIMD vectors with zero fields are not supported.
// (should be caught by typeck)
if fields.is_empty() {
tcx.dcx().emit_fatal(ZeroLengthSimdType { ty })
}
// Type of the first ADT field:
let f0_ty = fields[FieldIdx::ZERO].ty(tcx, args);
// Heterogeneous SIMD vectors are not supported:
// (should be caught by typeck)
for fi in fields {
if fi.ty(tcx, args) != f0_ty {
tcx.dcx().delayed_bug(
"#[repr(simd)] was applied to an ADT with heterogeneous field type",
);
return Err(error(cx, LayoutError::Unknown(ty)));
}
}
// The element type and number of elements of the SIMD vector
// are obtained from:
//
// * the element type and length of the single array field, if
// the first field is of array type, or
//
// * the homogeneous field type and the number of fields.
let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
// First ADT field is an array:
// SIMD vectors with multiple array fields are not supported:
// Can't be caught by typeck with a generic simd type.
if def.non_enum_variant().fields.len() != 1 {
tcx.dcx().emit_fatal(MultipleArrayFieldsSimdType { ty });
}
// Extract the number of elements from the layout of the array field:
let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else {
return Err(error(cx, LayoutError::Unknown(ty)));
};
(*e_ty, *count, true)
} else {
// First ADT field is not an array:
(f0_ty, def.non_enum_variant().fields.len() as _, false)
};
// SIMD vectors of zero length are not supported.
// Additionally, lengths are capped at 2^16 as a fixed maximum backends must
// support.
//
// Can't be caught in typeck if the array length is generic.
if e_len == 0 {
tcx.dcx().emit_fatal(ZeroLengthSimdType { ty });
} else if e_len > MAX_SIMD_LANES {
tcx.dcx().emit_fatal(OversizedSimdType { ty, max_lanes: MAX_SIMD_LANES });
}
// Compute the ABI of the element type:
let e_ly = cx.layout_of(e_ty)?;
let Abi::Scalar(e_abi) = e_ly.abi else {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
tcx.dcx().emit_fatal(NonPrimitiveSimdType { ty, e_ty });
};
// Compute the size and alignment of the vector:
let size = e_ly
.size
.checked_mul(e_len, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
let (abi, align) = if def.repr().packed() && !e_len.is_power_of_two() {
// Non-power-of-two vectors have padding up to the next power-of-two.
// If we're a packed repr, remove the padding while keeping the alignment as close
// to a vector as possible.
(Abi::Aggregate { sized: true }, AbiAndPrefAlign {
abi: Align::max_for_offset(size),
pref: dl.vector_align(size).pref,
})
} else {
(Abi::Vector { element: e_abi, count: e_len }, dl.vector_align(size))
};
let size = size.align_to(align.abi);
// Compute the placement of the vector fields:
let fields = if is_array {
FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() }
} else {
FieldsShape::Array { stride: e_ly.size, count: e_len }
};
tcx.mk_layout(LayoutS {
variants: Variants::Single { index: FIRST_VARIANT },
fields,
abi,
largest_niche: e_ly.largest_niche,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
})
}
// ADTs.
ty::Adt(def, args) => {
// Cache the field layouts.
let variants = def
.variants()
.iter()
.map(|v| {
v.fields
.iter()
.map(|field| cx.layout_of(field.ty(tcx, args)))
.try_collect::<IndexVec<_, _>>()
})
.try_collect::<IndexVec<VariantIdx, _>>()?;
if def.is_union() {
if def.repr().pack.is_some() && def.repr().align.is_some() {
tcx.dcx().span_delayed_bug(
tcx.def_span(def.did()),
"union cannot be packed and aligned",
);
return Err(error(cx, LayoutError::Unknown(ty)));
}
return Ok(tcx.mk_layout(
cx.calc
.layout_of_union(&def.repr(), &variants)
.map_err(|err| map_error(cx, ty, err))?,
));
}
let get_discriminant_type =
|min, max| Integer::repr_discr(tcx, ty, &def.repr(), min, max);
let discriminants_iter = || {
def.is_enum()
.then(|| def.discriminants(tcx).map(|(v, d)| (v, d.val as i128)))
.into_iter()
.flatten()
};
let dont_niche_optimize_enum = def.repr().inhibit_enum_layout_opt()
|| def
.variants()
.iter_enumerated()
.any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()));
let maybe_unsized = def.is_struct()
&& def.non_enum_variant().tail_opt().is_some_and(|last_field| {
let param_env = tcx.param_env(def.did());
!tcx.type_of(last_field.did).instantiate_identity().is_sized(tcx, param_env)
});
let layout = cx
.calc
.layout_of_struct_or_enum(
&def.repr(),
&variants,
def.is_enum(),
def.is_unsafe_cell(),
tcx.layout_scalar_valid_range(def.did()),
get_discriminant_type,
discriminants_iter(),
dont_niche_optimize_enum,
!maybe_unsized,
)
.map_err(|err| map_error(cx, ty, err))?;
if !maybe_unsized && layout.is_unsized() {
bug!("got unsized layout for type that cannot be unsized {ty:?}: {layout:#?}");
}
// If the struct tail is sized and can be unsized, check that unsizing doesn't move the fields around.
