miri/concurrency/
data_race.rs

1//! Implementation of a data-race detector using Lamport Timestamps / Vector clocks
2//! based on the Dynamic Race Detection for C++:
3//! <https://www.doc.ic.ac.uk/~afd/homepages/papers/pdfs/2017/POPL.pdf>
4//! which does not report false-positives when fences are used, and gives better
5//! accuracy in presence of read-modify-write operations.
6//!
7//! The implementation contains modifications to correctly model the changes to the memory model in C++20
8//! regarding the weakening of release sequences: <http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0982r1.html>.
9//! Relaxed stores now unconditionally block all currently active release sequences and so per-thread tracking of release
10//! sequences is not needed.
11//!
12//! The implementation also models races with memory allocation and deallocation via treating allocation and
13//! deallocation as a type of write internally for detecting data-races.
14//!
15//! Weak memory orders are explored but not all weak behaviours are exhibited, so it can still miss data-races
16//! but should not report false-positives
17//!
18//! Data-race definition from(<https://en.cppreference.com/w/cpp/language/memory_model#Threads_and_data_races>):
19//! a data race occurs between two memory accesses if they are on different threads, at least one operation
20//! is non-atomic, at least one operation is a write and neither access happens-before the other. Read the link
21//! for full definition.
22//!
23//! This re-uses vector indexes for threads that are known to be unable to report data-races, this is valid
24//! because it only re-uses vector indexes once all currently-active (not-terminated) threads have an internal
25//! vector clock that happens-after the join operation of the candidate thread. Threads that have not been joined
26//! on are not considered. Since the thread's vector clock will only increase and a data-race implies that
27//! there is some index x where `clock[x] > thread_clock`, when this is true `clock[candidate-idx] > thread_clock`
28//! can never hold and hence a data-race can never be reported in that vector index again.
29//! This means that the thread-index can be safely re-used, starting on the next timestamp for the newly created
30//! thread.
31//!
32//! The timestamps used in the data-race detector assign each sequence of non-atomic operations
33//! followed by a single atomic or concurrent operation a single timestamp.
34//! Write, Read, Write, ThreadJoin will be represented by a single timestamp value on a thread.
35//! This is because extra increment operations between the operations in the sequence are not
36//! required for accurate reporting of data-race values.
37//!
38//! As per the paper a threads timestamp is only incremented after a release operation is performed
39//! so some atomic operations that only perform acquires do not increment the timestamp. Due to shared
40//! code some atomic operations may increment the timestamp when not necessary but this has no effect
41//! on the data-race detection code.
42
43use std::cell::{Cell, Ref, RefCell, RefMut};
44use std::fmt::Debug;
45use std::mem;
46
47use rustc_abi::{Align, HasDataLayout, Size};
48use rustc_ast::Mutability;
49use rustc_data_structures::fx::{FxHashMap, FxHashSet};
50use rustc_index::{Idx, IndexVec};
51use rustc_log::tracing;
52use rustc_middle::mir;
53use rustc_middle::ty::Ty;
54use rustc_span::Span;
55
56use super::vector_clock::{VClock, VTimestamp, VectorIdx};
57use super::weak_memory::EvalContextExt as _;
58use crate::concurrency::GlobalDataRaceHandler;
59use crate::diagnostics::RacingOp;
60use crate::intrinsics::AtomicRmwOp;
61use crate::*;
62
63pub type AllocState = VClockAlloc;
64
65/// Valid atomic read-write orderings, alias of atomic::Ordering (not non-exhaustive).
66#[derive(Copy, Clone, PartialEq, Eq, Debug)]
67pub enum AtomicRwOrd {
68    Relaxed,
69    Acquire,
70    Release,
71    AcqRel,
72    SeqCst,
73}
74
75/// Valid atomic read orderings, subset of atomic::Ordering.
76#[derive(Copy, Clone, PartialEq, Eq, Debug)]
77pub enum AtomicReadOrd {
78    Relaxed,
79    Acquire,
80    SeqCst,
81}
82
83/// Valid atomic write orderings, subset of atomic::Ordering.
84#[derive(Copy, Clone, PartialEq, Eq, Debug)]
85pub enum AtomicWriteOrd {
86    Relaxed,
87    Release,
88    SeqCst,
89}
90
91/// Valid atomic fence orderings, subset of atomic::Ordering.
92#[derive(Copy, Clone, PartialEq, Eq, Debug)]
93pub enum AtomicFenceOrd {
94    Acquire,
95    Release,
96    AcqRel,
97    SeqCst,
98}
99
100/// The current set of vector clocks describing the state
101/// of a thread, contains the happens-before clock and
102/// additional metadata to model atomic fence operations.
103#[derive(Clone, Default, Debug)]
104pub(super) struct ThreadClockSet {
105    /// The increasing clock representing timestamps
106    /// that happen-before this thread.
107    pub(super) clock: VClock,
108
109    /// The set of timestamps that will happen-before this
110    /// thread once it performs an acquire fence.
111    fence_acquire: VClock,
112
113    /// The last timestamp of happens-before relations that
114    /// have been released by this thread by a release fence.
115    fence_release: VClock,
116
117    /// Timestamps of the last SC write performed by each
118    /// thread, updated when this thread performs an SC fence.
119    /// This is never acquired into the thread's clock, it
120    /// just limits which old writes can be seen in weak memory emulation.
121    pub(super) write_seqcst: VClock,
122
123    /// Timestamps of the last SC fence performed by each
124    /// thread, updated when this thread performs an SC read.
125    /// This is never acquired into the thread's clock, it
126    /// just limits which old writes can be seen in weak memory emulation.
127    pub(super) read_seqcst: VClock,
128}
129
130impl ThreadClockSet {
131    /// Apply the effects of a release fence to this
132    /// set of thread vector clocks.
133    #[inline]
134    fn apply_release_fence(&mut self) {
135        self.fence_release.clone_from(&self.clock);
136    }
137
138    /// Apply the effects of an acquire fence to this
139    /// set of thread vector clocks.
140    #[inline]
141    fn apply_acquire_fence(&mut self) {
142        self.clock.join(&self.fence_acquire);
143    }
144
145    /// Increment the happens-before clock at a
146    /// known index.
147    #[inline]
148    fn increment_clock(&mut self, index: VectorIdx, current_span: Span) {
149        self.clock.increment_index(index, current_span);
150    }
151
152    /// Join the happens-before clock with that of
153    /// another thread, used to model thread join
154    /// operations.
155    fn join_with(&mut self, other: &ThreadClockSet) {
156        self.clock.join(&other.clock);
157    }
158}
159
160/// Error returned by finding a data race
161/// should be elaborated upon.
162#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
163pub struct DataRace;
164
165/// Externally stored memory cell clocks
166/// explicitly to reduce memory usage for the
167/// common case where no atomic operations
168/// exists on the memory cell.
169#[derive(Clone, PartialEq, Eq, Debug)]
170struct AtomicMemoryCellClocks {
171    /// The clock-vector of the timestamp of the last atomic
172    /// read operation performed by each thread.
173    /// This detects potential data-races between atomic read
174    /// and non-atomic write operations.
175    read_vector: VClock,
176
177    /// The clock-vector of the timestamp of the last atomic
178    /// write operation performed by each thread.
179    /// This detects potential data-races between atomic write
180    /// and non-atomic read or write operations.
181    write_vector: VClock,
182
183    /// Synchronization vector for acquire-release semantics
184    /// contains the vector of timestamps that will
185    /// happen-before a thread if an acquire-load is
186    /// performed on the data.
187    ///
188    /// With weak memory emulation, this is the clock of the most recent write. It is then only used
189    /// for release sequences, to integrate the most recent clock into the next one for RMWs.
190    sync_vector: VClock,
191
192    /// The size of accesses to this atomic location.
193    /// We use this to detect non-synchronized mixed-size accesses. Since all accesses must be
194    /// aligned to their size, this is sufficient to detect imperfectly overlapping accesses.
195    /// `None` indicates that we saw multiple different sizes, which is okay as long as all accesses are reads.
196    size: Option<Size>,
197}
198
199#[derive(Copy, Clone, PartialEq, Eq, Debug)]
200enum AtomicAccessType {
201    Load(AtomicReadOrd),
202    Store,
203    Rmw,
204}
205
206/// Type of a non-atomic read operation.
207#[derive(Copy, Clone, PartialEq, Eq, Debug)]
208pub enum NaReadType {
209    /// Standard unsynchronized write.
210    Read,
211
212    // An implicit read generated by a retag.
213    Retag,
214}
215
216impl NaReadType {
217    fn description(self) -> &'static str {
218        match self {
219            NaReadType::Read => "non-atomic read",
220            NaReadType::Retag => "retag read",
221        }
222    }
223}
224
225/// Type of a non-atomic write operation: allocating memory, non-atomic writes, and
226/// deallocating memory are all treated as writes for the purpose of the data-race detector.
227#[derive(Copy, Clone, PartialEq, Eq, Debug)]
228pub enum NaWriteType {
229    /// Allocate memory.
230    Allocate,
231
232    /// Standard unsynchronized write.
233    Write,
234
235    // An implicit write generated by a retag.
236    Retag,
237
238    /// Deallocate memory.
239    /// Note that when memory is deallocated first, later non-atomic accesses
240    /// will be reported as use-after-free, not as data races.
241    /// (Same for `Allocate` above.)
242    Deallocate,
243}
244
245impl NaWriteType {
246    fn description(self) -> &'static str {
247        match self {
248            NaWriteType::Allocate => "creating a new allocation",
249            NaWriteType::Write => "non-atomic write",
250            NaWriteType::Retag => "retag write",
251            NaWriteType::Deallocate => "deallocation",
252        }
253    }
254}
255
256#[derive(Copy, Clone, PartialEq, Eq, Debug)]
257enum AccessType {
258    NaRead(NaReadType),
259    NaWrite(NaWriteType),
260    AtomicLoad,
261    AtomicStore,
262    AtomicRmw,
263}
264
265/// Per-byte vector clock metadata for data-race detection.
266#[derive(Clone, PartialEq, Eq, Debug)]
267struct MemoryCellClocks {
268    /// The vector clock timestamp and the thread that did the last non-atomic write. We don't need
269    /// a full `VClock` here, it's always a single thread and nothing synchronizes, so the effective
270    /// clock is all-0 except for the thread that did the write.
271    write: (VectorIdx, VTimestamp),
272
273    /// The type of operation that the write index represents,
274    /// either newly allocated memory, a non-atomic write or
275    /// a deallocation of memory.
