1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
//! Code for projecting associated types out of trait references.

use std::ops::ControlFlow;

use super::check_args_compatible;
use super::specialization_graph;
use super::translate_args;
use super::util;
use super::MismatchedProjectionTypes;
use super::Obligation;
use super::ObligationCause;
use super::PredicateObligation;
use super::Selection;
use super::SelectionContext;
use super::SelectionError;
use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
use rustc_middle::traits::BuiltinImplSource;
use rustc_middle::traits::ImplSource;
use rustc_middle::traits::ImplSourceUserDefinedData;

use crate::errors::InherentProjectionNormalizationOverflow;
use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::infer::{BoundRegionConversionTime, InferOk};
use crate::traits::normalize::normalize_with_depth;
use crate::traits::normalize::normalize_with_depth_to;
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
use crate::traits::select::ProjectionMatchesProjection;
use rustc_data_structures::sso::SsoHashSet;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::lang_items::LangItem;
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_middle::traits::select::OverflowError;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::visit::{MaxUniverse, TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{self, Term, ToPredicate, Ty, TyCtxt};
use rustc_span::symbol::sym;

pub use rustc_middle::traits::Reveal;

pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;

pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;

pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::AliasTy<'tcx>>;

pub(super) struct InProgress;

/// When attempting to resolve `<T as TraitRef>::Name` ...
#[derive(Debug)]
pub enum ProjectionError<'tcx> {
    /// ...we found multiple sources of information and couldn't resolve the ambiguity.
    TooManyCandidates,

    /// ...an error occurred matching `T : TraitRef`
    TraitSelectionError(SelectionError<'tcx>),
}

#[derive(PartialEq, Eq, Debug)]
enum ProjectionCandidate<'tcx> {
    /// From a where-clause in the env or object type
    ParamEnv(ty::PolyProjectionPredicate<'tcx>),

    /// From the definition of `Trait` when you have something like
    /// `<<A as Trait>::B as Trait2>::C`.
    TraitDef(ty::PolyProjectionPredicate<'tcx>),

    /// Bounds specified on an object type
    Object(ty::PolyProjectionPredicate<'tcx>),

    /// From an "impl" (or a "pseudo-impl" returned by select)
    Select(Selection<'tcx>),
}

enum ProjectionCandidateSet<'tcx> {
    None,
    Single(ProjectionCandidate<'tcx>),
    Ambiguous,
    Error(SelectionError<'tcx>),
}

impl<'tcx> ProjectionCandidateSet<'tcx> {
    fn mark_ambiguous(&mut self) {
        *self = ProjectionCandidateSet::Ambiguous;
    }

    fn mark_error(&mut self, err: SelectionError<'tcx>) {
        *self = ProjectionCandidateSet::Error(err);
    }

    // Returns true if the push was successful, or false if the candidate
    // was discarded -- this could be because of ambiguity, or because
    // a higher-priority candidate is already there.
    fn push_candidate(&mut self, candidate: ProjectionCandidate<'tcx>) -> bool {
        use self::ProjectionCandidate::*;
        use self::ProjectionCandidateSet::*;

        // This wacky variable is just used to try and
        // make code readable and avoid confusing paths.
        // It is assigned a "value" of `()` only on those
        // paths in which we wish to convert `*self` to
        // ambiguous (and return false, because the candidate
        // was not used). On other paths, it is not assigned,
        // and hence if those paths *could* reach the code that
        // comes after the match, this fn would not compile.
        let convert_to_ambiguous;

        match self {
            None => {
                *self = Single(candidate);
                return true;
            }

            Single(current) => {
                // Duplicates can happen inside ParamEnv. In the case, we
                // perform a lazy deduplication.
                if current == &candidate {
                    return false;
                }

                // Prefer where-clauses. As in select, if there are multiple
                // candidates, we prefer where-clause candidates over impls. This
                // may seem a bit surprising, since impls are the source of
                // "truth" in some sense, but in fact some of the impls that SEEM
                // applicable are not, because of nested obligations. Where
                // clauses are the safer choice. See the comment on
                // `select::SelectionCandidate` and #21974 for more details.
                match (current, candidate) {
                    (ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
                    (ParamEnv(..), _) => return false,
                    (_, ParamEnv(..)) => bug!(
                        "should never prefer non-param-env candidates over param-env candidates"
                    ),
                    (_, _) => convert_to_ambiguous = (),
                }
            }

            Ambiguous | Error(..) => {
                return false;
            }
        }

        // We only ever get here when we moved from a single candidate
        // to ambiguous.
        let () = convert_to_ambiguous;
        *self = Ambiguous;
        false
    }
}

/// States returned from `poly_project_and_unify_type`. Takes the place
/// of the old return type, which was:
/// ```ignore (not-rust)
/// Result<
///     Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
///     MismatchedProjectionTypes<'tcx>,
/// >
/// ```
pub(super) enum ProjectAndUnifyResult<'tcx> {
    /// The projection bound holds subject to the given obligations. If the
    /// projection cannot be normalized because the required trait bound does
    /// not hold, this is returned, with `obligations` being a predicate that
    /// cannot be proven.
    Holds(Vec<PredicateObligation<'tcx>>),
    /// The projection cannot be normalized due to ambiguity. Resolving some
    /// inference variables in the projection may fix this.
    FailedNormalization,
    /// The project cannot be normalized because `poly_project_and_unify_type`
    /// is called recursively while normalizing the same projection.
    Recursive,
    // the projection can be normalized, but is not equal to the expected type.
    // Returns the type error that arose from the mismatch.
    MismatchedProjectionTypes(MismatchedProjectionTypes<'tcx>),
}

/// Evaluates constraints of the form:
/// ```ignore (not-rust)
/// for<...> <T as Trait>::U == V
/// ```
/// If successful, this may result in additional obligations. Also returns
/// the projection cache key used to track these additional obligations.
#[instrument(level = "debug", skip(selcx))]
pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &PolyProjectionObligation<'tcx>,
) -> ProjectAndUnifyResult<'tcx> {
    let infcx = selcx.infcx;
    let r = infcx.commit_if_ok(|_snapshot| {
        let old_universe = infcx.universe();
        let placeholder_predicate = infcx.enter_forall_and_leak_universe(obligation.predicate);
        let new_universe = infcx.universe();

        let placeholder_obligation = obligation.with(infcx.tcx, placeholder_predicate);
        match project_and_unify_type(selcx, &placeholder_obligation) {
            ProjectAndUnifyResult::MismatchedProjectionTypes(e) => Err(e),
            ProjectAndUnifyResult::Holds(obligations)
                if old_universe != new_universe
                    && selcx.tcx().features().generic_associated_types_extended =>
            {
                // If the `generic_associated_types_extended` feature is active, then we ignore any
                // obligations references lifetimes from any universe greater than or equal to the
                // universe just created. Otherwise, we can end up with something like `for<'a> I: 'a`,
                // which isn't quite what we want. Ideally, we want either an implied
                // `for<'a where I: 'a> I: 'a` or we want to "lazily" check these hold when we
                // instantiate concrete regions. There is design work to be done here; until then,
                // however, this allows experimenting potential GAT features without running into
                // well-formedness issues.
                let new_obligations = obligations
                    .into_iter()
                    .filter(|obligation| {
                        let mut visitor = MaxUniverse::new();
                        obligation.predicate.visit_with(&mut visitor);
                        visitor.max_universe() < new_universe
                    })
                    .collect();
                Ok(ProjectAndUnifyResult::Holds(new_obligations))
            }
            other => Ok(other),
        }
    });

    match r {
        Ok(inner) => inner,
        Err(err) => ProjectAndUnifyResult::MismatchedProjectionTypes(err),
    }
}

/// Evaluates constraints of the form:
/// ```ignore (not-rust)
/// <T as Trait>::U == V
/// ```
/// If successful, this may result in additional obligations.
///
/// See [poly_project_and_unify_type] for an explanation of the return value.
#[instrument(level = "debug", skip(selcx))]
fn project_and_unify_type<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionObligation<'tcx>,
) -> ProjectAndUnifyResult<'tcx> {
    let mut obligations = vec![];

    let infcx = selcx.infcx;
    let normalized = match opt_normalize_projection_type(
        selcx,
        obligation.param_env,
        obligation.predicate.projection_ty,
        obligation.cause.clone(),
        obligation.recursion_depth,
        &mut obligations,
    ) {
        Ok(Some(n)) => n,
        Ok(None) => return ProjectAndUnifyResult::FailedNormalization,
        Err(InProgress) => return ProjectAndUnifyResult::Recursive,
    };
    debug!(?normalized, ?obligations, "project_and_unify_type result");
    let actual = obligation.predicate.term;
    // For an example where this is necessary see tests/ui/impl-trait/nested-return-type2.rs
    // This allows users to omit re-mentioning all bounds on an associated type and just use an
    // `impl Trait` for the assoc type to add more bounds.
    let InferOk { value: actual, obligations: new } =
        selcx.infcx.replace_opaque_types_with_inference_vars(
            actual,
            obligation.cause.body_id,
            obligation.cause.span,
            obligation.param_env,
        );
    obligations.extend(new);