if cfg!(debug_assertions)
&& maybe_unsized
&& def.non_enum_variant().tail().ty(tcx, args).is_sized(tcx, cx.param_env)
{
let mut variants = variants;
let tail_replacement = cx.layout_of(Ty::new_slice(tcx, tcx.types.u8)).unwrap();
*variants[FIRST_VARIANT].raw.last_mut().unwrap() = tail_replacement;
let Ok(unsized_layout) = cx.calc.layout_of_struct_or_enum(
&def.repr(),
&variants,
def.is_enum(),
def.is_unsafe_cell(),
tcx.layout_scalar_valid_range(def.did()),
get_discriminant_type,
discriminants_iter(),
dont_niche_optimize_enum,
!maybe_unsized,
) else {
bug!("failed to compute unsized layout of {ty:?}");
};
let FieldsShape::Arbitrary { offsets: sized_offsets, .. } = &layout.fields else {
bug!("unexpected FieldsShape for sized layout of {ty:?}: {:?}", layout.fields);
};
let FieldsShape::Arbitrary { offsets: unsized_offsets, .. } =
&unsized_layout.fields
else {
bug!(
"unexpected FieldsShape for unsized layout of {ty:?}: {:?}",
unsized_layout.fields
);
};
let (sized_tail, sized_fields) = sized_offsets.raw.split_last().unwrap();
let (unsized_tail, unsized_fields) = unsized_offsets.raw.split_last().unwrap();
if sized_fields != unsized_fields {
bug!("unsizing {ty:?} changed field order!\n{layout:?}\n{unsized_layout:?}");
}
if sized_tail < unsized_tail {
bug!("unsizing {ty:?} moved tail backwards!\n{layout:?}\n{unsized_layout:?}");
}
}
tcx.mk_layout(layout)
}
// Types with no meaningful known layout.
ty::Alias(..) => {
// NOTE(eddyb) `layout_of` query should've normalized these away,
// if that was possible, so there's no reason to try again here.
return Err(error(cx, LayoutError::Unknown(ty)));
}
ty::Bound(..) | ty::CoroutineWitness(..) | ty::Infer(_) | ty::Error(_) => {
bug!("Layout::compute: unexpected type `{}`", ty)
}
ty::Placeholder(..) | ty::Param(_) => {
return Err(error(cx, LayoutError::Unknown(ty)));
}
})
}
/// Overlap eligibility and variant assignment for each CoroutineSavedLocal.
#[derive(Clone, Debug, PartialEq)]
enum SavedLocalEligibility {
Unassigned,
Assigned(VariantIdx),
Ineligible(Option<FieldIdx>),
}
// When laying out coroutines, we divide our saved local fields into two
// categories: overlap-eligible and overlap-ineligible.
//
// Those fields which are ineligible for overlap go in a "prefix" at the
// beginning of the layout, and always have space reserved for them.
//
// Overlap-eligible fields are only assigned to one variant, so we lay
// those fields out for each variant and put them right after the
// prefix.
//
// Finally, in the layout details, we point to the fields from the
// variants they are assigned to. It is possible for some fields to be
// included in multiple variants. No field ever "moves around" in the
// layout; its offset is always the same.
//
// Also included in the layout are the upvars and the discriminant.
// These are included as fields on the "outer" layout; they are not part
// of any variant.