276    write_type: NaWriteType,
277
278    /// The vector clock of all non-atomic reads that happened since the last non-atomic write
279    /// (i.e., we join together the "singleton" clocks corresponding to each read). It is reset to
280    /// zero on each write operation.
281    read: VClock,
282
283    /// Atomic access tracking clocks.
284    /// For non-atomic memory this value is set to None.
285    /// For atomic memory, each byte carries this information.
286    atomic_ops: Option<Box<AtomicMemoryCellClocks>>,
287}
288
289/// Extra metadata associated with a thread.
290#[derive(Debug, Clone, Default)]
291struct ThreadExtraState {
292    /// The current vector index in use by the
293    /// thread currently, this is set to None
294    /// after the vector index has been re-used
295    /// and hence the value will never need to be
296    /// read during data-race reporting.
297    vector_index: Option<VectorIdx>,
298
299    /// Thread termination vector clock, this
300    /// is set on thread termination and is used
301    /// for joining on threads since the vector_index
302    /// may be re-used when the join operation occurs.
303    termination_vector_clock: Option<VClock>,
304}
305
306/// Global data-race detection state, contains the currently
307/// executing thread as well as the vector clocks associated
308/// with each of the threads.
309// FIXME: it is probably better to have one large RefCell, than to have so many small ones.
310#[derive(Debug, Clone)]
311pub struct GlobalState {
312    /// Set to true once the first additional
313    /// thread has launched, due to the dependency
314    /// between before and after a thread launch.
315    /// Any data-races must be recorded after this
316    /// so concurrent execution can ignore recording
317    /// any data-races.
318    multi_threaded: Cell<bool>,
319
320    /// A flag to mark we are currently performing
321    /// a data race free action (such as atomic access)
322    /// to suppress the race detector
323    ongoing_action_data_race_free: Cell<bool>,
324
325    /// Mapping of a vector index to a known set of thread
326    /// clocks, this is not directly mapping from a thread id
327    /// since it may refer to multiple threads.
328    vector_clocks: RefCell<IndexVec<VectorIdx, ThreadClockSet>>,
329
330    /// Mapping of a given vector index to the current thread
331    /// that the execution is representing, this may change
332    /// if a vector index is re-assigned to a new thread.
333    vector_info: RefCell<IndexVec<VectorIdx, ThreadId>>,
334
335    /// The mapping of a given thread to associated thread metadata.
336    thread_info: RefCell<IndexVec<ThreadId, ThreadExtraState>>,
337
338    /// Potential vector indices that could be re-used on thread creation
339    /// values are inserted here on after the thread has terminated and
340    /// been joined with, and hence may potentially become free
341    /// for use as the index for a new thread.
342    /// Elements in this set may still require the vector index to
343    /// report data-races, and can only be re-used after all
344    /// active vector clocks catch up with the threads timestamp.
345    reuse_candidates: RefCell<FxHashSet<VectorIdx>>,
346
347    /// We make SC fences act like RMWs on a global location.
348    /// To implement that, they all release and acquire into this clock.
349    last_sc_fence: RefCell<VClock>,
350
351    /// The timestamp of last SC write performed by each thread.
352    /// Threads only update their own index here!
353    last_sc_write_per_thread: RefCell<VClock>,
354
355    /// Track when an outdated (weak memory) load happens.
356    pub track_outdated_loads: bool,
357
358    /// Whether weak memory emulation is enabled
359    pub weak_memory: bool,
360}
361
362impl VisitProvenance for GlobalState {
363    fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
364        // We don't have any tags.
365    }
366}
367
368impl AccessType {
369    fn description(self, ty: Option<Ty<'_>>, size: Option<Size>) -> String {
370        let mut msg = String::new();
371
372        if let Some(size) = size {
373            if size == Size::ZERO {
374                // In this case there were multiple read accesss with different sizes and then a write.
375                // We will be reporting *one* of the other reads, but we don't have enough information
376                // to determine which one had which size.
377                assert!(self == AccessType::AtomicLoad);
378                assert!(ty.is_none());
379                return format!("multiple differently-sized atomic loads, including one load");
380            }
381            msg.push_str(&format!("{}-byte {}", size.bytes(), msg))
382        }
383
384        msg.push_str(match self {
385            AccessType::NaRead(w) => w.description(),
386            AccessType::NaWrite(w) => w.description(),
387            AccessType::AtomicLoad => "atomic load",
388            AccessType::AtomicStore => "atomic store",
389            AccessType::AtomicRmw => "atomic read-modify-write",
390        });
391
392        if let Some(ty) = ty {
393            msg.push_str(&format!(" of type `{ty}`"));
394        }
395
396        msg
397    }
398
399    fn is_atomic(self) -> bool {
400        match self {
401            AccessType::AtomicLoad | AccessType::AtomicStore | AccessType::AtomicRmw => true,
402            AccessType::NaRead(_) | AccessType::NaWrite(_) => false,
403        }
404    }
405
406    fn is_read(self) -> bool {
407        match self {
408            AccessType::AtomicLoad | AccessType::NaRead(_) => true,
409            AccessType::NaWrite(_) | AccessType::AtomicStore | AccessType::AtomicRmw => false,
410        }
411    }
412
413    fn is_retag(self) -> bool {
414        matches!(
415            self,
416            AccessType::NaRead(NaReadType::Retag) | AccessType::NaWrite(NaWriteType::Retag)
417        )
418    }
419}
420
421impl AtomicMemoryCellClocks {
422    fn new(size: Size) -> Self {
423        AtomicMemoryCellClocks {
424            read_vector: Default::default(),
425            write_vector: Default::default(),
426            sync_vector: Default::default(),
427            size: Some(size),
428        }
429    }
430}
431
432impl MemoryCellClocks {
433    /// Create a new set of clocks representing memory allocated
434    ///  at a given vector timestamp and index.
435    fn new(alloc: VTimestamp, alloc_index: VectorIdx) -> Self {
436        MemoryCellClocks {
437            read: VClock::default(),
438            write: (alloc_index, alloc),
439            write_type: NaWriteType::Allocate,
440            atomic_ops: None,
441        }
442    }
443
444    #[inline]
445    fn write_was_before(&self, other: &VClock) -> bool {
446        // This is the same as `self.write() <= other` but
447        // without actually manifesting a clock for `self.write`.
448        self.write.1 <= other[self.write.0]
449    }
450
451    #[inline]
452    fn write(&self) -> VClock {
453        VClock::new_with_index(self.write.0, self.write.1)
454    }
455
456    /// Load the internal atomic memory cells if they exist.
457    #[inline]
458    fn atomic(&self) -> Option<&AtomicMemoryCellClocks> {
459        self.atomic_ops.as_deref()
460    }
461
462    /// Load the internal atomic memory cells if they exist.
463    #[inline]
464    fn atomic_mut_unwrap(&mut self) -> &mut AtomicMemoryCellClocks {
465        self.atomic_ops.as_deref_mut().unwrap()
466    }
467
468    /// Load or create the internal atomic memory metadata if it does not exist. Also ensures we do
469    /// not do mixed-size atomic accesses, and updates the recorded atomic access size.
470    fn atomic_access(
471        &mut self,
472        thread_clocks: &ThreadClockSet,
473        size: Size,
474        write: bool,
475    ) -> Result<&mut AtomicMemoryCellClocks, DataRace> {
476        match self.atomic_ops {
477            Some(ref mut atomic) => {
478                // We are good if the size is the same or all atomic accesses are before our current time.
479                if atomic.size == Some(size) {
480                    Ok(atomic)
481                } else if atomic.read_vector <= thread_clocks.clock
482                    && atomic.write_vector <= thread_clocks.clock
483                {
484                    // We are fully ordered after all previous accesses, so we can change the size.
485                    atomic.size = Some(size);
486                    Ok(atomic)
487                } else if !write && atomic.write_vector <= thread_clocks.clock {
488                    // This is a read, and it is ordered after the last write. It's okay for the
489                    // sizes to mismatch, as long as no writes with a different size occur later.
490                    atomic.size = None;
491                    Ok(atomic)
492                } else {
493                    Err(DataRace)
494                }
495            }
496            None => {
497                self.atomic_ops = Some(Box::new(AtomicMemoryCellClocks::new(size)));
498                Ok(self.atomic_ops.as_mut().unwrap())
499            }
500        }
501    }
502
503    /// Update memory cell data-race tracking for atomic
504    /// load acquire semantics, is a no-op if this memory was
505    /// not used previously as atomic memory.
506    fn load_acquire(
507        &mut self,
508        thread_clocks: &mut ThreadClockSet,
509        index: VectorIdx,
510        access_size: Size,
511        sync_clock: Option<&VClock>,
512    ) -> Result<(), DataRace> {
513        self.atomic_read_detect(thread_clocks, index, access_size)?;
514        if let Some(sync_clock) = sync_clock.or_else(|| self.atomic().map(|a| &a.sync_vector)) {
515            thread_clocks.clock.join(sync_clock);
516        }
517        Ok(())
518    }
519
520    /// Update memory cell data-race tracking for atomic
521    /// load relaxed semantics, is a no-op if this memory was
522    /// not used previously as atomic memory.
523    fn load_relaxed(
524        &mut self,
525        thread_clocks: &mut ThreadClockSet,
526        index: VectorIdx,
527        access_size: Size,
528        sync_clock: Option<&VClock>,
529    ) -> Result<(), DataRace> {
530        self.atomic_read_detect(thread_clocks, index, access_size)?;
531        if let Some(sync_clock) = sync_clock.or_else(|| self.atomic().map(|a| &a.sync_vector)) {
532            thread_clocks.fence_acquire.join(sync_clock);
533        }
534        Ok(())
535    }
536
537    /// Update the memory cell data-race tracking for atomic
538    /// store release semantics.
539    fn store_release(
540        &mut self,
541        thread_clocks: &ThreadClockSet,
542        index: VectorIdx,
543        access_size: Size,
544    ) -> Result<(), DataRace> {
545        self.atomic_write_detect(thread_clocks, index, access_size)?;
546        let atomic = self.atomic_mut_unwrap(); // initialized by `atomic_write_detect`
547        atomic.sync_vector.clone_from(&thread_clocks.clock);
548        Ok(())
549    }
550
551    /// Update the memory cell data-race tracking for atomic
552    /// store relaxed semantics.
553    fn store_relaxed(
554        &mut self,
555        thread_clocks: &ThreadClockSet,
556        index: VectorIdx,
557        access_size: Size,
558    ) -> Result<(), DataRace> {
559        self.atomic_write_detect(thread_clocks, index, access_size)?;
560
561        // The handling of release sequences was changed in C++20 and so
562        // the code here is different to the paper since now all relaxed
563        // stores block release sequences. The exception for same-thread
564        // relaxed stores has been removed. We always overwrite the `sync_vector`,
565        // meaning the previous release sequence is broken.