    // Need to define opaque types to support nested opaque types like `impl Fn() -> impl Trait`
    match infcx.at(&obligation.cause, obligation.param_env).eq(
        DefineOpaqueTypes::Yes,
        normalized,
        actual,
    ) {
        Ok(InferOk { obligations: inferred_obligations, value: () }) => {
            obligations.extend(inferred_obligations);
            ProjectAndUnifyResult::Holds(obligations)
        }
        Err(err) => {
            debug!("equating types encountered error {:?}", err);
            ProjectAndUnifyResult::MismatchedProjectionTypes(MismatchedProjectionTypes { err })
        }
    }
}

/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). If ambiguity arises, which implies that
/// there are unresolved type variables in the projection, we will
/// instantiate it with a fresh type variable `$X` and generate a new
/// obligation `<T as Trait>::Item == $X` for later.
pub fn normalize_projection_type<'a, 'b, 'tcx>(
    selcx: &'a mut SelectionContext<'b, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    projection_ty: ty::AliasTy<'tcx>,
    cause: ObligationCause<'tcx>,
    depth: usize,
    obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Term<'tcx> {
    opt_normalize_projection_type(
        selcx,
        param_env,
        projection_ty,
        cause.clone(),
        depth,
        obligations,
    )
    .ok()
    .flatten()
    .unwrap_or_else(move || {
        // if we bottom out in ambiguity, create a type variable
        // and a deferred predicate to resolve this when more type
        // information is available.

        selcx.infcx.infer_projection(param_env, projection_ty, cause, depth + 1, obligations).into()
    })
}

/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). Returns `None` in the case of ambiguity,
/// which indicates that there are unbound type variables.
///
/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
/// often immediately appended to another obligations vector. So now this
/// function takes an obligations vector and appends to it directly, which is
/// slightly uglier but avoids the need for an extra short-lived allocation.
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
pub(super) fn opt_normalize_projection_type<'a, 'b, 'tcx>(
    selcx: &'a mut SelectionContext<'b, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    projection_ty: ty::AliasTy<'tcx>,
    cause: ObligationCause<'tcx>,
    depth: usize,
    obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Result<Option<Term<'tcx>>, InProgress> {
    let infcx = selcx.infcx;
    debug_assert!(!selcx.infcx.next_trait_solver());
    // Don't use the projection cache in intercrate mode -
    // the `infcx` may be re-used between intercrate in non-intercrate
    // mode, which could lead to using incorrect cache results.
    let use_cache = !selcx.is_intercrate();

    let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
    let cache_key = ProjectionCacheKey::new(projection_ty);

    // FIXME(#20304) For now, I am caching here, which is good, but it
    // means we don't capture the type variables that are created in
    // the case of ambiguity. Which means we may create a large stream
    // of such variables. OTOH, if we move the caching up a level, we
    // would not benefit from caching when proving `T: Trait<U=Foo>`
    // bounds. It might be the case that we want two distinct caches,
    // or else another kind of cache entry.

    let cache_result = if use_cache {
        infcx.inner.borrow_mut().projection_cache().try_start(cache_key)
    } else {
        Ok(())
    };
    match cache_result {
        Ok(()) => debug!("no cache"),
        Err(ProjectionCacheEntry::Ambiguous) => {
            // If we found ambiguity the last time, that means we will continue
            // to do so until some type in the key changes (and we know it
            // hasn't, because we just fully resolved it).
            debug!("found cache entry: ambiguous");
            return Ok(None);
        }
        Err(ProjectionCacheEntry::InProgress) => {
            // Under lazy normalization, this can arise when
            // bootstrapping. That is, imagine an environment with a
            // where-clause like `A::B == u32`. Now, if we are asked
            // to normalize `A::B`, we will want to check the
            // where-clauses in scope. So we will try to unify `A::B`
            // with `A::B`, which can trigger a recursive
            // normalization.

            debug!("found cache entry: in-progress");

            // Cache that normalizing this projection resulted in a cycle. This
            // should ensure that, unless this happens within a snapshot that's
            // rolled back, fulfillment or evaluation will notice the cycle.

            if use_cache {
                infcx.inner.borrow_mut().projection_cache().recur(cache_key);
            }
            return Err(InProgress);
        }
        Err(ProjectionCacheEntry::Recur) => {
            debug!("recur cache");
            return Err(InProgress);
        }
        Err(ProjectionCacheEntry::NormalizedTy { ty, complete: _ }) => {
            // This is the hottest path in this function.
            //
            // If we find the value in the cache, then return it along
            // with the obligations that went along with it. Note
            // that, when using a fulfillment context, these
            // obligations could in principle be ignored: they have
            // already been registered when the cache entry was
            // created (and hence the new ones will quickly be
            // discarded as duplicated). But when doing trait
            // evaluation this is not the case, and dropping the trait
            // evaluations can causes ICEs (e.g., #43132).
            debug!(?ty, "found normalized ty");
            obligations.extend(ty.obligations);
            return Ok(Some(ty.value));
        }
        Err(ProjectionCacheEntry::Error) => {
            debug!("opt_normalize_projection_type: found error");
            let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
            obligations.extend(result.obligations);
            return Ok(Some(result.value.into()));
        }
    }

    let obligation =
        Obligation::with_depth(selcx.tcx(), cause.clone(), depth, param_env, projection_ty);

    match project(selcx, &obligation) {
        Ok(Projected::Progress(Progress {
            term: projected_term,
            obligations: mut projected_obligations,
        })) => {
            // if projection succeeded, then what we get out of this
            // is also non-normalized (consider: it was derived from
            // an impl, where-clause etc) and hence we must
            // re-normalize it

            let projected_term = selcx.infcx.resolve_vars_if_possible(projected_term);

            let mut result = if projected_term.has_projections() {
                let normalized_ty = normalize_with_depth_to(
                    selcx,
                    param_env,
                    cause,
                    depth + 1,
                    projected_term,
                    &mut projected_obligations,
                );

                Normalized { value: normalized_ty, obligations: projected_obligations }
            } else {
                Normalized { value: projected_term, obligations: projected_obligations }
            };

            let mut deduped = SsoHashSet::with_capacity(result.obligations.len());
            result.obligations.retain(|obligation| deduped.insert(obligation.clone()));

            if use_cache {
                infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
            }
            obligations.extend(result.obligations);
            Ok(Some(result.value))
        }
        Ok(Projected::NoProgress(projected_ty)) => {
            let result = Normalized { value: projected_ty, obligations: vec![] };
            if use_cache {
                infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
            }
            // No need to extend `obligations`.
            Ok(Some(result.value))
        }
        Err(ProjectionError::TooManyCandidates) => {
            debug!("opt_normalize_projection_type: too many candidates");
            if use_cache {
                infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
            }
            Ok(None)
        }
        Err(ProjectionError::TraitSelectionError(_)) => {
            debug!("opt_normalize_projection_type: ERROR");
            // if we got an error processing the `T as Trait` part,
            // just return `ty::err` but add the obligation `T :
            // Trait`, which when processed will cause the error to be
            // reported later

            if use_cache {
                infcx.inner.borrow_mut().projection_cache().error(cache_key);
            }
            let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
            obligations.extend(result.obligations);
            Ok(Some(result.value.into()))
        }
    }
}

/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
/// hold. In various error cases, we cannot generate a valid
/// normalized projection. Therefore, we create an inference variable
/// return an associated obligation that, when fulfilled, will lead to
/// an error.
///
/// Note that we used to return `Error` here, but that was quite
/// dubious -- the premise was that an error would *eventually* be
/// reported, when the obligation was processed. But in general once
/// you see an `Error` you are supposed to be able to assume that an
/// error *has been* reported, so that you can take whatever heuristic
/// paths you want to take. To make things worse, it was possible for
/// cycles to arise, where you basically had a setup like `<MyType<$0>
/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
/// Trait>::Foo>` to `[type error]` would lead to an obligation of
/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
/// an error for this obligation, but we legitimately should not,
/// because it contains `[type error]`. Yuck! (See issue #29857 for
/// one case where this arose.)
fn normalize_to_error<'a, 'tcx>(
    selcx: &mut SelectionContext<'a, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    projection_ty: ty::AliasTy<'tcx>,
    cause: ObligationCause<'tcx>,
    depth: usize,
) -> NormalizedTy<'tcx> {
    let trait_ref = ty::Binder::dummy(projection_ty.trait_ref(selcx.tcx()));
    let trait_obligation = Obligation {
        cause,
        recursion_depth: depth,
        param_env,
        predicate: trait_ref.to_predicate(selcx.tcx()),
    };
    let tcx = selcx.infcx.tcx;
    let new_value = selcx.infcx.next_ty_var(TypeVariableOrigin {
        kind: TypeVariableOriginKind::NormalizeProjectionType,
        span: tcx.def_span(projection_ty.def_id),
    });
    Normalized { value: new_value, obligations: vec![trait_obligation] }
}