/// Compute the eligibility and assignment of each local.
fn coroutine_saved_local_eligibility(
info: &CoroutineLayout<'_>,
) -> (BitSet<CoroutineSavedLocal>, IndexVec<CoroutineSavedLocal, SavedLocalEligibility>) {
use SavedLocalEligibility::*;
let mut assignments: IndexVec<CoroutineSavedLocal, SavedLocalEligibility> =
IndexVec::from_elem(Unassigned, &info.field_tys);
// The saved locals not eligible for overlap. These will get
// "promoted" to the prefix of our coroutine.
let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
// Figure out which of our saved locals are fields in only
// one variant. The rest are deemed ineligible for overlap.
for (variant_index, fields) in info.variant_fields.iter_enumerated() {
for local in fields {
match assignments[*local] {
Unassigned => {
assignments[*local] = Assigned(variant_index);
}
Assigned(idx) => {
// We've already seen this local at another suspension
// point, so it is no longer a candidate.
trace!(
"removing local {:?} in >1 variant ({:?}, {:?})",
local, variant_index, idx
);
ineligible_locals.insert(*local);
assignments[*local] = Ineligible(None);
}
Ineligible(_) => {}
}
}
}
// Next, check every pair of eligible locals to see if they
// conflict.
for local_a in info.storage_conflicts.rows() {
let conflicts_a = info.storage_conflicts.count(local_a);
if ineligible_locals.contains(local_a) {
continue;
}
for local_b in info.storage_conflicts.iter(local_a) {
// local_a and local_b are storage live at the same time, therefore they
// cannot overlap in the coroutine layout. The only way to guarantee
// this is if they are in the same variant, or one is ineligible
// (which means it is stored in every variant).
if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
continue;
}
// If they conflict, we will choose one to make ineligible.
// This is not always optimal; it's just a greedy heuristic that
// seems to produce good results most of the time.
let conflicts_b = info.storage_conflicts.count(local_b);
let (remove, other) =
if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
ineligible_locals.insert(remove);
assignments[remove] = Ineligible(None);
trace!("removing local {:?} due to conflict with {:?}", remove, other);
}
}
// Count the number of variants in use. If only one of them, then it is
// impossible to overlap any locals in our layout. In this case it's
// always better to make the remaining locals ineligible, so we can
// lay them out with the other locals in the prefix and eliminate
// unnecessary padding bytes.
{
let mut used_variants = BitSet::new_empty(info.variant_fields.len());
for assignment in &assignments {
if let Assigned(idx) = assignment {
used_variants.insert(*idx);
}
}
if used_variants.count() < 2 {
for assignment in assignments.iter_mut() {
*assignment = Ineligible(None);
}
ineligible_locals.insert_all();
}
}
// Write down the order of our locals that will be promoted to the prefix.
{
for (idx, local) in ineligible_locals.iter().enumerate() {
assignments[local] = Ineligible(Some(FieldIdx::from_usize(idx)));
}
}
debug!("coroutine saved local assignments: {:?}", assignments);
(ineligible_locals, assignments)
}
/// Compute the full coroutine layout.
fn coroutine_layout<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
def_id: hir::def_id::DefId,
args: GenericArgsRef<'tcx>,
) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>> {
use SavedLocalEligibility::*;
let tcx = cx.tcx();
let instantiate_field = |ty: Ty<'tcx>| EarlyBinder::bind(ty).instantiate(tcx, args);
let Some(info) = tcx.coroutine_layout(def_id, args.as_coroutine().kind_ty()) else {
return Err(error(cx, LayoutError::Unknown(ty)));
};
let (ineligible_locals, assignments) = coroutine_saved_local_eligibility(info);
// Build a prefix layout, including "promoting" all ineligible
// locals as part of the prefix. We compute the layout of all of
// these fields at once to get optimal packing.
let tag_index = args.as_coroutine().prefix_tys().len();
// `info.variant_fields` already accounts for the reserved variants, so no need to add them.
let max_discr = (info.variant_fields.len() - 1) as u128;
let discr_int = Integer::fit_unsigned(max_discr);
let tag = Scalar::Initialized {
value: Primitive::Int(discr_int, /* signed = */ false),
valid_range: WrappingRange { start: 0, end: max_discr },
};
let tag_layout = TyAndLayout {
ty: discr_int.to_ty(tcx, /* signed = */ false),
layout: tcx.mk_layout(LayoutS::scalar(cx, tag)),
};
let promoted_layouts = ineligible_locals.iter().map(|local| {
let field_ty = instantiate_field(info.field_tys[local].ty);
let uninit_ty = Ty::new_maybe_uninit(tcx, field_ty);
cx.spanned_layout_of(uninit_ty, info.field_tys[local].source_info.span)
});
let prefix_layouts = args
.as_coroutine()
.prefix_tys()
.iter()
.map(|ty| cx.layout_of(ty))
.chain(iter::once(Ok(tag_layout)))
.chain(promoted_layouts)
.try_collect::<IndexVec<_, _>>()?;
let prefix = univariant_uninterned(
cx,
ty,
&prefix_layouts,
&ReprOptions::default(),
StructKind::AlwaysSized,
)?;
let (prefix_size, prefix_align) = (prefix.size, prefix.align);
// Split the prefix layout into the "outer" fields (upvars and
// discriminant) and the "promoted" fields. Promoted fields will
// get included in each variant that requested them in
// CoroutineLayout.