566        let atomic = self.atomic_mut_unwrap();
567        atomic.sync_vector.clone_from(&thread_clocks.fence_release);
568        Ok(())
569    }
570
571    /// Update the memory cell data-race tracking for atomic
572    /// store release semantics for RMW operations.
573    fn rmw_release(
574        &mut self,
575        thread_clocks: &ThreadClockSet,
576        index: VectorIdx,
577        access_size: Size,
578    ) -> Result<(), DataRace> {
579        self.atomic_write_detect(thread_clocks, index, access_size)?;
580        let atomic = self.atomic_mut_unwrap();
581        // This *joining* of `sync_vector` implements release sequences: future
582        // reads of this location will acquire our clock *and* what was here before.
583        atomic.sync_vector.join(&thread_clocks.clock);
584        Ok(())
585    }
586
587    /// Update the memory cell data-race tracking for atomic
588    /// store relaxed semantics for RMW operations.
589    fn rmw_relaxed(
590        &mut self,
591        thread_clocks: &ThreadClockSet,
592        index: VectorIdx,
593        access_size: Size,
594    ) -> Result<(), DataRace> {
595        self.atomic_write_detect(thread_clocks, index, access_size)?;
596        let atomic = self.atomic_mut_unwrap();
597        // This *joining* of `sync_vector` implements release sequences: future
598        // reads of this location will acquire our fence clock *and* what was here before.
599        atomic.sync_vector.join(&thread_clocks.fence_release);
600        Ok(())
601    }
602
603    /// Detect data-races with an atomic read, caused by a non-atomic write that does
604    /// not happen-before the atomic-read.
605    fn atomic_read_detect(
606        &mut self,
607        thread_clocks: &ThreadClockSet,
608        index: VectorIdx,
609        access_size: Size,
610    ) -> Result<(), DataRace> {
611        trace!("Atomic read with vectors: {:#?} :: {:#?}", self, thread_clocks);
612        let atomic = self.atomic_access(thread_clocks, access_size, /*write*/ false)?;
613        atomic.read_vector.set_at_index(&thread_clocks.clock, index);
614        // Make sure the last non-atomic write was before this access.
615        if self.write_was_before(&thread_clocks.clock) { Ok(()) } else { Err(DataRace) }
616    }
617
618    /// Detect data-races with an atomic write, either with a non-atomic read or with
619    /// a non-atomic write.
620    fn atomic_write_detect(
621        &mut self,
622        thread_clocks: &ThreadClockSet,
623        index: VectorIdx,
624        access_size: Size,
625    ) -> Result<(), DataRace> {
626        trace!("Atomic write with vectors: {:#?} :: {:#?}", self, thread_clocks);
627        let atomic = self.atomic_access(thread_clocks, access_size, /*write*/ true)?;
628        atomic.write_vector.set_at_index(&thread_clocks.clock, index);
629        // Make sure the last non-atomic write and all non-atomic reads were before this access.
630        if self.write_was_before(&thread_clocks.clock) && self.read <= thread_clocks.clock {
631            Ok(())
632        } else {
633            Err(DataRace)
634        }
635    }
636
637    /// Detect races for non-atomic read operations at the current memory cell
638    /// returns true if a data-race is detected.
639    fn read_race_detect(
640        &mut self,
641        thread_clocks: &mut ThreadClockSet,
642        index: VectorIdx,
643        read_type: NaReadType,
644        current_span: Span,
645    ) -> Result<(), DataRace> {
646        trace!("Unsynchronized read with vectors: {:#?} :: {:#?}", self, thread_clocks);
647        if !current_span.is_dummy() {
648            thread_clocks.clock.index_mut(index).span = current_span;
649        }
650        thread_clocks.clock.index_mut(index).set_read_type(read_type);
651        // Check synchronization with non-atomic writes.
652        if !self.write_was_before(&thread_clocks.clock) {
653            return Err(DataRace);
654        }
655        // Check synchronization with atomic writes.
656        if !self.atomic().is_none_or(|atomic| atomic.write_vector <= thread_clocks.clock) {
657            return Err(DataRace);
658        }
659        // Record this access.
660        self.read.set_at_index(&thread_clocks.clock, index);
661        Ok(())
662    }
663
664    /// Detect races for non-atomic write operations at the current memory cell
665    /// returns true if a data-race is detected.
666    fn write_race_detect(
667        &mut self,
668        thread_clocks: &mut ThreadClockSet,
669        index: VectorIdx,
670        write_type: NaWriteType,
671        current_span: Span,
672    ) -> Result<(), DataRace> {
673        trace!("Unsynchronized write with vectors: {:#?} :: {:#?}", self, thread_clocks);
674        if !current_span.is_dummy() {
675            thread_clocks.clock.index_mut(index).span = current_span;
676        }
677        // Check synchronization with non-atomic accesses.
678        if !(self.write_was_before(&thread_clocks.clock) && self.read <= thread_clocks.clock) {
679            return Err(DataRace);
680        }
681        // Check synchronization with atomic accesses.
682        if !self.atomic().is_none_or(|atomic| {
683            atomic.write_vector <= thread_clocks.clock && atomic.read_vector <= thread_clocks.clock
684        }) {
685            return Err(DataRace);
686        }
687        // Record this access.
688        self.write = (index, thread_clocks.clock[index]);
689        self.write_type = write_type;
690        self.read.set_zero_vector();
691        // This is not an atomic location any more.
692        self.atomic_ops = None;
693        Ok(())
694    }
695}
696
697impl GlobalDataRaceHandler {
698    /// Select whether data race checking is disabled. This is solely an
699    /// implementation detail of `allow_data_races_*` and must not be used anywhere else!
700    fn set_ongoing_action_data_race_free(&self, enable: bool) {
701        match self {
702            GlobalDataRaceHandler::None => {}
703            GlobalDataRaceHandler::Vclocks(data_race) => {
704                let old = data_race.ongoing_action_data_race_free.replace(enable);
705                assert_ne!(old, enable, "cannot nest allow_data_races");
706            }
707            GlobalDataRaceHandler::Genmc(genmc_ctx) => {
708                genmc_ctx.set_ongoing_action_data_race_free(enable);
709            }
710        }
711    }
712}
713
714/// Evaluation context extensions.
715impl<'tcx> EvalContextExt<'tcx> for MiriInterpCx<'tcx> {}
716pub trait EvalContextExt<'tcx>: MiriInterpCxExt<'tcx> {
717    /// Perform an atomic read operation at the memory location.
718    fn read_scalar_atomic(
719        &self,
720        place: &MPlaceTy<'tcx>,
721        atomic: AtomicReadOrd,
722    ) -> InterpResult<'tcx, Scalar> {
723        let this = self.eval_context_ref();
724        this.atomic_access_check(place, AtomicAccessType::Load(atomic))?;
725        // This will read from the last store in the modification order of this location. In case
726        // weak memory emulation is enabled, this may not be the store we will pick to actually read from and return.
727        // This is fine with StackedBorrow and race checks because they don't concern metadata on
728        // the *value* (including the associated provenance if this is an AtomicPtr) at this location.
729        // Only metadata on the location itself is used.
730
731        if let Some(genmc_ctx) = this.machine.data_race.as_genmc_ref() {
732            let old_val = this.run_for_validation_ref(|this| this.read_scalar(place)).discard_err();
733            return genmc_ctx.atomic_load(
734                this,
735                place.ptr().addr(),
736                place.layout.size,
737                atomic,
738                old_val,
739            );
740        }
741
742        let scalar = this.allow_data_races_ref(move |this| this.read_scalar(place))?;
743        let buffered_scalar = this.buffered_atomic_read(place, atomic, scalar, |sync_clock| {
744            this.validate_atomic_load(place, atomic, sync_clock)
745        })?;
746        interp_ok(buffered_scalar.ok_or_else(|| err_ub!(InvalidUninitBytes(None)))?)
747    }
748
749    /// Perform an atomic write operation at the memory location.
750    fn write_scalar_atomic(
751        &mut self,
752        val: Scalar,
753        dest: &MPlaceTy<'tcx>,
754        atomic: AtomicWriteOrd,
755    ) -> InterpResult<'tcx> {
756        let this = self.eval_context_mut();
757        this.atomic_access_check(dest, AtomicAccessType::Store)?;
758
759        // Inform GenMC about the atomic store.
760        if let Some(genmc_ctx) = this.machine.data_race.as_genmc_ref() {
761            let old_val = this.run_for_validation_ref(|this| this.read_scalar(dest)).discard_err();
762            if genmc_ctx.atomic_store(
763                this,
764                dest.ptr().addr(),
765                dest.layout.size,
766                val,
767                old_val,
768                atomic,
769            )? {
770                // The store might be the latest store in coherence order (determined by GenMC).
771                // If it is, we need to update the value in Miri's memory:
772                this.allow_data_races_mut(|this| this.write_scalar(val, dest))?;
773            }
774            return interp_ok(());
775        }
776
777        // Read the previous value so we can put it in the store buffer later.
778        let old_val = this.get_latest_nonatomic_val(dest);
779        this.allow_data_races_mut(move |this| this.write_scalar(val, dest))?;
780        this.validate_atomic_store(dest, atomic)?;
781        this.buffered_atomic_write(val, dest, atomic, old_val)
782    }
783
784    /// Perform an atomic RMW operation on a memory location.
785    fn atomic_rmw_op_immediate(
786        &mut self,
787        place: &MPlaceTy<'tcx>,
788        rhs: &ImmTy<'tcx>,
789        atomic_op: AtomicRmwOp,
790        ord: AtomicRwOrd,
791    ) -> InterpResult<'tcx, ImmTy<'tcx>> {
792        let this = self.eval_context_mut();
793        this.atomic_access_check(place, AtomicAccessType::Rmw)?;
794
795        let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;
796
797        // Inform GenMC about the atomic rmw operation.