/// Confirm and normalize the given inherent projection.
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
pub fn normalize_inherent_projection<'a, 'b, 'tcx>(
    selcx: &'a mut SelectionContext<'b, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    alias_ty: ty::AliasTy<'tcx>,
    cause: ObligationCause<'tcx>,
    depth: usize,
    obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Ty<'tcx> {
    let tcx = selcx.tcx();

    if !tcx.recursion_limit().value_within_limit(depth) {
        // Halt compilation because it is important that overflows never be masked.
        tcx.dcx().emit_fatal(InherentProjectionNormalizationOverflow {
            span: cause.span,
            ty: alias_ty.to_string(),
        });
    }

    let args = compute_inherent_assoc_ty_args(
        selcx,
        param_env,
        alias_ty,
        cause.clone(),
        depth,
        obligations,
    );

    // Register the obligations arising from the impl and from the associated type itself.
    let predicates = tcx.predicates_of(alias_ty.def_id).instantiate(tcx, args);
    for (predicate, span) in predicates {
        let predicate = normalize_with_depth_to(
            selcx,
            param_env,
            cause.clone(),
            depth + 1,
            predicate,
            obligations,
        );

        let nested_cause = ObligationCause::new(
            cause.span,
            cause.body_id,
            // FIXME(inherent_associated_types): Since we can't pass along the self type to the
            // cause code, inherent projections will be printed with identity instantiation in
            // diagnostics which is not ideal.
            // Consider creating separate cause codes for this specific situation.
            if span.is_dummy() {
                super::ItemObligation(alias_ty.def_id)
            } else {
                super::BindingObligation(alias_ty.def_id, span)
            },
        );

        obligations.push(Obligation::with_depth(
            tcx,
            nested_cause,
            depth + 1,
            param_env,
            predicate,
        ));
    }

    let ty = tcx.type_of(alias_ty.def_id).instantiate(tcx, args);

    let mut ty = selcx.infcx.resolve_vars_if_possible(ty);
    if ty.has_projections() {
        ty = normalize_with_depth_to(selcx, param_env, cause.clone(), depth + 1, ty, obligations);
    }

    ty
}

pub fn compute_inherent_assoc_ty_args<'a, 'b, 'tcx>(
    selcx: &'a mut SelectionContext<'b, 'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    alias_ty: ty::AliasTy<'tcx>,
    cause: ObligationCause<'tcx>,
    depth: usize,
    obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> ty::GenericArgsRef<'tcx> {
    let tcx = selcx.tcx();

    let impl_def_id = tcx.parent(alias_ty.def_id);
    let impl_args = selcx.infcx.fresh_args_for_item(cause.span, impl_def_id);

    let mut impl_ty = tcx.type_of(impl_def_id).instantiate(tcx, impl_args);
    if !selcx.infcx.next_trait_solver() {
        impl_ty = normalize_with_depth_to(
            selcx,
            param_env,
            cause.clone(),
            depth + 1,
            impl_ty,
            obligations,
        );
    }

    // Infer the generic parameters of the impl by unifying the
    // impl type with the self type of the projection.
    let mut self_ty = alias_ty.self_ty();
    if !selcx.infcx.next_trait_solver() {
        self_ty = normalize_with_depth_to(
            selcx,
            param_env,
            cause.clone(),
            depth + 1,
            self_ty,
            obligations,
        );
    }

    match selcx.infcx.at(&cause, param_env).eq(DefineOpaqueTypes::No, impl_ty, self_ty) {
        Ok(mut ok) => obligations.append(&mut ok.obligations),
        Err(_) => {
            tcx.dcx().span_bug(
                cause.span,
                format!("{self_ty:?} was equal to {impl_ty:?} during selection but now it is not"),
            );
        }
    }

    alias_ty.rebase_inherent_args_onto_impl(impl_args, tcx)
}

enum Projected<'tcx> {
    Progress(Progress<'tcx>),
    NoProgress(ty::Term<'tcx>),
}

struct Progress<'tcx> {
    term: ty::Term<'tcx>,
    obligations: Vec<PredicateObligation<'tcx>>,
}

impl<'tcx> Progress<'tcx> {
    fn error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
        Progress { term: Ty::new_error(tcx, guar).into(), obligations: vec![] }
    }

    fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
        self.obligations.append(&mut obligations);
        self
    }
}

/// Computes the result of a projection type (if we can).
///
/// IMPORTANT:
/// - `obligation` must be fully normalized
#[instrument(level = "info", skip(selcx))]
fn project<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
    if !selcx.tcx().recursion_limit().value_within_limit(obligation.recursion_depth) {
        // This should really be an immediate error, but some existing code
        // relies on being able to recover from this.
        return Err(ProjectionError::TraitSelectionError(SelectionError::Overflow(
            OverflowError::Canonical,
        )));
    }

    if let Err(guar) = obligation.predicate.error_reported() {
        return Ok(Projected::Progress(Progress::error(selcx.tcx(), guar)));
    }

    let mut candidates = ProjectionCandidateSet::None;

    // Make sure that the following procedures are kept in order. ParamEnv
    // needs to be first because it has highest priority, and Select checks
    // the return value of push_candidate which assumes it's ran at last.
    assemble_candidates_from_param_env(selcx, obligation, &mut candidates);

    assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);

    assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);

    if let ProjectionCandidateSet::Single(ProjectionCandidate::Object(_)) = candidates {
        // Avoid normalization cycle from selection (see
        // `assemble_candidates_from_object_ty`).
        // FIXME(lazy_normalization): Lazy normalization should save us from
        // having to special case this.
    } else {
        assemble_candidates_from_impls(selcx, obligation, &mut candidates);
    };

    match candidates {
        ProjectionCandidateSet::Single(candidate) => {
            Ok(Projected::Progress(confirm_candidate(selcx, obligation, candidate)))
        }
        ProjectionCandidateSet::None => {
            let tcx = selcx.tcx();
            let term = match tcx.def_kind(obligation.predicate.def_id) {
                DefKind::AssocTy => {
                    Ty::new_projection(tcx, obligation.predicate.def_id, obligation.predicate.args)
                        .into()
                }
                DefKind::AssocConst => ty::Const::new_unevaluated(
                    tcx,
                    ty::UnevaluatedConst::new(
                        obligation.predicate.def_id,
                        obligation.predicate.args,
                    ),
                    tcx.type_of(obligation.predicate.def_id)
                        .instantiate(tcx, obligation.predicate.args),
                )
                .into(),
                kind => {
                    bug!("unknown projection def-id: {}", kind.descr(obligation.predicate.def_id))
                }
            };

            Ok(Projected::NoProgress(term))
        }
        // Error occurred while trying to processing impls.
        ProjectionCandidateSet::Error(e) => Err(ProjectionError::TraitSelectionError(e)),
        // Inherent ambiguity that prevents us from even enumerating the
        // candidates.
        ProjectionCandidateSet::Ambiguous => Err(ProjectionError::TooManyCandidates),
    }
}

/// The first thing we have to do is scan through the parameter
/// environment to see whether there are any projection predicates
/// there that can answer this question.
fn assemble_candidates_from_param_env<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    candidate_set: &mut ProjectionCandidateSet<'tcx>,
) {
    assemble_candidates_from_predicates(
        selcx,
        obligation,
        candidate_set,
        ProjectionCandidate::ParamEnv,
        obligation.param_env.caller_bounds().iter(),
        false,
    );
}