debug!("prefix = {:#?}", prefix);
let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
FieldsShape::Arbitrary { mut offsets, memory_index } => {
let mut inverse_memory_index = memory_index.invert_bijective_mapping();
// "a" (`0..b_start`) and "b" (`b_start..`) correspond to
// "outer" and "promoted" fields respectively.
let b_start = FieldIdx::from_usize(tag_index + 1);
let offsets_b = IndexVec::from_raw(offsets.raw.split_off(b_start.as_usize()));
let offsets_a = offsets;
// Disentangle the "a" and "b" components of `inverse_memory_index`
// by preserving the order but keeping only one disjoint "half" each.
// FIXME(eddyb) build a better abstraction for permutations, if possible.
let inverse_memory_index_b: IndexVec<u32, FieldIdx> = inverse_memory_index
.iter()
.filter_map(|&i| i.as_u32().checked_sub(b_start.as_u32()).map(FieldIdx::from_u32))
.collect();
inverse_memory_index.raw.retain(|&i| i < b_start);
let inverse_memory_index_a = inverse_memory_index;
// Since `inverse_memory_index_{a,b}` each only refer to their
// respective fields, they can be safely inverted
let memory_index_a = inverse_memory_index_a.invert_bijective_mapping();
let memory_index_b = inverse_memory_index_b.invert_bijective_mapping();
let outer_fields =
FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
(outer_fields, offsets_b, memory_index_b)
}
_ => bug!(),
};
let mut size = prefix.size;
let mut align = prefix.align;
let variants = info
.variant_fields
.iter_enumerated()
.map(|(index, variant_fields)| {
// Only include overlap-eligible fields when we compute our variant layout.
let variant_only_tys = variant_fields
.iter()
.filter(|local| match assignments[**local] {
Unassigned => bug!(),
Assigned(v) if v == index => true,
Assigned(_) => bug!("assignment does not match variant"),
Ineligible(_) => false,
})
.map(|local| {
let field_ty = instantiate_field(info.field_tys[*local].ty);
Ty::new_maybe_uninit(tcx, field_ty)
});
let mut variant = univariant_uninterned(
cx,
ty,
&variant_only_tys.map(|ty| cx.layout_of(ty)).try_collect::<IndexVec<_, _>>()?,
&ReprOptions::default(),
StructKind::Prefixed(prefix_size, prefix_align.abi),
)?;
variant.variants = Variants::Single { index };
let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
bug!();
};
// Now, stitch the promoted and variant-only fields back together in
// the order they are mentioned by our CoroutineLayout.
// Because we only use some subset (that can differ between variants)
// of the promoted fields, we can't just pick those elements of the
// `promoted_memory_index` (as we'd end up with gaps).
// So instead, we build an "inverse memory_index", as if all of the
// promoted fields were being used, but leave the elements not in the
// subset as `INVALID_FIELD_IDX`, which we can filter out later to
// obtain a valid (bijective) mapping.
const INVALID_FIELD_IDX: FieldIdx = FieldIdx::MAX;
debug_assert!(variant_fields.next_index() <= INVALID_FIELD_IDX);
let mut combined_inverse_memory_index = IndexVec::from_elem_n(
INVALID_FIELD_IDX,
promoted_memory_index.len() + memory_index.len(),
);
let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
let combined_offsets = variant_fields
.iter_enumerated()
.map(|(i, local)| {
let (offset, memory_index) = match assignments[*local] {
Unassigned => bug!(),
Assigned(_) => {
let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
(offset, promoted_memory_index.len() as u32 + memory_index)
}
Ineligible(field_idx) => {
let field_idx = field_idx.unwrap();
(promoted_offsets[field_idx], promoted_memory_index[field_idx])
}
};
combined_inverse_memory_index[memory_index] = i;
offset
})
.collect();
// Remove the unused slots and invert the mapping to obtain the
// combined `memory_index` (also see previous comment).