798        if let Some(genmc_ctx) = this.machine.data_race.as_genmc_ref() {
799            let (old_val, new_val) = genmc_ctx.atomic_rmw_op(
800                this,
801                place.ptr().addr(),
802                place.layout.size,
803                atomic_op,
804                place.layout.backend_repr.is_signed(),
805                ord,
806                rhs.to_scalar(),
807                old.to_scalar(),
808            )?;
809            if let Some(new_val) = new_val {
810                this.allow_data_races_mut(|this| this.write_scalar(new_val, place))?;
811            }
812            return interp_ok(ImmTy::from_scalar(old_val, old.layout));
813        }
814
815        let val = match atomic_op {
816            AtomicRmwOp::MirOp { op, neg } => {
817                let val = this.binary_op(op, &old, rhs)?;
818                if neg { this.unary_op(mir::UnOp::Not, &val)? } else { val }
819            }
820            AtomicRmwOp::Max => {
821                let lt = this.binary_op(mir::BinOp::Lt, &old, rhs)?.to_scalar().to_bool()?;
822                if lt { rhs } else { &old }.clone()
823            }
824            AtomicRmwOp::Min => {
825                let lt = this.binary_op(mir::BinOp::Lt, &old, rhs)?.to_scalar().to_bool()?;
826                if lt { &old } else { rhs }.clone()
827            }
828        };
829
830        this.allow_data_races_mut(|this| this.write_immediate(*val, place))?;
831
832        this.validate_atomic_rmw(place, ord)?;
833
834        this.buffered_atomic_rmw(val.to_scalar(), place, ord, old.to_scalar())?;
835        interp_ok(old)
836    }
837
838    /// Perform an atomic exchange with a memory place and a new
839    /// scalar value, the old value is returned.
840    fn atomic_exchange_scalar(
841        &mut self,
842        place: &MPlaceTy<'tcx>,
843        new: Scalar,
844        atomic: AtomicRwOrd,
845    ) -> InterpResult<'tcx, Scalar> {
846        let this = self.eval_context_mut();
847        this.atomic_access_check(place, AtomicAccessType::Rmw)?;
848
849        let old = this.allow_data_races_mut(|this| this.read_scalar(place))?;
850        this.allow_data_races_mut(|this| this.write_scalar(new, place))?;
851
852        // Inform GenMC about the atomic atomic exchange.
853        if let Some(genmc_ctx) = this.machine.data_race.as_genmc_ref() {
854            let (old_val, new_val) = genmc_ctx.atomic_exchange(
855                this,
856                place.ptr().addr(),
857                place.layout.size,
858                new,
859                atomic,
860                old,
861            )?;
862            // The store might be the latest store in coherence order (determined by GenMC).
863            // If it is, we need to update the value in Miri's memory:
864            if let Some(new_val) = new_val {
865                this.allow_data_races_mut(|this| this.write_scalar(new_val, place))?;
866            }
867            return interp_ok(old_val);
868        }
869
870        this.validate_atomic_rmw(place, atomic)?;
871
872        this.buffered_atomic_rmw(new, place, atomic, old)?;
873        interp_ok(old)
874    }
875
876    /// Perform an atomic compare and exchange at a given memory location.
877    /// On success an atomic RMW operation is performed and on failure
878    /// only an atomic read occurs. If `can_fail_spuriously` is true,
879    /// then we treat it as a "compare_exchange_weak" operation, and
880    /// some portion of the time fail even when the values are actually
881    /// identical.
882    fn atomic_compare_exchange_scalar(
883        &mut self,
884        place: &MPlaceTy<'tcx>,
885        expect_old: &ImmTy<'tcx>,
886        new: Scalar,
887        success: AtomicRwOrd,
888        fail: AtomicReadOrd,
889        can_fail_spuriously: bool,
890    ) -> InterpResult<'tcx, Immediate<Provenance>> {
891        use rand::Rng as _;
892        let this = self.eval_context_mut();
893        this.atomic_access_check(place, AtomicAccessType::Rmw)?;
894
895        // Read as immediate for the sake of `binary_op()`
896        let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;
897
898        // Inform GenMC about the atomic atomic compare exchange.
899        if let Some(genmc_ctx) = this.machine.data_race.as_genmc_ref() {
900            let (old_value, new_value, cmpxchg_success) = genmc_ctx.atomic_compare_exchange(
901                this,
902                place.ptr().addr(),
903                place.layout.size,
904                this.read_scalar(expect_old)?,
905                new,
906                success,
907                fail,
908                can_fail_spuriously,
909                old.to_scalar(),
910            )?;
911            // The store might be the latest store in coherence order (determined by GenMC).
912            // If it is, we need to update the value in Miri's memory:
913            if let Some(new_value) = new_value {
914                this.allow_data_races_mut(|this| this.write_scalar(new_value, place))?;
915            }
916            return interp_ok(Immediate::ScalarPair(old_value, Scalar::from_bool(cmpxchg_success)));
917        }
918
919        // `binary_op` will bail if either of them is not a scalar.
920        let eq = this.binary_op(mir::BinOp::Eq, &old, expect_old)?;
921        // If the operation would succeed, but is "weak", fail some portion
922        // of the time, based on `success_rate`.
923        let success_rate = 1.0 - this.machine.cmpxchg_weak_failure_rate;
924        let cmpxchg_success = eq.to_scalar().to_bool()?
925            && if can_fail_spuriously {
926                this.machine.rng.get_mut().random_bool(success_rate)
927            } else {
928                true
929            };
930        let res = Immediate::ScalarPair(old.to_scalar(), Scalar::from_bool(cmpxchg_success));
931
932        // Update ptr depending on comparison.
933        // if successful, perform a full rw-atomic validation
934        // otherwise treat this as an atomic load with the fail ordering.
935        if cmpxchg_success {
936            this.allow_data_races_mut(|this| this.write_scalar(new, place))?;
937            this.validate_atomic_rmw(place, success)?;
938            this.buffered_atomic_rmw(new, place, success, old.to_scalar())?;
939        } else {
940            this.validate_atomic_load(place, fail, /* can use latest sync clock */ None)?;
941            // A failed compare exchange is equivalent to a load, reading from the latest store
942            // in the modification order.
943            // Since `old` is only a value and not the store element, we need to separately
944            // find it in our store buffer and perform load_impl on it.
945            this.perform_read_on_buffered_latest(place, fail)?;
946        }
947
948        // Return the old value.
949        interp_ok(res)
950    }
951
952    /// Update the data-race detector for an atomic fence on the current thread.
953    fn atomic_fence(&mut self, atomic: AtomicFenceOrd) -> InterpResult<'tcx> {
954        let this = self.eval_context_mut();
955        let machine = &this.machine;
956        match &this.machine.data_race {
957            GlobalDataRaceHandler::None => interp_ok(()),
958            GlobalDataRaceHandler::Vclocks(data_race) => data_race.atomic_fence(machine, atomic),
959            GlobalDataRaceHandler::Genmc(genmc_ctx) => genmc_ctx.atomic_fence(machine, atomic),
960        }
961    }
962
963    /// Calls the callback with the "release" clock of the current thread.
964    /// Other threads can acquire this clock in the future to establish synchronization
965    /// with this program point.
966    ///
967    /// The closure will only be invoked if data race handling is on.
968    fn release_clock<R>(
969        &self,
970        callback: impl FnOnce(&VClock) -> R,
971    ) -> InterpResult<'tcx, Option<R>> {
972        let this = self.eval_context_ref();
973        interp_ok(match &this.machine.data_race {
974            GlobalDataRaceHandler::None => None,
975            GlobalDataRaceHandler::Genmc(_genmc_ctx) =>
976                throw_unsup_format!(
977                    "this operation performs synchronization that is not supported in GenMC mode"
978                ),
979            GlobalDataRaceHandler::Vclocks(data_race) =>
980                Some(data_race.release_clock(&this.machine.threads, callback)),
981        })
982    }
983
984    /// Acquire the given clock into the current thread, establishing synchronization with
985    /// the moment when that clock snapshot was taken via `release_clock`.
986    fn acquire_clock(&self, clock: &VClock) -> InterpResult<'tcx> {
987        let this = self.eval_context_ref();
988        match &this.machine.data_race {
989            GlobalDataRaceHandler::None => {}
990            GlobalDataRaceHandler::Genmc(_genmc_ctx) =>
991                throw_unsup_format!(
992                    "this operation performs synchronization that is not supported in GenMC mode"
993                ),
994            GlobalDataRaceHandler::Vclocks(data_race) =>
995                data_race.acquire_clock(clock, &this.machine.threads),
996        }
997        interp_ok(())
998    }
999}
1000
1001/// Vector clock metadata for a logical memory allocation.
1002#[derive(Debug, Clone)]
1003pub struct VClockAlloc {
1004    /// Assigning each byte a MemoryCellClocks.
1005    alloc_ranges: RefCell<DedupRangeMap<MemoryCellClocks>>,
1006}
1007
1008impl VisitProvenance for VClockAlloc {
1009    fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
1010        // No tags or allocIds here.
1011    }
1012}
1013
1014impl VClockAlloc {
1015    /// Create a new data-race detector for newly allocated memory.
1016    pub fn new_allocation(
1017        global: &GlobalState,
1018        thread_mgr: &ThreadManager<'_>,
1019        len: Size,
1020        kind: MemoryKind,
1021        current_span: Span,
1022    ) -> VClockAlloc {
1023        // Determine the thread that did the allocation, and when it did it.
1024        let (alloc_timestamp, alloc_index) = match kind {
1025            // User allocated and stack memory should track allocation.
1026            MemoryKind::Machine(
1027                MiriMemoryKind::Rust
1028                | MiriMemoryKind::Miri
1029                | MiriMemoryKind::C
1030                | MiriMemoryKind::WinHeap
1031                | MiriMemoryKind::WinLocal
1032                | MiriMemoryKind::Mmap,
1033            )
1034            | MemoryKind::Stack => {
1035                let (alloc_index, clocks) = global.active_thread_state(thread_mgr);
1036                let mut alloc_timestamp = clocks.clock[alloc_index];
1037                alloc_timestamp.span = current_span;
1038                (alloc_timestamp, alloc_index)
1039            }
1040            // Other global memory should trace races but be allocated at the 0 timestamp
1041            // (conceptually they are allocated on the main thread before everything).
1042            MemoryKind::Machine(
1043                MiriMemoryKind::Global
1044                | MiriMemoryKind::Machine
1045                | MiriMemoryKind::Runtime
1046                | MiriMemoryKind::ExternStatic
1047                | MiriMemoryKind::Tls,
1048            )
1049            | MemoryKind::CallerLocation =>
1050                (VTimestamp::ZERO, global.thread_index(ThreadId::MAIN_THREAD)),
1051        };
1052        VClockAlloc {
1053            alloc_ranges: RefCell::new(DedupRangeMap::new(
1054                len,
1055                MemoryCellClocks::new(alloc_timestamp, alloc_index),
1056            )),
1057        }
1058    }
1059
1060    // Find an index, if one exists where the value
1061    // in `l` is greater than the value in `r`.