/// In the case of a nested projection like `<<A as Foo>::FooT as Bar>::BarT`, we may find
/// that the definition of `Foo` has some clues:
///
/// ```ignore (illustrative)
/// trait Foo {
///     type FooT : Bar<BarT=i32>
/// }
/// ```
///
/// Here, for example, we could conclude that the result is `i32`.
fn assemble_candidates_from_trait_def<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    candidate_set: &mut ProjectionCandidateSet<'tcx>,
) {
    debug!("assemble_candidates_from_trait_def(..)");
    let mut ambiguous = false;
    selcx.for_each_item_bound(
        obligation.predicate.self_ty(),
        |selcx, clause, _| {
            let Some(clause) = clause.as_projection_clause() else {
                return ControlFlow::Continue(());
            };

            let is_match =
                selcx.infcx.probe(|_| selcx.match_projection_projections(obligation, clause, true));

            match is_match {
                ProjectionMatchesProjection::Yes => {
                    candidate_set.push_candidate(ProjectionCandidate::TraitDef(clause));

                    if !obligation.predicate.has_non_region_infer() {
                        // HACK: Pick the first trait def candidate for a fully
                        // inferred predicate. This is to allow duplicates that
                        // differ only in normalization.
                        return ControlFlow::Break(());
                    }
                }
                ProjectionMatchesProjection::Ambiguous => {
                    candidate_set.mark_ambiguous();
                }
                ProjectionMatchesProjection::No => {}
            }

            ControlFlow::Continue(())
        },
        // `ProjectionCandidateSet` is borrowed in the above closure,
        // so just mark ambiguous outside of the closure.
        || ambiguous = true,
    );

    if ambiguous {
        candidate_set.mark_ambiguous();
    }
}

/// In the case of a trait object like
/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
/// predicate in the trait object.
///
/// We don't go through the select candidate for these bounds to avoid cycles:
/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
/// this then has to be normalized without having to prove
/// `dyn Iterator<Item = ()>: Iterator` again.
fn assemble_candidates_from_object_ty<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    candidate_set: &mut ProjectionCandidateSet<'tcx>,
) {
    debug!("assemble_candidates_from_object_ty(..)");

    let tcx = selcx.tcx();

    if !tcx.trait_def(obligation.predicate.trait_def_id(tcx)).implement_via_object {
        return;
    }

    let self_ty = obligation.predicate.self_ty();
    let object_ty = selcx.infcx.shallow_resolve(self_ty);
    let data = match object_ty.kind() {
        ty::Dynamic(data, ..) => data,
        ty::Infer(ty::TyVar(_)) => {
            // If the self-type is an inference variable, then it MAY wind up
            // being an object type, so induce an ambiguity.
            candidate_set.mark_ambiguous();
            return;
        }
        _ => return,
    };
    let env_predicates = data
        .projection_bounds()
        .filter(|bound| bound.item_def_id() == obligation.predicate.def_id)
        .map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));

    assemble_candidates_from_predicates(
        selcx,
        obligation,
        candidate_set,
        ProjectionCandidate::Object,
        env_predicates,
        false,
    );
}

#[instrument(
    level = "debug",
    skip(selcx, candidate_set, ctor, env_predicates, potentially_unnormalized_candidates)
)]
fn assemble_candidates_from_predicates<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    candidate_set: &mut ProjectionCandidateSet<'tcx>,
    ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionCandidate<'tcx>,
    env_predicates: impl Iterator<Item = ty::Clause<'tcx>>,
    potentially_unnormalized_candidates: bool,
) {
    let infcx = selcx.infcx;
    for predicate in env_predicates {
        let bound_predicate = predicate.kind();
        if let ty::ClauseKind::Projection(data) = predicate.kind().skip_binder() {
            let data = bound_predicate.rebind(data);
            if data.projection_def_id() != obligation.predicate.def_id {
                continue;
            }

            let is_match = infcx.probe(|_| {
                selcx.match_projection_projections(
                    obligation,
                    data,
                    potentially_unnormalized_candidates,
                )
            });

            match is_match {
                ProjectionMatchesProjection::Yes => {
                    candidate_set.push_candidate(ctor(data));

                    if potentially_unnormalized_candidates
                        && !obligation.predicate.has_non_region_infer()
                    {
                        // HACK: Pick the first trait def candidate for a fully
                        // inferred predicate. This is to allow duplicates that
                        // differ only in normalization.
                        return;
                    }
                }
                ProjectionMatchesProjection::Ambiguous => {
                    candidate_set.mark_ambiguous();
                }
                ProjectionMatchesProjection::No => {}
            }
        }
    }
}

#[instrument(level = "debug", skip(selcx, obligation, candidate_set))]
fn assemble_candidates_from_impls<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    candidate_set: &mut ProjectionCandidateSet<'tcx>,
) {
    // If we are resolving `<T as TraitRef<...>>::Item == Type`,
    // start out by selecting the predicate `T as TraitRef<...>`:
    let trait_ref = obligation.predicate.trait_ref(selcx.tcx());
    let trait_obligation = obligation.with(selcx.tcx(), trait_ref);
    let _ = selcx.infcx.commit_if_ok(|_| {
        let impl_source = match selcx.select(&trait_obligation) {
            Ok(Some(impl_source)) => impl_source,
            Ok(None) => {
                candidate_set.mark_ambiguous();
                return Err(());
            }
            Err(e) => {
                debug!(error = ?e, "selection error");
                candidate_set.mark_error(e);
                return Err(());
            }
        };

        let eligible = match &impl_source {
            ImplSource::UserDefined(impl_data) => {
                // We have to be careful when projecting out of an
                // impl because of specialization. If we are not in
                // codegen (i.e., projection mode is not "any"), and the
                // impl's type is declared as default, then we disable
                // projection (even if the trait ref is fully
                // monomorphic). In the case where trait ref is not
                // fully monomorphic (i.e., includes type parameters),
                // this is because those type parameters may
                // ultimately be bound to types from other crates that
                // may have specialized impls we can't see. In the
                // case where the trait ref IS fully monomorphic, this
                // is a policy decision that we made in the RFC in
                // order to preserve flexibility for the crate that
                // defined the specializable impl to specialize later
                // for existing types.
                //
                // In either case, we handle this by not adding a
                // candidate for an impl if it contains a `default`
                // type.
                //
                // NOTE: This should be kept in sync with the similar code in
                // `rustc_ty_utils::instance::resolve_associated_item()`.
                let node_item =
                    specialization_graph::assoc_def(selcx.tcx(), impl_data.impl_def_id, obligation.predicate.def_id)
                        .map_err(|ErrorGuaranteed { .. }| ())?;

                if node_item.is_final() {
                    // Non-specializable items are always projectable.
                    true
                } else {
                    // Only reveal a specializable default if we're past type-checking
                    // and the obligation is monomorphic, otherwise passes such as
                    // transmute checking and polymorphic MIR optimizations could
                    // get a result which isn't correct for all monomorphizations.
                    if obligation.param_env.reveal() == Reveal::All {
                        // NOTE(eddyb) inference variables can resolve to parameters, so
                        // assume `poly_trait_ref` isn't monomorphic, if it contains any.
                        let poly_trait_ref = selcx.infcx.resolve_vars_if_possible(trait_ref);
                        !poly_trait_ref.still_further_specializable()
                    } else {
                        debug!(
                            assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
                            ?obligation.predicate,
                            "assemble_candidates_from_impls: not eligible due to default",
                        );
                        false
                    }
                }
            }
            ImplSource::Builtin(BuiltinImplSource::Misc, _) => {
                // While a builtin impl may be known to exist, the associated type may not yet
                // be known. Any type with multiple potential associated types is therefore
                // not eligible.
                let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());

                let lang_items = selcx.tcx().lang_items();
                if [
                    lang_items.coroutine_trait(),
                    lang_items.future_trait(),
                    lang_items.iterator_trait(),
                    lang_items.async_iterator_trait(),
                    lang_items.fn_trait(),
                    lang_items.fn_mut_trait(),
                    lang_items.fn_once_trait(),
                    lang_items.async_fn_trait(),
                    lang_items.async_fn_mut_trait(),
                    lang_items.async_fn_once_trait(),
                ].contains(&Some(trait_ref.def_id))
                {
                    true
                } else if lang_items.async_fn_kind_helper() == Some(trait_ref.def_id) {
                    // FIXME(async_closures): Validity constraints here could be cleaned up.
                    if obligation.predicate.args.type_at(0).is_ty_var()
                        || obligation.predicate.args.type_at(4).is_ty_var()
                        || obligation.predicate.args.type_at(5).is_ty_var()
                    {
                        candidate_set.mark_ambiguous();
                        true
                    } else {
                        obligation.predicate.args.type_at(0).to_opt_closure_kind().is_some()
                        && obligation.predicate.args.type_at(1).to_opt_closure_kind().is_some()
                    }
                } else if lang_items.discriminant_kind_trait() == Some(trait_ref.def_id) {
                    match self_ty.kind() {
                        ty::Bool
                        | ty::Char
                        | ty::Int(_)
                        | ty::Uint(_)
                        | ty::Float(_)
                        | ty::Adt(..)
                        | ty::Foreign(_)
                        | ty::Str
                        | ty::Array(..)
                        | ty::Slice(_)
                        | ty::RawPtr(..)
                        | ty::Ref(..)
                        | ty::FnDef(..)
                        | ty::FnPtr(..)
                        | ty::Dynamic(..)
                        | ty::Closure(..)
                        | ty::CoroutineClosure(..)
                        | ty::Coroutine(..)
                        | ty::CoroutineWitness(..)
                        | ty::Never
                        | ty::Tuple(..)
                        // Integers and floats always have `u8` as their discriminant.
                        | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,