combined_inverse_memory_index.raw.retain(|&i| i != INVALID_FIELD_IDX);
let combined_memory_index = combined_inverse_memory_index.invert_bijective_mapping();
variant.fields = FieldsShape::Arbitrary {
offsets: combined_offsets,
memory_index: combined_memory_index,
};
size = size.max(variant.size);
align = align.max(variant.align);
Ok(variant)
})
.try_collect::<IndexVec<VariantIdx, _>>()?;
size = size.align_to(align.abi);
let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) {
Abi::Uninhabited
} else {
Abi::Aggregate { sized: true }
};
let layout = tcx.mk_layout(LayoutS {
variants: Variants::Multiple {
tag,
tag_encoding: TagEncoding::Direct,
tag_field: tag_index,
variants,
},
fields: outer_fields,
abi,
// Suppress niches inside coroutines. If the niche is inside a field that is aliased (due to
// self-referentiality), getting the discriminant can cause aliasing violations.
// `UnsafeCell` blocks niches for the same reason, but we don't yet have `UnsafePinned` that
// would do the same for us here.
// See <https://github.com/rust-lang/rust/issues/63818>, <https://github.com/rust-lang/miri/issues/3780>.
// FIXME: Remove when <https://github.com/rust-lang/rust/issues/125735> is implemented and aliased coroutine fields are wrapped in `UnsafePinned`.
largest_niche: None,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
});
debug!("coroutine layout ({:?}): {:#?}", ty, layout);
Ok(layout)
}
fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx>, layout: TyAndLayout<'tcx>) {
// Ignore layouts that are done with non-empty environments or
// non-monomorphic layouts, as the user only wants to see the stuff
// resulting from the final codegen session.
if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() {
return;
}
// (delay format until we actually need it)
let record = |kind, packed, opt_discr_size, variants| {
let type_desc = with_no_trimmed_paths!(format!("{}", layout.ty));
cx.tcx().sess.code_stats.record_type_size(
kind,
type_desc,
layout.align.abi,
layout.size,
packed,
opt_discr_size,
variants,
);
};
match *layout.ty.kind() {
ty::Adt(adt_def, _) => {
debug!("print-type-size t: `{:?}` process adt", layout.ty);
let adt_kind = adt_def.adt_kind();
let adt_packed = adt_def.repr().pack.is_some();
let (variant_infos, opt_discr_size) = variant_info_for_adt(cx, layout, adt_def);
record(adt_kind.into(), adt_packed, opt_discr_size, variant_infos);
}
ty::Coroutine(def_id, args) => {
debug!("print-type-size t: `{:?}` record coroutine", layout.ty);
// Coroutines always have a begin/poisoned/end state with additional suspend points
let (variant_infos, opt_discr_size) =
variant_info_for_coroutine(cx, layout, def_id, args);
record(DataTypeKind::Coroutine, false, opt_discr_size, variant_infos);
}
ty::Closure(..) => {
debug!("print-type-size t: `{:?}` record closure", layout.ty);
record(DataTypeKind::Closure, false, None, vec![]);
}
_ => {
debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
}
};
}
fn variant_info_for_adt<'tcx>(
cx: &LayoutCx<'tcx>,
layout: TyAndLayout<'tcx>,
adt_def: AdtDef<'tcx>,
) -> (Vec<VariantInfo>, Option<Size>) {
let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
let mut min_size = Size::ZERO;
let field_info: Vec<_> = flds
.iter()
.enumerate()
.map(|(i, &name)| {
let field_layout = layout.field(cx, i);
let offset = layout.fields.offset(i);
min_size = min_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::AdtField,
name,
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
type_name: None,
}
})
.collect();
VariantInfo {
name: n,
kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
align: layout.align.abi.bytes(),
size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
fields: field_info,
}
};
match layout.variants {
Variants::Single { index } => {
if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
let variant_def = &adt_def.variant(index);
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
(vec![build_variant_info(Some(variant_def.name), &fields, layout)], None)
} else {
(vec![], None)
}
}
Variants::Multiple { tag, ref tag_encoding, .. } => {
debug!(
"print-type-size `{:#?}` adt general variants def {}",
layout.ty,
adt_def.variants().len()
);
let variant_infos: Vec<_> = adt_def
.variants()