1062    fn find_gt_index(l: &VClock, r: &VClock) -> Option<VectorIdx> {
1063        trace!("Find index where not {:?} <= {:?}", l, r);
1064        let l_slice = l.as_slice();
1065        let r_slice = r.as_slice();
1066        l_slice
1067            .iter()
1068            .zip(r_slice.iter())
1069            .enumerate()
1070            .find_map(|(idx, (&l, &r))| if l > r { Some(idx) } else { None })
1071            .or_else(|| {
1072                if l_slice.len() > r_slice.len() {
1073                    // By invariant, if l_slice is longer
1074                    // then one element must be larger.
1075                    // This just validates that this is true
1076                    // and reports earlier elements first.
1077                    let l_remainder_slice = &l_slice[r_slice.len()..];
1078                    let idx = l_remainder_slice
1079                        .iter()
1080                        .enumerate()
1081                        .find_map(|(idx, &r)| if r == VTimestamp::ZERO { None } else { Some(idx) })
1082                        .expect("Invalid VClock Invariant");
1083                    Some(idx + r_slice.len())
1084                } else {
1085                    None
1086                }
1087            })
1088            .map(VectorIdx::new)
1089    }
1090
1091    /// Report a data-race found in the program.
1092    /// This finds the two racing threads and the type
1093    /// of data-race that occurred. This will also
1094    /// return info about the memory location the data-race
1095    /// occurred in. The `ty` parameter is used for diagnostics, letting
1096    /// the user know which type was involved in the access.
1097    #[cold]
1098    #[inline(never)]
1099    fn report_data_race<'tcx>(
1100        global: &GlobalState,
1101        thread_mgr: &ThreadManager<'_>,
1102        mem_clocks: &MemoryCellClocks,
1103        access: AccessType,
1104        access_size: Size,
1105        ptr_dbg: interpret::Pointer<AllocId>,
1106        ty: Option<Ty<'_>>,
1107    ) -> InterpResult<'tcx> {
1108        let (active_index, active_clocks) = global.active_thread_state(thread_mgr);
1109        let mut other_size = None; // if `Some`, this was a size-mismatch race
1110        let write_clock;
1111        let (other_access, other_thread, other_clock) =
1112            // First check the atomic-nonatomic cases.
1113            if !access.is_atomic() &&
1114                let Some(atomic) = mem_clocks.atomic() &&
1115                let Some(idx) = Self::find_gt_index(&atomic.write_vector, &active_clocks.clock)
1116            {
1117                (AccessType::AtomicStore, idx, &atomic.write_vector)
1118            } else if !access.is_atomic() &&
1119                !access.is_read() &&
1120                let Some(atomic) = mem_clocks.atomic() &&
1121                let Some(idx) = Self::find_gt_index(&atomic.read_vector, &active_clocks.clock)
1122            {
1123                (AccessType::AtomicLoad, idx, &atomic.read_vector)
1124            // Then check races with non-atomic writes/reads.
1125            } else if mem_clocks.write.1 > active_clocks.clock[mem_clocks.write.0] {
1126                write_clock = mem_clocks.write();
1127                (AccessType::NaWrite(mem_clocks.write_type), mem_clocks.write.0, &write_clock)
1128            } else if !access.is_read() && let Some(idx) = Self::find_gt_index(&mem_clocks.read, &active_clocks.clock) {
1129                (AccessType::NaRead(mem_clocks.read[idx].read_type()), idx, &mem_clocks.read)
1130            // Finally, mixed-size races.
1131            } else if access.is_atomic() && let Some(atomic) = mem_clocks.atomic() && atomic.size != Some(access_size) {
1132                // This is only a race if we are not synchronized with all atomic accesses, so find
1133                // the one we are not synchronized with.
1134                other_size = Some(atomic.size.unwrap_or(Size::ZERO));
1135                if let Some(idx) = Self::find_gt_index(&atomic.write_vector, &active_clocks.clock)
1136                    {
1137                        (AccessType::AtomicStore, idx, &atomic.write_vector)
1138                    } else if let Some(idx) =
1139                        Self::find_gt_index(&atomic.read_vector, &active_clocks.clock)
1140                    {
1141                        (AccessType::AtomicLoad, idx, &atomic.read_vector)
1142                    } else {
1143                        unreachable!(
1144                            "Failed to report data-race for mixed-size access: no race found"
1145                        )
1146                    }
1147            } else {
1148                unreachable!("Failed to report data-race")
1149            };
1150
1151        // Load elaborated thread information about the racing thread actions.
1152        let active_thread_info = global.print_thread_metadata(thread_mgr, active_index);
1153        let other_thread_info = global.print_thread_metadata(thread_mgr, other_thread);
1154        let involves_non_atomic = !access.is_atomic() || !other_access.is_atomic();
1155
1156        // Throw the data-race detection.
1157        let extra = if other_size.is_some() {
1158            assert!(!involves_non_atomic);
1159            Some("overlapping unsynchronized atomic accesses must use the same access size")
1160        } else if access.is_read() && other_access.is_read() {
1161            panic!(
1162                "there should be no same-size read-read races\naccess: {access:?}\nother_access: {other_access:?}"
1163            )
1164        } else {
1165            None
1166        };
1167        Err(err_machine_stop!(TerminationInfo::DataRace {
1168            involves_non_atomic,
1169            extra,
1170            retag_explain: access.is_retag() || other_access.is_retag(),
1171            ptr: ptr_dbg,
1172            op1: RacingOp {
1173                action: other_access.description(None, other_size),
1174                thread_info: other_thread_info,
1175                span: other_clock.as_slice()[other_thread.index()].span_data(),
1176            },
1177            op2: RacingOp {
1178                action: access.description(ty, other_size.map(|_| access_size)),
1179                thread_info: active_thread_info,
1180                span: active_clocks.clock.as_slice()[active_index.index()].span_data(),
1181            },
1182        }))?
1183    }
1184
1185    /// Return the release/acquire synchronization clock for the given memory range.
1186    pub(super) fn sync_clock(&self, access_range: AllocRange) -> VClock {
1187        let alloc_ranges = self.alloc_ranges.borrow();
1188        let mut clock = VClock::default();
1189        for (_, mem_clocks) in alloc_ranges.iter(access_range.start, access_range.size) {
1190            if let Some(atomic) = mem_clocks.atomic() {
1191                clock.join(&atomic.sync_vector);
1192            }
1193        }
1194        clock
1195    }
1196
1197    /// Detect data-races for an unsynchronized read operation. It will not perform
1198    /// data-race detection if `race_detecting()` is false, either due to no threads
1199    /// being created or if it is temporarily disabled during a racy read or write
1200    /// operation for which data-race detection is handled separately, for example
1201    /// atomic read operations. The `ty` parameter is used for diagnostics, letting
1202    /// the user know which type was read.
1203    pub fn read_non_atomic<'tcx>(
1204        &self,
1205        alloc_id: AllocId,
1206        access_range: AllocRange,
1207        read_type: NaReadType,
1208        ty: Option<Ty<'_>>,
1209        machine: &MiriMachine<'_>,
1210    ) -> InterpResult<'tcx> {
1211        let current_span = machine.current_user_relevant_span();
1212        let global = machine.data_race.as_vclocks_ref().unwrap();
1213        if !global.race_detecting() {
1214            return interp_ok(());
1215        }
1216        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
1217        let mut alloc_ranges = self.alloc_ranges.borrow_mut();
1218        for (mem_clocks_range, mem_clocks) in
1219            alloc_ranges.iter_mut(access_range.start, access_range.size)
1220        {
1221            if let Err(DataRace) =
1222                mem_clocks.read_race_detect(&mut thread_clocks, index, read_type, current_span)
1223            {
1224                drop(thread_clocks);
1225                // Report data-race.
1226                return Self::report_data_race(
1227                    global,
1228                    &machine.threads,
1229                    mem_clocks,
1230                    AccessType::NaRead(read_type),
1231                    access_range.size,
1232                    interpret::Pointer::new(alloc_id, Size::from_bytes(mem_clocks_range.start)),
1233                    ty,
1234                );
1235            }
1236        }
1237        interp_ok(())
1238    }
1239
1240    /// Detect data-races for an unsynchronized write operation. It will not perform
1241    /// data-race detection if `race_detecting()` is false, either due to no threads
1242    /// being created or if it is temporarily disabled during a racy read or write
1243    /// operation. The `ty` parameter is used for diagnostics, letting
1244    /// the user know which type was written.
1245    pub fn write_non_atomic<'tcx>(
1246        &mut self,
1247        alloc_id: AllocId,
1248        access_range: AllocRange,
1249        write_type: NaWriteType,
1250        ty: Option<Ty<'_>>,
1251        machine: &mut MiriMachine<'_>,
1252    ) -> InterpResult<'tcx> {
1253        let current_span = machine.current_user_relevant_span();
1254        let global = machine.data_race.as_vclocks_mut().unwrap();
1255        if !global.race_detecting() {
1256            return interp_ok(());
1257        }
1258        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
1259        for (mem_clocks_range, mem_clocks) in
1260            self.alloc_ranges.get_mut().iter_mut(access_range.start, access_range.size)
1261        {
1262            if let Err(DataRace) =
1263                mem_clocks.write_race_detect(&mut thread_clocks, index, write_type, current_span)
1264            {
1265                drop(thread_clocks);
1266                // Report data-race
1267                return Self::report_data_race(
1268                    global,
1269                    &machine.threads,
1270                    mem_clocks,
1271                    AccessType::NaWrite(write_type),
1272                    access_range.size,
1273                    interpret::Pointer::new(alloc_id, Size::from_bytes(mem_clocks_range.start)),
1274                    ty,
1275                );
1276            }
1277        }
1278        interp_ok(())
1279    }
1280}
1281
1282/// Vector clock state for a stack frame (tracking the local variables
1283/// that do not have an allocation yet).
1284#[derive(Debug, Default)]
1285pub struct FrameState {
1286    local_clocks: RefCell<FxHashMap<mir::Local, LocalClocks>>,
1287}
1288
1289/// Stripped-down version of [`MemoryCellClocks`] for the clocks we need to keep track
1290/// of in a local that does not yet have addressable memory -- and hence can only
1291/// be accessed from the thread its stack frame belongs to, and cannot be access atomically.
1292#[derive(Debug)]
1293struct LocalClocks {
1294    write: VTimestamp,
1295    write_type: NaWriteType,
1296    read: VTimestamp,
1297}
1298
1299impl Default for LocalClocks {
1300    fn default() -> Self {
1301        Self { write: VTimestamp::ZERO, write_type: NaWriteType::Allocate, read: VTimestamp::ZERO }
1302    }
1303}
1304
1305impl FrameState {
1306    pub fn local_write(&self, local: mir::Local, storage_live: bool, machine: &MiriMachine<'_>) {
1307        let current_span = machine.current_user_relevant_span();
1308        let global = machine.data_race.as_vclocks_ref().unwrap();
1309        if !global.race_detecting() {
1310            return;
1311        }
1312        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
1313        // This should do the same things as `MemoryCellClocks::write_race_detect`.