                         // type parameters, opaques, and unnormalized projections have pointer
                        // metadata if they're known (e.g. by the param_env) to be sized
                        ty::Param(_)
                        | ty::Alias(..)
                        | ty::Bound(..)
                        | ty::Placeholder(..)
                        | ty::Infer(..)
                        | ty::Error(_) => false,
                    }
                } else if lang_items.pointee_trait() == Some(trait_ref.def_id) {
                    let tail = selcx.tcx().struct_tail_with_normalize(
                        self_ty,
                        |ty| {
                            // We throw away any obligations we get from this, since we normalize
                            // and confirm these obligations once again during confirmation
                            normalize_with_depth(
                                selcx,
                                obligation.param_env,
                                obligation.cause.clone(),
                                obligation.recursion_depth + 1,
                                ty,
                            )
                            .value
                        },
                        || {},
                    );

                    match tail.kind() {
                        ty::Bool
                        | ty::Char
                        | ty::Int(_)
                        | ty::Uint(_)
                        | ty::Float(_)
                        | ty::Str
                        | ty::Array(..)
                        | ty::Slice(_)
                        | ty::RawPtr(..)
                        | ty::Ref(..)
                        | ty::FnDef(..)
                        | ty::FnPtr(..)
                        | ty::Dynamic(..)
                        | ty::Closure(..)
                        | ty::CoroutineClosure(..)
                        | ty::Coroutine(..)
                        | ty::CoroutineWitness(..)
                        | ty::Never
                        // Extern types have unit metadata, according to RFC 2850
                        | ty::Foreign(_)
                        // If returned by `struct_tail_without_normalization` this is a unit struct
                        // without any fields, or not a struct, and therefore is Sized.
                        | ty::Adt(..)
                        // If returned by `struct_tail_without_normalization` this is the empty tuple.
                        | ty::Tuple(..)
                        // Integers and floats are always Sized, and so have unit type metadata.
                        | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,

                        // We normalize from `Wrapper<Tail>::Metadata` to `Tail::Metadata` if able.
                        // Otherwise, type parameters, opaques, and unnormalized projections have
                        // unit metadata if they're known (e.g. by the param_env) to be sized.
                        ty::Param(_) | ty::Alias(..)
                            if self_ty != tail || selcx.infcx.predicate_must_hold_modulo_regions(
                                &obligation.with(
                                    selcx.tcx(),
                                    ty::TraitRef::from_lang_item(selcx.tcx(), LangItem::Sized, obligation.cause.span(),[self_ty]),
                                ),
                            ) =>
                        {
                            true
                        }

                        // FIXME(compiler-errors): are Bound and Placeholder types ever known sized?
                        ty::Param(_)
                        | ty::Alias(..)
                        | ty::Bound(..)
                        | ty::Placeholder(..)
                        | ty::Infer(..)
                        | ty::Error(_) => {
                            if tail.has_infer_types() {
                                candidate_set.mark_ambiguous();
                            }
                            false
                        }
                    }
                } else {
                    bug!("unexpected builtin trait with associated type: {trait_ref:?}")
                }
            }
            ImplSource::Param(..) => {
                // This case tell us nothing about the value of an
                // associated type. Consider:
                //
                // ```
                // trait SomeTrait { type Foo; }
                // fn foo<T:SomeTrait>(...) { }
                // ```
                //
                // If the user writes `<T as SomeTrait>::Foo`, then the `T
                // : SomeTrait` binding does not help us decide what the
                // type `Foo` is (at least, not more specifically than
                // what we already knew).
                //
                // But wait, you say! What about an example like this:
                //
                // ```
                // fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
                // ```
                //
                // Doesn't the `T : SomeTrait<Foo=usize>` predicate help
                // resolve `T::Foo`? And of course it does, but in fact
                // that single predicate is desugared into two predicates
                // in the compiler: a trait predicate (`T : SomeTrait`) and a
                // projection. And the projection where clause is handled
                // in `assemble_candidates_from_param_env`.
                false
            }
            ImplSource::Builtin(BuiltinImplSource::Object { .. }, _) => {
                // Handled by the `Object` projection candidate. See
                // `assemble_candidates_from_object_ty` for an explanation of
                // why we special case object types.
                false
            }
            ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
            | ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
                // These traits have no associated types.
                selcx.tcx().dcx().span_delayed_bug(
                    obligation.cause.span,
                    format!("Cannot project an associated type from `{impl_source:?}`"),
                );
                return Err(())
            }
        };

        if eligible {
            if candidate_set.push_candidate(ProjectionCandidate::Select(impl_source)) {
                Ok(())
            } else {
                Err(())
            }
        } else {
            Err(())
        }
    });
}

fn confirm_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    candidate: ProjectionCandidate<'tcx>,
) -> Progress<'tcx> {
    debug!(?obligation, ?candidate, "confirm_candidate");
    let mut progress = match candidate {
        ProjectionCandidate::ParamEnv(poly_projection)
        | ProjectionCandidate::Object(poly_projection) => {
            confirm_param_env_candidate(selcx, obligation, poly_projection, false)
        }

        ProjectionCandidate::TraitDef(poly_projection) => {
            confirm_param_env_candidate(selcx, obligation, poly_projection, true)
        }

        ProjectionCandidate::Select(impl_source) => {
            confirm_select_candidate(selcx, obligation, impl_source)
        }
    };

    // When checking for cycle during evaluation, we compare predicates with
    // "syntactic" equality. Since normalization generally introduces a type
    // with new region variables, we need to resolve them to existing variables
    // when possible for this to work. See `auto-trait-projection-recursion.rs`
    // for a case where this matters.
    if progress.term.has_infer_regions() {
        progress.term = progress.term.fold_with(&mut OpportunisticRegionResolver::new(selcx.infcx));
    }
    progress
}

fn confirm_select_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    impl_source: Selection<'tcx>,
) -> Progress<'tcx> {
    match impl_source {
        ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
        ImplSource::Builtin(BuiltinImplSource::Misc, data) => {
            let trait_def_id = obligation.predicate.trait_def_id(selcx.tcx());
            let lang_items = selcx.tcx().lang_items();
            if lang_items.coroutine_trait() == Some(trait_def_id) {
                confirm_coroutine_candidate(selcx, obligation, data)
            } else if lang_items.future_trait() == Some(trait_def_id) {
                confirm_future_candidate(selcx, obligation, data)
            } else if lang_items.iterator_trait() == Some(trait_def_id) {
                confirm_iterator_candidate(selcx, obligation, data)
            } else if lang_items.async_iterator_trait() == Some(trait_def_id) {
                confirm_async_iterator_candidate(selcx, obligation, data)
            } else if selcx.tcx().fn_trait_kind_from_def_id(trait_def_id).is_some() {
                if obligation.predicate.self_ty().is_closure()
                    || obligation.predicate.self_ty().is_coroutine_closure()
                {
                    confirm_closure_candidate(selcx, obligation, data)
                } else {
                    confirm_fn_pointer_candidate(selcx, obligation, data)
                }
            } else if selcx.tcx().async_fn_trait_kind_from_def_id(trait_def_id).is_some() {
                confirm_async_closure_candidate(selcx, obligation, data)
            } else if lang_items.async_fn_kind_helper() == Some(trait_def_id) {
                confirm_async_fn_kind_helper_candidate(selcx, obligation, data)
            } else {
                confirm_builtin_candidate(selcx, obligation, data)
            }
        }
        ImplSource::Builtin(BuiltinImplSource::Object { .. }, _)
        | ImplSource::Param(..)
        | ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
        | ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
            // we don't create Select candidates with this kind of resolution
            span_bug!(
                obligation.cause.span,
                "Cannot project an associated type from `{:?}`",
                impl_source
            )
        }
    }
}

fn confirm_coroutine_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
    let ty::Coroutine(_, args) = self_ty.kind() else {
        unreachable!(
            "expected coroutine self type for built-in coroutine candidate, found {self_ty}"
        )
    };
    let coroutine_sig = args.as_coroutine().sig();
    let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
        selcx,
        obligation.param_env,
        obligation.cause.clone(),
        obligation.recursion_depth + 1,
        coroutine_sig,
    );

    debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_coroutine_candidate");

    let tcx = selcx.tcx();

    let coroutine_def_id = tcx.require_lang_item(LangItem::Coroutine, None);

    let (trait_ref, yield_ty, return_ty) = super::util::coroutine_trait_ref_and_outputs(
        tcx,
        coroutine_def_id,
        obligation.predicate.self_ty(),
        coroutine_sig,
    );

    let name = tcx.associated_item(obligation.predicate.def_id).name;
    let ty = if name == sym::Return {
        return_ty
    } else if name == sym::Yield {
        yield_ty
    } else {
        span_bug!(
            tcx.def_span(obligation.predicate.def_id),
            "unexpected associated type: `Coroutine::{name}`"
        );
    };

    let predicate = ty::ProjectionPredicate {
        projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
        term: ty.into(),
    };