.iter_enumerated()
.map(|(i, variant_def)| {
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
})
.collect();
(variant_infos, match tag_encoding {
TagEncoding::Direct => Some(tag.size(cx)),
_ => None,
})
}
}
}
fn variant_info_for_coroutine<'tcx>(
cx: &LayoutCx<'tcx>,
layout: TyAndLayout<'tcx>,
def_id: DefId,
args: ty::GenericArgsRef<'tcx>,
) -> (Vec<VariantInfo>, Option<Size>) {
use itertools::Itertools;
let Variants::Multiple { tag, ref tag_encoding, tag_field, .. } = layout.variants else {
return (vec![], None);
};
let coroutine = cx.tcx().coroutine_layout(def_id, args.as_coroutine().kind_ty()).unwrap();
let upvar_names = cx.tcx().closure_saved_names_of_captured_variables(def_id);
let mut upvars_size = Size::ZERO;
let upvar_fields: Vec<_> = args
.as_coroutine()
.upvar_tys()
.iter()
.zip_eq(upvar_names)
.enumerate()
.map(|(field_idx, (_, name))| {
let field_layout = layout.field(cx, field_idx);
let offset = layout.fields.offset(field_idx);
upvars_size = upvars_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::Upvar,
name: *name,
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
type_name: None,
}
})
.collect();
let mut variant_infos: Vec<_> = coroutine
.variant_fields
.iter_enumerated()
.map(|(variant_idx, variant_def)| {
let variant_layout = layout.for_variant(cx, variant_idx);
let mut variant_size = Size::ZERO;
let fields = variant_def
.iter()
.enumerate()
.map(|(field_idx, local)| {
let field_name = coroutine.field_names[*local];
let field_layout = variant_layout.field(cx, field_idx);
let offset = variant_layout.fields.offset(field_idx);
// The struct is as large as the last field's end
variant_size = variant_size.max(offset + field_layout.size);
FieldInfo {
kind: FieldKind::CoroutineLocal,
name: field_name.unwrap_or(Symbol::intern(&format!(
".coroutine_field{}",
local.as_usize()
))),
offset: offset.bytes(),
size: field_layout.size.bytes(),
align: field_layout.align.abi.bytes(),
// Include the type name if there is no field name, or if the name is the
// __awaitee placeholder symbol which means a child future being `.await`ed.
type_name: (field_name.is_none() || field_name == Some(sym::__awaitee))
.then(|| Symbol::intern(&field_layout.ty.to_string())),
}
})
.chain(upvar_fields.iter().copied())
.collect();
// If the variant has no state-specific fields, then it's the size of the upvars.
if variant_size == Size::ZERO {
variant_size = upvars_size;
}
// This `if` deserves some explanation.
//
// The layout code has a choice of where to place the discriminant of this coroutine.
// If the discriminant of the coroutine is placed early in the layout (before the
// variant's own fields), then it'll implicitly be counted towards the size of the
// variant, since we use the maximum offset to calculate size.
// (side-note: I know this is a bit problematic given upvars placement, etc).
//
// This is important, since the layout printing code always subtracts this discriminant
// size from the variant size if the struct is "enum"-like, so failing to account for it
// will either lead to numerical underflow, or an underreported variant size...
//
// However, if the discriminant is placed past the end of the variant, then we need
// to factor in the size of the discriminant manually. This really should be refactored
// better, but this "works" for now.
if layout.fields.offset(tag_field) >= variant_size {
variant_size += match tag_encoding {
TagEncoding::Direct => tag.size(cx),
_ => Size::ZERO,
};
}
VariantInfo {
name: Some(Symbol::intern(&ty::CoroutineArgs::variant_name(variant_idx))),
kind: SizeKind::Exact,
size: variant_size.bytes(),
align: variant_layout.align.abi.bytes(),
fields,
}
})
.collect();
// The first three variants are hardcoded to be `UNRESUMED`, `RETURNED` and `POISONED`.
// We will move the `RETURNED` and `POISONED` elements to the end so we
// are left with a sorting order according to the coroutines yield points:
// First `Unresumed`, then the `SuspendN` followed by `Returned` and `Panicked` (POISONED).
let end_states = variant_infos.drain(1..=2);
let end_states: Vec<_> = end_states.collect();
variant_infos.extend(end_states);
(variant_infos, match tag_encoding {
TagEncoding::Direct => Some(tag.size(cx)),
_ => None,
})
}