1314        if !current_span.is_dummy() {
1315            thread_clocks.clock.index_mut(index).span = current_span;
1316        }
1317        let mut clocks = self.local_clocks.borrow_mut();
1318        if storage_live {
1319            let new_clocks = LocalClocks {
1320                write: thread_clocks.clock[index],
1321                write_type: NaWriteType::Allocate,
1322                read: VTimestamp::ZERO,
1323            };
1324            // There might already be an entry in the map for this, if the local was previously
1325            // live already.
1326            clocks.insert(local, new_clocks);
1327        } else {
1328            // This can fail to exist if `race_detecting` was false when the allocation
1329            // occurred, in which case we can backdate this to the beginning of time.
1330            let clocks = clocks.entry(local).or_default();
1331            clocks.write = thread_clocks.clock[index];
1332            clocks.write_type = NaWriteType::Write;
1333        }
1334    }
1335
1336    pub fn local_read(&self, local: mir::Local, machine: &MiriMachine<'_>) {
1337        let current_span = machine.current_user_relevant_span();
1338        let global = machine.data_race.as_vclocks_ref().unwrap();
1339        if !global.race_detecting() {
1340            return;
1341        }
1342        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
1343        // This should do the same things as `MemoryCellClocks::read_race_detect`.
1344        if !current_span.is_dummy() {
1345            thread_clocks.clock.index_mut(index).span = current_span;
1346        }
1347        thread_clocks.clock.index_mut(index).set_read_type(NaReadType::Read);
1348        // This can fail to exist if `race_detecting` was false when the allocation
1349        // occurred, in which case we can backdate this to the beginning of time.
1350        let mut clocks = self.local_clocks.borrow_mut();
1351        let clocks = clocks.entry(local).or_default();
1352        clocks.read = thread_clocks.clock[index];
1353    }
1354
1355    pub fn local_moved_to_memory(
1356        &self,
1357        local: mir::Local,
1358        alloc: &mut VClockAlloc,
1359        machine: &MiriMachine<'_>,
1360    ) {
1361        let global = machine.data_race.as_vclocks_ref().unwrap();
1362        if !global.race_detecting() {
1363            return;
1364        }
1365        let (index, _thread_clocks) = global.active_thread_state_mut(&machine.threads);
1366        // Get the time the last write actually happened. This can fail to exist if
1367        // `race_detecting` was false when the write occurred, in that case we can backdate this
1368        // to the beginning of time.
1369        let local_clocks = self.local_clocks.borrow_mut().remove(&local).unwrap_or_default();
1370        for (_mem_clocks_range, mem_clocks) in alloc.alloc_ranges.get_mut().iter_mut_all() {
1371            // The initialization write for this already happened, just at the wrong timestamp.
1372            // Check that the thread index matches what we expect.
1373            assert_eq!(mem_clocks.write.0, index);
1374            // Convert the local's clocks into memory clocks.
1375            mem_clocks.write = (index, local_clocks.write);
1376            mem_clocks.write_type = local_clocks.write_type;
1377            mem_clocks.read = VClock::new_with_index(index, local_clocks.read);
1378        }
1379    }
1380}
1381
1382impl<'tcx> EvalContextPrivExt<'tcx> for MiriInterpCx<'tcx> {}
1383trait EvalContextPrivExt<'tcx>: MiriInterpCxExt<'tcx> {
1384    /// Temporarily allow data-races to occur. This should only be used in
1385    /// one of these cases:
1386    /// - One of the appropriate `validate_atomic` functions will be called to
1387    ///   treat a memory access as atomic.
1388    /// - The memory being accessed should be treated as internal state, that
1389    ///   cannot be accessed by the interpreted program.
1390    /// - Execution of the interpreted program execution has halted.
1391    #[inline]
1392    fn allow_data_races_ref<R>(&self, op: impl FnOnce(&MiriInterpCx<'tcx>) -> R) -> R {
1393        let this = self.eval_context_ref();
1394        this.machine.data_race.set_ongoing_action_data_race_free(true);
1395        let result = op(this);
1396        this.machine.data_race.set_ongoing_action_data_race_free(false);
1397        result
1398    }
1399
1400    /// Same as `allow_data_races_ref`, this temporarily disables any data-race detection and
1401    /// so should only be used for atomic operations or internal state that the program cannot
1402    /// access.
1403    #[inline]
1404    fn allow_data_races_mut<R>(&mut self, op: impl FnOnce(&mut MiriInterpCx<'tcx>) -> R) -> R {
1405        let this = self.eval_context_mut();
1406        this.machine.data_race.set_ongoing_action_data_race_free(true);
1407        let result = op(this);
1408        this.machine.data_race.set_ongoing_action_data_race_free(false);
1409        result
1410    }
1411
1412    /// Checks that an atomic access is legal at the given place.
1413    fn atomic_access_check(
1414        &self,
1415        place: &MPlaceTy<'tcx>,
1416        access_type: AtomicAccessType,
1417    ) -> InterpResult<'tcx> {
1418        let this = self.eval_context_ref();
1419        // Check alignment requirements. Atomics must always be aligned to their size,
1420        // even if the type they wrap would be less aligned (e.g. AtomicU64 on 32bit must
1421        // be 8-aligned).
1422        let align = Align::from_bytes(place.layout.size.bytes()).unwrap();
1423        this.check_ptr_align(place.ptr(), align)?;
1424        // Ensure the allocation is mutable. Even failing (read-only) compare_exchange need mutable
1425        // memory on many targets (i.e., they segfault if that memory is mapped read-only), and
1426        // atomic loads can be implemented via compare_exchange on some targets. There could
1427        // possibly be some very specific exceptions to this, see
1428        // <https://github.com/rust-lang/miri/pull/2464#discussion_r939636130> for details.
1429        // We avoid `get_ptr_alloc` since we do *not* want to run the access hooks -- the actual
1430        // access will happen later.
1431        let (alloc_id, _offset, _prov) = this
1432            .ptr_try_get_alloc_id(place.ptr(), 0)
1433            .expect("there are no zero-sized atomic accesses");
1434        if this.get_alloc_mutability(alloc_id)? == Mutability::Not {
1435            // See if this is fine.
1436            match access_type {
1437                AtomicAccessType::Rmw | AtomicAccessType::Store => {
1438                    throw_ub_format!(
1439                        "atomic store and read-modify-write operations cannot be performed on read-only memory\n\
1440                        see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
1441                    );
1442                }
1443                AtomicAccessType::Load(_)
1444                    if place.layout.size > this.tcx.data_layout().pointer_size() =>
1445                {
1446                    throw_ub_format!(
1447                        "large atomic load operations cannot be performed on read-only memory\n\
1448                        these operations often have to be implemented using read-modify-write operations, which require writeable memory\n\
1449                        see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
1450                    );
1451                }
1452                AtomicAccessType::Load(o) if o != AtomicReadOrd::Relaxed => {
1453                    throw_ub_format!(
1454                        "non-relaxed atomic load operations cannot be performed on read-only memory\n\
1455                        these operations sometimes have to be implemented using read-modify-write operations, which require writeable memory\n\
1456                        see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
1457                    );
1458                }
1459                _ => {
1460                    // Large relaxed loads are fine!
1461                }
1462            }
1463        }
1464        interp_ok(())
1465    }
1466
1467    /// Update the data-race detector for an atomic read occurring at the
1468    /// associated memory-place and on the current thread.
1469    fn validate_atomic_load(
1470        &self,
1471        place: &MPlaceTy<'tcx>,
1472        atomic: AtomicReadOrd,
1473        sync_clock: Option<&VClock>,
1474    ) -> InterpResult<'tcx> {
1475        let this = self.eval_context_ref();
1476        this.validate_atomic_op(
1477            place,
1478            atomic,
1479            AccessType::AtomicLoad,
1480            move |memory, clocks, index, atomic| {
1481                if atomic == AtomicReadOrd::Relaxed {
1482                    memory.load_relaxed(&mut *clocks, index, place.layout.size, sync_clock)
1483                } else {
1484                    memory.load_acquire(&mut *clocks, index, place.layout.size, sync_clock)
1485                }
1486            },
1487        )
1488    }
1489
1490    /// Update the data-race detector for an atomic write occurring at the
1491    /// associated memory-place and on the current thread.
1492    fn validate_atomic_store(
1493        &mut self,
1494        place: &MPlaceTy<'tcx>,
1495        atomic: AtomicWriteOrd,
1496    ) -> InterpResult<'tcx> {
1497        let this = self.eval_context_mut();
1498        this.validate_atomic_op(
1499            place,
1500            atomic,
1501            AccessType::AtomicStore,
1502            move |memory, clocks, index, atomic| {
1503                if atomic == AtomicWriteOrd::Relaxed {
1504                    memory.store_relaxed(clocks, index, place.layout.size)
1505                } else {
1506                    memory.store_release(clocks, index, place.layout.size)
1507                }
1508            },
1509        )
1510    }
1511
1512    /// Update the data-race detector for an atomic read-modify-write occurring
1513    /// at the associated memory place and on the current thread.
1514    fn validate_atomic_rmw(
1515        &mut self,
1516        place: &MPlaceTy<'tcx>,
1517        atomic: AtomicRwOrd,
1518    ) -> InterpResult<'tcx> {
1519        use AtomicRwOrd::*;
1520        let acquire = matches!(atomic, Acquire | AcqRel | SeqCst);
1521        let release = matches!(atomic, Release | AcqRel | SeqCst);
1522        let this = self.eval_context_mut();
1523        this.validate_atomic_op(
1524            place,
1525            atomic,
1526            AccessType::AtomicRmw,
1527            move |memory, clocks, index, _| {
1528                if acquire {
1529                    memory.load_acquire(clocks, index, place.layout.size, None)?;
1530                } else {
1531                    memory.load_relaxed(clocks, index, place.layout.size, None)?;
1532                }
1533                if release {
1534                    memory.rmw_release(clocks, index, place.layout.size)
1535                } else {
1536                    memory.rmw_relaxed(clocks, index, place.layout.size)
1537                }
1538            },
1539        )
1540    }
1541
1542    /// Returns the most recent *non-atomic* value stored in the given place.
1543    /// Errors if we don't need that (because we don't do store buffering) or if
1544    /// the most recent value is in fact atomic.