    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
        .with_addl_obligations(nested)
        .with_addl_obligations(obligations)
}

fn confirm_future_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
    let ty::Coroutine(_, args) = self_ty.kind() else {
        unreachable!(
            "expected coroutine self type for built-in async future candidate, found {self_ty}"
        )
    };
    let coroutine_sig = args.as_coroutine().sig();
    let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
        selcx,
        obligation.param_env,
        obligation.cause.clone(),
        obligation.recursion_depth + 1,
        coroutine_sig,
    );

    debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_future_candidate");

    let tcx = selcx.tcx();
    let fut_def_id = tcx.require_lang_item(LangItem::Future, None);

    let (trait_ref, return_ty) = super::util::future_trait_ref_and_outputs(
        tcx,
        fut_def_id,
        obligation.predicate.self_ty(),
        coroutine_sig,
    );

    debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Output);

    let predicate = ty::ProjectionPredicate {
        projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
        term: return_ty.into(),
    };

    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
        .with_addl_obligations(nested)
        .with_addl_obligations(obligations)
}

fn confirm_iterator_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
    let ty::Coroutine(_, args) = self_ty.kind() else {
        unreachable!("expected coroutine self type for built-in gen candidate, found {self_ty}")
    };
    let gen_sig = args.as_coroutine().sig();
    let Normalized { value: gen_sig, obligations } = normalize_with_depth(
        selcx,
        obligation.param_env,
        obligation.cause.clone(),
        obligation.recursion_depth + 1,
        gen_sig,
    );

    debug!(?obligation, ?gen_sig, ?obligations, "confirm_iterator_candidate");

    let tcx = selcx.tcx();
    let iter_def_id = tcx.require_lang_item(LangItem::Iterator, None);

    let (trait_ref, yield_ty) = super::util::iterator_trait_ref_and_outputs(
        tcx,
        iter_def_id,
        obligation.predicate.self_ty(),
        gen_sig,
    );

    debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Item);

    let predicate = ty::ProjectionPredicate {
        projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
        term: yield_ty.into(),
    };

    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
        .with_addl_obligations(nested)
        .with_addl_obligations(obligations)
}

fn confirm_async_iterator_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let ty::Coroutine(_, args) = selcx.infcx.shallow_resolve(obligation.predicate.self_ty()).kind()
    else {
        unreachable!()
    };
    let gen_sig = args.as_coroutine().sig();
    let Normalized { value: gen_sig, obligations } = normalize_with_depth(
        selcx,
        obligation.param_env,
        obligation.cause.clone(),
        obligation.recursion_depth + 1,
        gen_sig,
    );

    debug!(?obligation, ?gen_sig, ?obligations, "confirm_async_iterator_candidate");

    let tcx = selcx.tcx();
    let iter_def_id = tcx.require_lang_item(LangItem::AsyncIterator, None);

    let (trait_ref, yield_ty) = super::util::async_iterator_trait_ref_and_outputs(
        tcx,
        iter_def_id,
        obligation.predicate.self_ty(),
        gen_sig,
    );

    debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Item);

    let ty::Adt(_poll_adt, args) = *yield_ty.kind() else {
        bug!();
    };
    let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else {
        bug!();
    };
    let item_ty = args.type_at(0);

    let predicate = ty::ProjectionPredicate {
        projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
        term: item_ty.into(),
    };

    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
        .with_addl_obligations(nested)
        .with_addl_obligations(obligations)
}

fn confirm_builtin_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    data: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let tcx = selcx.tcx();
    let self_ty = obligation.predicate.self_ty();
    let args = tcx.mk_args(&[self_ty.into()]);
    let lang_items = tcx.lang_items();
    let item_def_id = obligation.predicate.def_id;
    let trait_def_id = tcx.trait_of_item(item_def_id).unwrap();
    let (term, obligations) = if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
        let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
        assert_eq!(discriminant_def_id, item_def_id);

        (self_ty.discriminant_ty(tcx).into(), Vec::new())
    } else if lang_items.pointee_trait() == Some(trait_def_id) {
        let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
        assert_eq!(metadata_def_id, item_def_id);

        let mut obligations = Vec::new();
        let normalize = |ty| {
            normalize_with_depth_to(
                selcx,
                obligation.param_env,
                obligation.cause.clone(),
                obligation.recursion_depth + 1,
                ty,
                &mut obligations,
            )
        };
        let metadata_ty = self_ty.ptr_metadata_ty_or_tail(tcx, normalize).unwrap_or_else(|tail| {
            if tail == self_ty {
                // This is the "fallback impl" for type parameters, unnormalizable projections
                // and opaque types: If the `self_ty` is `Sized`, then the metadata is `()`.
                // FIXME(ptr_metadata): This impl overlaps with the other impls and shouldn't
                // exist. Instead, `Pointee<Metadata = ()>` should be a supertrait of `Sized`.
                let sized_predicate = ty::TraitRef::from_lang_item(
                    tcx,
                    LangItem::Sized,
                    obligation.cause.span(),
                    [self_ty],
                );
                obligations.push(obligation.with(tcx, sized_predicate));
                tcx.types.unit
            } else {
                // We know that `self_ty` has the same metadata as `tail`. This allows us
                // to prove predicates like `Wrapper<Tail>::Metadata == Tail::Metadata`.
                Ty::new_projection(tcx, metadata_def_id, [tail])
            }
        });
        (metadata_ty.into(), obligations)
    } else {
        bug!("unexpected builtin trait with associated type: {:?}", obligation.predicate);
    };

    let predicate =
        ty::ProjectionPredicate { projection_ty: ty::AliasTy::new(tcx, item_def_id, args), term };

    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
        .with_addl_obligations(obligations)
        .with_addl_obligations(data)
}

fn confirm_fn_pointer_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let tcx = selcx.tcx();
    let fn_type = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
    let sig = fn_type.fn_sig(tcx);
    let Normalized { value: sig, obligations } = normalize_with_depth(
        selcx,
        obligation.param_env,
        obligation.cause.clone(),
        obligation.recursion_depth + 1,
        sig,
    );

    let host_effect_param = match *fn_type.kind() {
        ty::FnDef(def_id, args) => tcx
            .generics_of(def_id)
            .host_effect_index
            .map_or(tcx.consts.true_, |idx| args.const_at(idx)),
        ty::FnPtr(_) => tcx.consts.true_,
        _ => unreachable!("only expected FnPtr or FnDef in `confirm_fn_pointer_candidate`"),
    };

    confirm_callable_candidate(
        selcx,
        obligation,
        sig,
        util::TupleArgumentsFlag::Yes,
        host_effect_param,
    )
    .with_addl_obligations(nested)
    .with_addl_obligations(obligations)
}

fn confirm_closure_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let tcx = selcx.tcx();
    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
    let closure_sig = match *self_ty.kind() {
        ty::Closure(_, args) => args.as_closure().sig(),

        // Construct a "normal" `FnOnce` signature for coroutine-closure. This is
        // basically duplicated with the `AsyncFnOnce::CallOnce` confirmation, but
        // I didn't see a good way to unify those.
        ty::CoroutineClosure(def_id, args) => {
            let args = args.as_coroutine_closure();
            let kind_ty = args.kind_ty();
            args.coroutine_closure_sig().map_bound(|sig| {
                // If we know the kind and upvars, use that directly.
                // Otherwise, defer to `AsyncFnKindHelper::Upvars` to delay
                // the projection, like the `AsyncFn*` traits do.
                let output_ty = if let Some(_) = kind_ty.to_opt_closure_kind() {
                    sig.to_coroutine_given_kind_and_upvars(
                        tcx,
                        args.parent_args(),
                        tcx.coroutine_for_closure(def_id),
                        ty::ClosureKind::FnOnce,
                        tcx.lifetimes.re_static,
                        args.tupled_upvars_ty(),
                        args.coroutine_captures_by_ref_ty(),
                    )
                } else {
                    let async_fn_kind_trait_def_id =
                        tcx.require_lang_item(LangItem::AsyncFnKindHelper, None);
                    let upvars_projection_def_id = tcx
                        .associated_items(async_fn_kind_trait_def_id)
                        .filter_by_name_unhygienic(sym::Upvars)
                        .next()
                        .unwrap()
                        .def_id;
                    let tupled_upvars_ty = Ty::new_projection(
                        tcx,
                        upvars_projection_def_id,
                        [
                            ty::GenericArg::from(kind_ty),
                            Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce).into(),
                            tcx.lifetimes.re_static.into(),
                            sig.tupled_inputs_ty.into(),
                            args.tupled_upvars_ty().into(),
                            args.coroutine_captures_by_ref_ty().into(),
                        ],
                    );
                    sig.to_coroutine(
                        tcx,
                        args.parent_args(),
                        Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce),
                        tcx.coroutine_for_closure(def_id),
                        tupled_upvars_ty,
                    )
                };
                tcx.mk_fn_sig(
                    [sig.tupled_inputs_ty],
                    output_ty,
                    sig.c_variadic,
                    sig.unsafety,
                    sig.abi,
                )
            })
        }

        _ => {
            unreachable!("expected closure self type for closure candidate, found {self_ty}");
        }
    };

    let Normalized { value: closure_sig, obligations } = normalize_with_depth(
        selcx,
        obligation.param_env,
        obligation.cause.clone(),
        obligation.recursion_depth + 1,
        closure_sig,
    );

    debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");

    confirm_callable_candidate(
        selcx,
        obligation,
        closure_sig,
        util::TupleArgumentsFlag::No,
        // FIXME(effects): This doesn't handle const closures correctly!
        selcx.tcx().consts.true_,
    )
    .with_addl_obligations(nested)
    .with_addl_obligations(obligations)
}

fn confirm_callable_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    fn_sig: ty::PolyFnSig<'tcx>,
    flag: util::TupleArgumentsFlag,
    fn_host_effect: ty::Const<'tcx>,
) -> Progress<'tcx> {
    let tcx = selcx.tcx();

    debug!(?obligation, ?fn_sig, "confirm_callable_candidate");

    let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
    let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);

    let predicate = super::util::closure_trait_ref_and_return_type(
        tcx,
        fn_once_def_id,
        obligation.predicate.self_ty(),
        fn_sig,
        flag,
        fn_host_effect,
    )
    .map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
        projection_ty: ty::AliasTy::new(tcx, fn_once_output_def_id, trait_ref.args),
        term: ret_type.into(),
    });

    confirm_param_env_candidate(selcx, obligation, predicate, true)
}

fn confirm_async_closure_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let tcx = selcx.tcx();
    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());

    let goal_kind =
        tcx.async_fn_trait_kind_from_def_id(obligation.predicate.trait_def_id(tcx)).unwrap();
    let env_region = match goal_kind {
        ty::ClosureKind::Fn | ty::ClosureKind::FnMut => obligation.predicate.args.region_at(2),
        ty::ClosureKind::FnOnce => tcx.lifetimes.re_static,
    };
    let item_name = tcx.item_name(obligation.predicate.def_id);

    let poly_cache_entry = match *self_ty.kind() {
        ty::CoroutineClosure(def_id, args) => {
            let args = args.as_coroutine_closure();
            let kind_ty = args.kind_ty();
            let sig = args.coroutine_closure_sig().skip_binder();

            let term = match item_name {
                sym::CallOnceFuture | sym::CallMutFuture | sym::CallFuture => {
                    if let Some(closure_kind) = kind_ty.to_opt_closure_kind() {
                        if !closure_kind.extends(goal_kind) {
                            bug!("we should not be confirming if the closure kind is not met");
                        }
                        sig.to_coroutine_given_kind_and_upvars(
                            tcx,
                            args.parent_args(),
                            tcx.coroutine_for_closure(def_id),
                            goal_kind,
                            env_region,
                            args.tupled_upvars_ty(),
                            args.coroutine_captures_by_ref_ty(),
                        )
                    } else {
                        let async_fn_kind_trait_def_id =
                            tcx.require_lang_item(LangItem::AsyncFnKindHelper, None);
                        let upvars_projection_def_id = tcx
                            .associated_items(async_fn_kind_trait_def_id)
                            .filter_by_name_unhygienic(sym::Upvars)
                            .next()
                            .unwrap()
                            .def_id;
                        // When we don't know the closure kind (and therefore also the closure's upvars,
                        // which are computed at the same time), we must delay the computation of the
                        // generator's upvars. We do this using the `AsyncFnKindHelper`, which as a trait
                        // goal functions similarly to the old `ClosureKind` predicate, and ensures that
                        // the goal kind <= the closure kind. As a projection `AsyncFnKindHelper::Upvars`
                        // will project to the right upvars for the generator, appending the inputs and
                        // coroutine upvars respecting the closure kind.
                        // N.B. No need to register a `AsyncFnKindHelper` goal here, it's already in `nested`.
                        let tupled_upvars_ty = Ty::new_projection(
                            tcx,
                            upvars_projection_def_id,
                            [
                                ty::GenericArg::from(kind_ty),
                                Ty::from_closure_kind(tcx, goal_kind).into(),
                                env_region.into(),
                                sig.tupled_inputs_ty.into(),
                                args.tupled_upvars_ty().into(),
                                args.coroutine_captures_by_ref_ty().into(),
                            ],
                        );
                        sig.to_coroutine(
                            tcx,
                            args.parent_args(),
                            Ty::from_closure_kind(tcx, goal_kind),
                            tcx.coroutine_for_closure(def_id),
                            tupled_upvars_ty,
                        )
                    }
                }
                sym::Output => sig.return_ty,
                name => bug!("no such associated type: {name}"),
            };
            let projection_ty = match item_name {
                sym::CallOnceFuture | sym::Output => ty::AliasTy::new(
                    tcx,
                    obligation.predicate.def_id,
                    [self_ty, sig.tupled_inputs_ty],
                ),
                sym::CallMutFuture | sym::CallFuture => ty::AliasTy::new(
                    tcx,
                    obligation.predicate.def_id,
                    [ty::GenericArg::from(self_ty), sig.tupled_inputs_ty.into(), env_region.into()],
                ),
                name => bug!("no such associated type: {name}"),
            };

            args.coroutine_closure_sig()
                .rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
        }
        ty::FnDef(..) | ty::FnPtr(..) => {
            let bound_sig = self_ty.fn_sig(tcx);
            let sig = bound_sig.skip_binder();

            let term = match item_name {
                sym::CallOnceFuture | sym::CallMutFuture | sym::CallFuture => sig.output(),
                sym::Output => {
                    let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
                    let future_output_def_id = tcx
                        .associated_items(future_trait_def_id)
                        .filter_by_name_unhygienic(sym::Output)
                        .next()
                        .unwrap()
                        .def_id;
                    Ty::new_projection(tcx, future_output_def_id, [sig.output()])
                }
                name => bug!("no such associated type: {name}"),
            };
            let projection_ty = match item_name {
                sym::CallOnceFuture | sym::Output => ty::AliasTy::new(
                    tcx,
                    obligation.predicate.def_id,
                    [self_ty, Ty::new_tup(tcx, sig.inputs())],
                ),
                sym::CallMutFuture | sym::CallFuture => ty::AliasTy::new(
                    tcx,
                    obligation.predicate.def_id,
                    [
                        ty::GenericArg::from(self_ty),
                        Ty::new_tup(tcx, sig.inputs()).into(),
                        env_region.into(),
                    ],
                ),
                name => bug!("no such associated type: {name}"),
            };

            bound_sig.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
        }
        ty::Closure(_, args) => {
            let args = args.as_closure();
            let bound_sig = args.sig();
            let sig = bound_sig.skip_binder();

            let term = match item_name {
                sym::CallOnceFuture | sym::CallMutFuture | sym::CallFuture => sig.output(),
                sym::Output => {
                    let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
                    let future_output_def_id = tcx
                        .associated_items(future_trait_def_id)
                        .filter_by_name_unhygienic(sym::Output)
                        .next()
                        .unwrap()
                        .def_id;
                    Ty::new_projection(tcx, future_output_def_id, [sig.output()])
                }
                name => bug!("no such associated type: {name}"),
            };
            let projection_ty = match item_name {
                sym::CallOnceFuture | sym::Output => {
                    ty::AliasTy::new(tcx, obligation.predicate.def_id, [self_ty, sig.inputs()[0]])
                }
                sym::CallMutFuture | sym::CallFuture => ty::AliasTy::new(
                    tcx,
                    obligation.predicate.def_id,
                    [ty::GenericArg::from(self_ty), sig.inputs()[0].into(), env_region.into()],
                ),
                name => bug!("no such associated type: {name}"),
            };