1545    fn get_latest_nonatomic_val(&self, place: &MPlaceTy<'tcx>) -> Result<Option<Scalar>, ()> {
1546        let this = self.eval_context_ref();
1547        // These cannot fail because `atomic_access_check` was done first.
1548        let (alloc_id, offset, _prov) = this.ptr_get_alloc_id(place.ptr(), 0).unwrap();
1549        let alloc_meta = &this.get_alloc_extra(alloc_id).unwrap().data_race;
1550        if alloc_meta.as_weak_memory_ref().is_none() {
1551            // No reason to read old value if we don't track store buffers.
1552            return Err(());
1553        }
1554        let data_race = alloc_meta.as_vclocks_ref().unwrap();
1555        // Only read old value if this is currently a non-atomic location.
1556        for (_range, clocks) in data_race.alloc_ranges.borrow_mut().iter(offset, place.layout.size)
1557        {
1558            // If this had an atomic write that's not before the non-atomic write, that should
1559            // already be in the store buffer. Initializing the store buffer now would use the
1560            // wrong `sync_clock` so we better make sure that does not happen.
1561            if clocks.atomic().is_some_and(|atomic| !(atomic.write_vector <= clocks.write())) {
1562                return Err(());
1563            }
1564        }
1565        // The program didn't actually do a read, so suppress the memory access hooks.
1566        // This is also a very special exception where we just ignore an error -- if this read
1567        // was UB e.g. because the memory is uninitialized, we don't want to know!
1568        Ok(this.run_for_validation_ref(|this| this.read_scalar(place)).discard_err())
1569    }
1570
1571    /// Generic atomic operation implementation
1572    fn validate_atomic_op<A: Debug + Copy>(
1573        &self,
1574        place: &MPlaceTy<'tcx>,
1575        atomic: A,
1576        access: AccessType,
1577        mut op: impl FnMut(
1578            &mut MemoryCellClocks,
1579            &mut ThreadClockSet,
1580            VectorIdx,
1581            A,
1582        ) -> Result<(), DataRace>,
1583    ) -> InterpResult<'tcx> {
1584        let this = self.eval_context_ref();
1585        assert!(access.is_atomic());
1586        let Some(data_race) = this.machine.data_race.as_vclocks_ref() else {
1587            return interp_ok(());
1588        };
1589        if !data_race.race_detecting() {
1590            return interp_ok(());
1591        }
1592        let size = place.layout.size;
1593        let (alloc_id, base_offset, _prov) = this.ptr_get_alloc_id(place.ptr(), 0)?;
1594        // Load and log the atomic operation.
1595        // Note that atomic loads are possible even from read-only allocations, so `get_alloc_extra_mut` is not an option.
1596        let alloc_meta = this.get_alloc_extra(alloc_id)?.data_race.as_vclocks_ref().unwrap();
1597        trace!(
1598            "Atomic op({}) with ordering {:?} on {:?} (size={})",
1599            access.description(None, None),
1600            &atomic,
1601            place.ptr(),
1602            size.bytes()
1603        );
1604
1605        let current_span = this.machine.current_user_relevant_span();
1606        // Perform the atomic operation.
1607        data_race.maybe_perform_sync_operation(
1608            &this.machine.threads,
1609            current_span,
1610            |index, mut thread_clocks| {
1611                for (mem_clocks_range, mem_clocks) in
1612                    alloc_meta.alloc_ranges.borrow_mut().iter_mut(base_offset, size)
1613                {
1614                    if let Err(DataRace) = op(mem_clocks, &mut thread_clocks, index, atomic) {
1615                        mem::drop(thread_clocks);
1616                        return VClockAlloc::report_data_race(
1617                            data_race,
1618                            &this.machine.threads,
1619                            mem_clocks,
1620                            access,
1621                            place.layout.size,
1622                            interpret::Pointer::new(
1623                                alloc_id,
1624                                Size::from_bytes(mem_clocks_range.start),
1625                            ),
1626                            None,
1627                        )
1628                        .map(|_| true);
1629                    }
1630                }
1631
1632                // This conservatively assumes all operations have release semantics
1633                interp_ok(true)
1634            },
1635        )?;
1636
1637        // Log changes to atomic memory.
1638        if tracing::enabled!(tracing::Level::TRACE) {
1639            for (_offset, mem_clocks) in alloc_meta.alloc_ranges.borrow().iter(base_offset, size) {
1640                trace!(
1641                    "Updated atomic memory({:?}, size={}) to {:#?}",
1642                    place.ptr(),
1643                    size.bytes(),
1644                    mem_clocks.atomic_ops
1645                );
1646            }
1647        }
1648
1649        interp_ok(())
1650    }
1651}
1652
1653impl GlobalState {
1654    /// Create a new global state, setup with just thread-id=0
1655    /// advanced to timestamp = 1.
1656    pub fn new(config: &MiriConfig) -> Self {
1657        let mut global_state = GlobalState {
1658            multi_threaded: Cell::new(false),
1659            ongoing_action_data_race_free: Cell::new(false),
1660            vector_clocks: RefCell::new(IndexVec::new()),
1661            vector_info: RefCell::new(IndexVec::new()),
1662            thread_info: RefCell::new(IndexVec::new()),
1663            reuse_candidates: RefCell::new(FxHashSet::default()),
1664            last_sc_fence: RefCell::new(VClock::default()),
1665            last_sc_write_per_thread: RefCell::new(VClock::default()),
1666            track_outdated_loads: config.track_outdated_loads,
1667            weak_memory: config.weak_memory_emulation,
1668        };
1669
1670        // Setup the main-thread since it is not explicitly created:
1671        // uses vector index and thread-id 0.
1672        let index = global_state.vector_clocks.get_mut().push(ThreadClockSet::default());
1673        global_state.vector_info.get_mut().push(ThreadId::MAIN_THREAD);
1674        global_state
1675            .thread_info
1676            .get_mut()
1677            .push(ThreadExtraState { vector_index: Some(index), termination_vector_clock: None });
1678
1679        global_state
1680    }
1681
1682    // We perform data race detection when there are more than 1 active thread
1683    // and we have not temporarily disabled race detection to perform something
1684    // data race free
1685    fn race_detecting(&self) -> bool {
1686        self.multi_threaded.get() && !self.ongoing_action_data_race_free.get()
1687    }
1688
1689    pub fn ongoing_action_data_race_free(&self) -> bool {
1690        self.ongoing_action_data_race_free.get()
1691    }
1692
1693    // Try to find vector index values that can potentially be re-used
1694    // by a new thread instead of a new vector index being created.
1695    fn find_vector_index_reuse_candidate(&self) -> Option<VectorIdx> {
1696        let mut reuse = self.reuse_candidates.borrow_mut();
1697        let vector_clocks = self.vector_clocks.borrow();
1698        for &candidate in reuse.iter() {
1699            let target_timestamp = vector_clocks[candidate].clock[candidate];
1700            if vector_clocks.iter_enumerated().all(|(clock_idx, clock)| {
1701                // The thread happens before the clock, and hence cannot report
1702                // a data-race with this the candidate index.
1703                let no_data_race = clock.clock[candidate] >= target_timestamp;
1704
1705                // The vector represents a thread that has terminated and hence cannot
1706                // report a data-race with the candidate index.
1707                let vector_terminated = reuse.contains(&clock_idx);
1708
1709                // The vector index cannot report a race with the candidate index
1710                // and hence allows the candidate index to be re-used.
1711                no_data_race || vector_terminated
1712            }) {
1713                // All vector clocks for each vector index are equal to
1714                // the target timestamp, and the thread is known to have
1715                // terminated, therefore this vector clock index cannot
1716                // report any more data-races.
1717                assert!(reuse.remove(&candidate));
1718                return Some(candidate);
1719            }
1720        }
1721        None
1722    }
1723
1724    // Hook for thread creation, enabled multi-threaded execution and marks
1725    // the current thread timestamp as happening-before the current thread.
1726    #[inline]
1727    pub fn thread_created(
1728        &mut self,
1729        thread_mgr: &ThreadManager<'_>,
1730        thread: ThreadId,
1731        current_span: Span,
1732    ) {
1733        let current_index = self.active_thread_index(thread_mgr);
1734
1735        // Enable multi-threaded execution, there are now at least two threads
1736        // so data-races are now possible.
1737        self.multi_threaded.set(true);
1738
1739        // Load and setup the associated thread metadata
1740        let mut thread_info = self.thread_info.borrow_mut();
1741        thread_info.ensure_contains_elem(thread, Default::default);
1742
1743        // Assign a vector index for the thread, attempting to re-use an old
1744        // vector index that can no longer report any data-races if possible.
1745        let created_index = if let Some(reuse_index) = self.find_vector_index_reuse_candidate() {
1746            // Now re-configure the re-use candidate, increment the clock
1747            // for the new sync use of the vector.
1748            let vector_clocks = self.vector_clocks.get_mut();
1749            vector_clocks[reuse_index].increment_clock(reuse_index, current_span);
1750
1751            // Locate the old thread the vector was associated with and update
1752            // it to represent the new thread instead.
1753            let vector_info = self.vector_info.get_mut();
1754            let old_thread = vector_info[reuse_index];
1755            vector_info[reuse_index] = thread;
1756
1757            // Mark the thread the vector index was associated with as no longer
1758            // representing a thread index.
1759            thread_info[old_thread].vector_index = None;
1760
1761            reuse_index
1762        } else {
1763            // No vector re-use candidates available, instead create
1764            // a new vector index.
1765            let vector_info = self.vector_info.get_mut();
1766            vector_info.push(thread)
1767        };
1768
1769        trace!("Creating thread = {:?} with vector index = {:?}", thread, created_index);
1770
1771        // Mark the chosen vector index as in use by the thread.
1772        thread_info[thread].vector_index = Some(created_index);
1773
1774        // Create a thread clock set if applicable.
1775        let vector_clocks = self.vector_clocks.get_mut();
1776        if created_index == vector_clocks.next_index() {
1777            vector_clocks.push(ThreadClockSet::default());
1778        }
1779
1780        // Now load the two clocks and configure the initial state.
1781        let (current, created) = vector_clocks.pick2_mut(current_index, created_index);
1782
1783        // Join the created with current, since the current threads
1784        // previous actions happen-before the created thread.
1785        created.join_with(current);
1786
1787        // Advance both threads after the synchronized operation.
1788        // Both operations are considered to have release semantics.
1789        current.increment_clock(current_index, current_span);
1790        created.increment_clock(created_index, current_span);
1791    }
1792
1793    /// Hook on a thread join to update the implicit happens-before relation between the joined
1794    /// thread (the joinee, the thread that someone waited on) and the current thread (the joiner,
1795    /// the thread who was waiting).