            bound_sig.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
        }
        _ => bug!("expected callable type for AsyncFn candidate"),
    };

    confirm_param_env_candidate(selcx, obligation, poly_cache_entry, true)
        .with_addl_obligations(nested)
}

fn confirm_async_fn_kind_helper_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: Vec<PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let [
        // We already checked that the goal_kind >= closure_kind
        _closure_kind_ty,
        goal_kind_ty,
        borrow_region,
        tupled_inputs_ty,
        tupled_upvars_ty,
        coroutine_captures_by_ref_ty,
    ] = **obligation.predicate.args
    else {
        bug!();
    };

    let predicate = ty::ProjectionPredicate {
        projection_ty: ty::AliasTy::new(
            selcx.tcx(),
            obligation.predicate.def_id,
            obligation.predicate.args,
        ),
        term: ty::CoroutineClosureSignature::tupled_upvars_by_closure_kind(
            selcx.tcx(),
            goal_kind_ty.expect_ty().to_opt_closure_kind().unwrap(),
            tupled_inputs_ty.expect_ty(),
            tupled_upvars_ty.expect_ty(),
            coroutine_captures_by_ref_ty.expect_ty(),
            borrow_region.expect_region(),
        )
        .into(),
    };

    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
        .with_addl_obligations(nested)
}

fn confirm_param_env_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
    potentially_unnormalized_candidate: bool,
) -> Progress<'tcx> {
    let infcx = selcx.infcx;
    let cause = &obligation.cause;
    let param_env = obligation.param_env;

    let cache_entry = infcx.instantiate_binder_with_fresh_vars(
        cause.span,
        BoundRegionConversionTime::HigherRankedType,
        poly_cache_entry,
    );

    let cache_projection = cache_entry.projection_ty;
    let mut nested_obligations = Vec::new();
    let obligation_projection = obligation.predicate;
    let obligation_projection = ensure_sufficient_stack(|| {
        normalize_with_depth_to(
            selcx,
            obligation.param_env,
            obligation.cause.clone(),
            obligation.recursion_depth + 1,
            obligation_projection,
            &mut nested_obligations,
        )
    });
    let cache_projection = if potentially_unnormalized_candidate {
        ensure_sufficient_stack(|| {
            normalize_with_depth_to(
                selcx,
                obligation.param_env,
                obligation.cause.clone(),
                obligation.recursion_depth + 1,
                cache_projection,
                &mut nested_obligations,
            )
        })
    } else {
        cache_projection
    };

    debug!(?cache_projection, ?obligation_projection);

    match infcx.at(cause, param_env).eq(
        DefineOpaqueTypes::Yes,
        cache_projection,
        obligation_projection,
    ) {
        Ok(InferOk { value: _, obligations }) => {
            nested_obligations.extend(obligations);
            assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
            // FIXME(associated_const_equality): Handle consts here as well? Maybe this progress type should just take
            // a term instead.
            Progress { term: cache_entry.term, obligations: nested_obligations }
        }
        Err(e) => {
            let msg = format!(
                "Failed to unify obligation `{obligation:?}` with poly_projection `{poly_cache_entry:?}`: {e:?}",
            );
            debug!("confirm_param_env_candidate: {}", msg);
            let err = Ty::new_error_with_message(infcx.tcx, obligation.cause.span, msg);
            Progress { term: err.into(), obligations: vec![] }
        }
    }
}

fn confirm_impl_candidate<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
    let tcx = selcx.tcx();

    let ImplSourceUserDefinedData { impl_def_id, args, mut nested } = impl_impl_source;
    let assoc_item_id = obligation.predicate.def_id;
    let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();

    let param_env = obligation.param_env;
    let assoc_ty = match specialization_graph::assoc_def(tcx, impl_def_id, assoc_item_id) {
        Ok(assoc_ty) => assoc_ty,
        Err(guar) => return Progress::error(tcx, guar),
    };

    if !assoc_ty.item.defaultness(tcx).has_value() {
        // This means that the impl is missing a definition for the
        // associated type. This error will be reported by the type
        // checker method `check_impl_items_against_trait`, so here we
        // just return Error.
        debug!(
            "confirm_impl_candidate: no associated type {:?} for {:?}",
            assoc_ty.item.name, obligation.predicate
        );
        return Progress { term: Ty::new_misc_error(tcx).into(), obligations: nested };
    }
    // If we're trying to normalize `<Vec<u32> as X>::A<S>` using
    //`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
    //
    // * `obligation.predicate.args` is `[Vec<u32>, S]`
    // * `args` is `[u32]`
    // * `args` ends up as `[u32, S]`
    let args = obligation.predicate.args.rebase_onto(tcx, trait_def_id, args);
    let args = translate_args(selcx.infcx, param_env, impl_def_id, args, assoc_ty.defining_node);
    let ty = tcx.type_of(assoc_ty.item.def_id);
    let is_const = matches!(tcx.def_kind(assoc_ty.item.def_id), DefKind::AssocConst);
    let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
        let did = assoc_ty.item.def_id;
        let identity_args = crate::traits::GenericArgs::identity_for_item(tcx, did);
        let uv = ty::UnevaluatedConst::new(did, identity_args);
        ty.map_bound(|ty| ty::Const::new_unevaluated(tcx, uv, ty).into())
    } else {
        ty.map_bound(|ty| ty.into())
    };
    if !check_args_compatible(tcx, assoc_ty.item, args) {
        let err = Ty::new_error_with_message(
            tcx,
            obligation.cause.span,
            "impl item and trait item have different parameters",
        );
        Progress { term: err.into(), obligations: nested }
    } else {
        assoc_ty_own_obligations(selcx, obligation, &mut nested);
        Progress { term: term.instantiate(tcx, args), obligations: nested }
    }
}

// Get obligations corresponding to the predicates from the where-clause of the
// associated type itself.
fn assoc_ty_own_obligations<'cx, 'tcx>(
    selcx: &mut SelectionContext<'cx, 'tcx>,
    obligation: &ProjectionTyObligation<'tcx>,
    nested: &mut Vec<PredicateObligation<'tcx>>,
) {
    let tcx = selcx.tcx();
    let predicates = tcx
        .predicates_of(obligation.predicate.def_id)
        .instantiate_own(tcx, obligation.predicate.args);
    for (predicate, span) in predicates {
        let normalized = normalize_with_depth_to(
            selcx,
            obligation.param_env,
            obligation.cause.clone(),
            obligation.recursion_depth + 1,
            predicate,
            nested,
        );

        let nested_cause = if matches!(
            obligation.cause.code(),
            super::CompareImplItemObligation { .. }
                | super::CheckAssociatedTypeBounds { .. }
                | super::AscribeUserTypeProvePredicate(..)
        ) {
            obligation.cause.clone()
        } else if span.is_dummy() {
            ObligationCause::new(
                obligation.cause.span,
                obligation.cause.body_id,
                super::ItemObligation(obligation.predicate.def_id),
            )
        } else {
            ObligationCause::new(
                obligation.cause.span,
                obligation.cause.body_id,
                super::BindingObligation(obligation.predicate.def_id, span),
            )
        };
        nested.push(Obligation::with_depth(
            tcx,
            nested_cause,
            obligation.recursion_depth + 1,
            obligation.param_env,
            normalized,
        ));
    }
}

pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
    fn from_poly_projection_predicate(
        selcx: &mut SelectionContext<'cx, 'tcx>,
        predicate: ty::PolyProjectionPredicate<'tcx>,
    ) -> Option<Self>;
}

impl<'cx, 'tcx> ProjectionCacheKeyExt<'cx, 'tcx> for ProjectionCacheKey<'tcx> {
    fn from_poly_projection_predicate(
        selcx: &mut SelectionContext<'cx, 'tcx>,
        predicate: ty::PolyProjectionPredicate<'tcx>,
    ) -> Option<Self> {
        let infcx = selcx.infcx;
        // We don't do cross-snapshot caching of obligations with escaping regions,
        // so there's no cache key to use
        predicate.no_bound_vars().map(|predicate| {
            ProjectionCacheKey::new(
                // We don't attempt to match up with a specific type-variable state
                // from a specific call to `opt_normalize_projection_type` - if
                // there's no precise match, the original cache entry is "stranded"
                // anyway.
                infcx.resolve_vars_if_possible(predicate.projection_ty),
            )
        })
    }
}