1796    #[inline]
1797    pub fn thread_joined(&mut self, threads: &ThreadManager<'_>, joinee: ThreadId) {
1798        let thread_info = self.thread_info.borrow();
1799        let thread_info = &thread_info[joinee];
1800
1801        // Load the associated vector clock for the terminated thread.
1802        let join_clock = thread_info
1803            .termination_vector_clock
1804            .as_ref()
1805            .expect("joined with thread but thread has not terminated");
1806        // Acquire that into the current thread.
1807        self.acquire_clock(join_clock, threads);
1808
1809        // Check the number of live threads, if the value is 1
1810        // then test for potentially disabling multi-threaded execution.
1811        // This has to happen after `acquire_clock`, otherwise there'll always
1812        // be some thread that has not synchronized yet.
1813        if let Some(current_index) = thread_info.vector_index {
1814            if threads.get_live_thread_count() == 1 {
1815                let vector_clocks = self.vector_clocks.get_mut();
1816                // May potentially be able to disable multi-threaded execution.
1817                let current_clock = &vector_clocks[current_index];
1818                if vector_clocks
1819                    .iter_enumerated()
1820                    .all(|(idx, clocks)| clocks.clock[idx] <= current_clock.clock[idx])
1821                {
1822                    // All thread terminations happen-before the current clock
1823                    // therefore no data-races can be reported until a new thread
1824                    // is created, so disable multi-threaded execution.
1825                    self.multi_threaded.set(false);
1826                }
1827            }
1828        }
1829    }
1830
1831    /// On thread termination, the vector clock may be re-used
1832    /// in the future once all remaining thread-clocks catch
1833    /// up with the time index of the terminated thread.
1834    /// This assigns thread termination with a unique index
1835    /// which will be used to join the thread
1836    /// This should be called strictly before any calls to
1837    /// `thread_joined`.
1838    #[inline]
1839    pub fn thread_terminated(&mut self, thread_mgr: &ThreadManager<'_>) {
1840        let current_thread = thread_mgr.active_thread();
1841        let current_index = self.active_thread_index(thread_mgr);
1842
1843        // Store the terminaion clock.
1844        let terminaion_clock = self.release_clock(thread_mgr, |clock| clock.clone());
1845        self.thread_info.get_mut()[current_thread].termination_vector_clock =
1846            Some(terminaion_clock);
1847
1848        // Add this thread's clock index as a candidate for re-use.
1849        let reuse = self.reuse_candidates.get_mut();
1850        reuse.insert(current_index);
1851    }
1852
1853    /// Update the data-race detector for an atomic fence on the current thread.
1854    fn atomic_fence<'tcx>(
1855        &self,
1856        machine: &MiriMachine<'tcx>,
1857        atomic: AtomicFenceOrd,
1858    ) -> InterpResult<'tcx> {
1859        let current_span = machine.current_user_relevant_span();
1860        self.maybe_perform_sync_operation(&machine.threads, current_span, |index, mut clocks| {
1861            trace!("Atomic fence on {:?} with ordering {:?}", index, atomic);
1862
1863            // Apply data-race detection for the current fences
1864            // this treats AcqRel and SeqCst as the same as an acquire
1865            // and release fence applied in the same timestamp.
1866            if atomic != AtomicFenceOrd::Release {
1867                // Either Acquire | AcqRel | SeqCst
1868                clocks.apply_acquire_fence();
1869            }
1870            if atomic == AtomicFenceOrd::SeqCst {
1871                // Behave like an RMW on the global fence location. This takes full care of
1872                // all the SC fence requirements, including C++17 ยง32.4 [atomics.order]
1873                // paragraph 6 (which would limit what future reads can see). It also rules
1874                // out many legal behaviors, but we don't currently have a model that would
1875                // be more precise.
1876                // Also see the second bullet on page 10 of
1877                // <https://www.cs.tau.ac.il/~orilahav/papers/popl21_robustness.pdf>.
1878                let mut sc_fence_clock = self.last_sc_fence.borrow_mut();
1879                sc_fence_clock.join(&clocks.clock);
1880                clocks.clock.join(&sc_fence_clock);
1881                // Also establish some sort of order with the last SC write that happened, globally
1882                // (but this is only respected by future reads).
1883                clocks.write_seqcst.join(&self.last_sc_write_per_thread.borrow());
1884            }
1885            // The release fence is last, since both of the above could alter our clock,
1886            // which should be part of what is being released.
1887            if atomic != AtomicFenceOrd::Acquire {
1888                // Either Release | AcqRel | SeqCst
1889                clocks.apply_release_fence();
1890            }
1891
1892            // Increment timestamp in case of release semantics.
1893            interp_ok(atomic != AtomicFenceOrd::Acquire)
1894        })
1895    }
1896
1897    /// Attempt to perform a synchronized operation, this
1898    /// will perform no operation if multi-threading is
1899    /// not currently enabled.
1900    /// Otherwise it will increment the clock for the current
1901    /// vector before and after the operation for data-race
1902    /// detection between any happens-before edges the
1903    /// operation may create.
1904    fn maybe_perform_sync_operation<'tcx>(
1905        &self,
1906        thread_mgr: &ThreadManager<'_>,
1907        current_span: Span,
1908        op: impl FnOnce(VectorIdx, RefMut<'_, ThreadClockSet>) -> InterpResult<'tcx, bool>,
1909    ) -> InterpResult<'tcx> {
1910        if self.multi_threaded.get() {
1911            let (index, clocks) = self.active_thread_state_mut(thread_mgr);
1912            if op(index, clocks)? {
1913                let (_, mut clocks) = self.active_thread_state_mut(thread_mgr);
1914                clocks.increment_clock(index, current_span);
1915            }
1916        }
1917        interp_ok(())
1918    }
1919
1920    /// Internal utility to identify a thread stored internally
1921    /// returns the id and the name for better diagnostics.
1922    fn print_thread_metadata(&self, thread_mgr: &ThreadManager<'_>, vector: VectorIdx) -> String {
1923        let thread = self.vector_info.borrow()[vector];
1924        let thread_name = thread_mgr.get_thread_display_name(thread);
1925        format!("thread `{thread_name}`")
1926    }
1927
1928    /// Acquire the given clock into the current thread, establishing synchronization with
1929    /// the moment when that clock snapshot was taken via `release_clock`.
1930    /// As this is an acquire operation, the thread timestamp is not
1931    /// incremented.
1932    pub fn acquire_clock<'tcx>(&self, clock: &VClock, threads: &ThreadManager<'tcx>) {
1933        let thread = threads.active_thread();
1934        let (_, mut clocks) = self.thread_state_mut(thread);
1935        clocks.clock.join(clock);
1936    }
1937
1938    /// Calls the given closure with the "release" clock of the current thread.
1939    /// Other threads can acquire this clock in the future to establish synchronization
1940    /// with this program point.
1941    pub fn release_clock<'tcx, R>(
1942        &self,
1943        threads: &ThreadManager<'tcx>,
1944        callback: impl FnOnce(&VClock) -> R,
1945    ) -> R {
1946        let thread = threads.active_thread();
1947        let span = threads.active_thread_ref().current_user_relevant_span();
1948        let (index, mut clocks) = self.thread_state_mut(thread);
1949        let r = callback(&clocks.clock);
1950        // Increment the clock, so that all following events cannot be confused with anything that
1951        // occurred before the release. Crucially, the callback is invoked on the *old* clock!
1952        clocks.increment_clock(index, span);
1953
1954        r
1955    }
1956
1957    fn thread_index(&self, thread: ThreadId) -> VectorIdx {
1958        self.thread_info.borrow()[thread].vector_index.expect("thread has no assigned vector")
1959    }
1960
1961    /// Load the vector index used by the given thread as well as the set of vector clocks
1962    /// used by the thread.
1963    #[inline]
1964    fn thread_state_mut(&self, thread: ThreadId) -> (VectorIdx, RefMut<'_, ThreadClockSet>) {
1965        let index = self.thread_index(thread);
1966        let ref_vector = self.vector_clocks.borrow_mut();
1967        let clocks = RefMut::map(ref_vector, |vec| &mut vec[index]);
1968        (index, clocks)
1969    }
1970
1971    /// Load the vector index used by the given thread as well as the set of vector clocks
1972    /// used by the thread.
1973    #[inline]
1974    fn thread_state(&self, thread: ThreadId) -> (VectorIdx, Ref<'_, ThreadClockSet>) {
1975        let index = self.thread_index(thread);
1976        let ref_vector = self.vector_clocks.borrow();
1977        let clocks = Ref::map(ref_vector, |vec| &vec[index]);
1978        (index, clocks)
1979    }
1980
1981    /// Load the current vector clock in use and the current set of thread clocks
1982    /// in use for the vector.
1983    #[inline]
1984    pub(super) fn active_thread_state(
1985        &self,
1986        thread_mgr: &ThreadManager<'_>,
1987    ) -> (VectorIdx, Ref<'_, ThreadClockSet>) {
1988        self.thread_state(thread_mgr.active_thread())
1989    }
1990
1991    /// Load the current vector clock in use and the current set of thread clocks
1992    /// in use for the vector mutably for modification.
1993    #[inline]
1994    pub(super) fn active_thread_state_mut(
1995        &self,
1996        thread_mgr: &ThreadManager<'_>,
1997    ) -> (VectorIdx, RefMut<'_, ThreadClockSet>) {
1998        self.thread_state_mut(thread_mgr.active_thread())
1999    }
2000
2001    /// Return the current thread, should be the same
2002    /// as the data-race active thread.
2003    #[inline]
2004    fn active_thread_index(&self, thread_mgr: &ThreadManager<'_>) -> VectorIdx {
2005        let active_thread_id = thread_mgr.active_thread();
2006        self.thread_index(active_thread_id)
2007    }
2008
2009    // SC ATOMIC STORE rule in the paper.
2010    pub(super) fn sc_write(&self, thread_mgr: &ThreadManager<'_>) {
2011        let (index, clocks) = self.active_thread_state(thread_mgr);
2012        self.last_sc_write_per_thread.borrow_mut().set_at_index(&clocks.clock, index);
2013    }
2014
2015    // SC ATOMIC READ rule in the paper.
2016    pub(super) fn sc_read(&self, thread_mgr: &ThreadManager<'_>) {
2017        let (.., mut clocks) = self.active_thread_state_mut(thread_mgr);
2018        clocks.read_seqcst.join(&self.last_sc_fence.borrow());
2019    }
2020}