rustc_trait_selection/traits/
project.rs

1//! Code for projecting associated types out of trait references.
2
3use std::ops::ControlFlow;
4
5use rustc_data_structures::sso::SsoHashSet;
6use rustc_data_structures::stack::ensure_sufficient_stack;
7use rustc_errors::ErrorGuaranteed;
8use rustc_hir::def::DefKind;
9use rustc_hir::lang_items::LangItem;
10use rustc_infer::infer::DefineOpaqueTypes;
11use rustc_infer::infer::resolve::OpportunisticRegionResolver;
12use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
13use rustc_middle::traits::select::OverflowError;
14use rustc_middle::traits::{BuiltinImplSource, ImplSource, ImplSourceUserDefinedData};
15use rustc_middle::ty::fast_reject::DeepRejectCtxt;
16use rustc_middle::ty::{
17    self, Term, Ty, TyCtxt, TypeFoldable, TypeVisitableExt, TypingMode, Upcast,
18};
19use rustc_middle::{bug, span_bug};
20use rustc_span::sym;
21use tracing::{debug, instrument};
22
23use super::{
24    MismatchedProjectionTypes, Normalized, NormalizedTerm, Obligation, ObligationCause,
25    PredicateObligation, ProjectionCacheEntry, ProjectionCacheKey, Selection, SelectionContext,
26    SelectionError, specialization_graph, translate_args, util,
27};
28use crate::errors::InherentProjectionNormalizationOverflow;
29use crate::infer::{BoundRegionConversionTime, InferOk};
30use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
31use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
32use crate::traits::select::ProjectionMatchesProjection;
33
34pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
35
36pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
37
38pub type ProjectionTermObligation<'tcx> = Obligation<'tcx, ty::AliasTerm<'tcx>>;
39
40pub(super) struct InProgress;
41
42/// When attempting to resolve `<T as TraitRef>::Name` ...
43#[derive(Debug)]
44pub enum ProjectionError<'tcx> {
45    /// ...we found multiple sources of information and couldn't resolve the ambiguity.
46    TooManyCandidates,
47
48    /// ...an error occurred matching `T : TraitRef`
49    TraitSelectionError(SelectionError<'tcx>),
50}
51
52#[derive(PartialEq, Eq, Debug)]
53enum ProjectionCandidate<'tcx> {
54    /// From a where-clause in the env or object type
55    ParamEnv(ty::PolyProjectionPredicate<'tcx>),
56
57    /// From the definition of `Trait` when you have something like
58    /// `<<A as Trait>::B as Trait2>::C`.
59    TraitDef(ty::PolyProjectionPredicate<'tcx>),
60
61    /// Bounds specified on an object type
62    Object(ty::PolyProjectionPredicate<'tcx>),
63
64    /// From an "impl" (or a "pseudo-impl" returned by select)
65    Select(Selection<'tcx>),
66}
67
68enum ProjectionCandidateSet<'tcx> {
69    None,
70    Single(ProjectionCandidate<'tcx>),
71    Ambiguous,
72    Error(SelectionError<'tcx>),
73}
74
75impl<'tcx> ProjectionCandidateSet<'tcx> {
76    fn mark_ambiguous(&mut self) {
77        *self = ProjectionCandidateSet::Ambiguous;
78    }
79
80    fn mark_error(&mut self, err: SelectionError<'tcx>) {
81        *self = ProjectionCandidateSet::Error(err);
82    }
83
84    // Returns true if the push was successful, or false if the candidate
85    // was discarded -- this could be because of ambiguity, or because
86    // a higher-priority candidate is already there.
87    fn push_candidate(&mut self, candidate: ProjectionCandidate<'tcx>) -> bool {
88        use self::ProjectionCandidate::*;
89        use self::ProjectionCandidateSet::*;
90
91        // This wacky variable is just used to try and
92        // make code readable and avoid confusing paths.
93        // It is assigned a "value" of `()` only on those
94        // paths in which we wish to convert `*self` to
95        // ambiguous (and return false, because the candidate
96        // was not used). On other paths, it is not assigned,
97        // and hence if those paths *could* reach the code that
98        // comes after the match, this fn would not compile.
99        let convert_to_ambiguous;
100
101        match self {
102            None => {
103                *self = Single(candidate);
104                return true;
105            }
106
107            Single(current) => {
108                // Duplicates can happen inside ParamEnv. In the case, we
109                // perform a lazy deduplication.
110                if current == &candidate {
111                    return false;
112                }
113
114                // Prefer where-clauses. As in select, if there are multiple
115                // candidates, we prefer where-clause candidates over impls. This
116                // may seem a bit surprising, since impls are the source of
117                // "truth" in some sense, but in fact some of the impls that SEEM
118                // applicable are not, because of nested obligations. Where
119                // clauses are the safer choice. See the comment on
120                // `select::SelectionCandidate` and #21974 for more details.
121                match (current, candidate) {
122                    (ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
123                    (ParamEnv(..), _) => return false,
124                    (_, ParamEnv(..)) => bug!(
125                        "should never prefer non-param-env candidates over param-env candidates"
126                    ),
127                    (_, _) => convert_to_ambiguous = (),
128                }
129            }
130
131            Ambiguous | Error(..) => {
132                return false;
133            }
134        }
135
136        // We only ever get here when we moved from a single candidate
137        // to ambiguous.
138        let () = convert_to_ambiguous;
139        *self = Ambiguous;
140        false
141    }
142}
143
144/// States returned from `poly_project_and_unify_type`. Takes the place
145/// of the old return type, which was:
146/// ```ignore (not-rust)
147/// Result<
148///     Result<Option<PredicateObligations<'tcx>>, InProgress>,
149///     MismatchedProjectionTypes<'tcx>,
150/// >
151/// ```
152pub(super) enum ProjectAndUnifyResult<'tcx> {
153    /// The projection bound holds subject to the given obligations. If the
154    /// projection cannot be normalized because the required trait bound does
155    /// not hold, this is returned, with `obligations` being a predicate that
156    /// cannot be proven.
157    Holds(PredicateObligations<'tcx>),
158    /// The projection cannot be normalized due to ambiguity. Resolving some
159    /// inference variables in the projection may fix this.
160    FailedNormalization,
161    /// The project cannot be normalized because `poly_project_and_unify_type`
162    /// is called recursively while normalizing the same projection.
163    Recursive,
164    // the projection can be normalized, but is not equal to the expected type.
165    // Returns the type error that arose from the mismatch.
166    MismatchedProjectionTypes(MismatchedProjectionTypes<'tcx>),
167}
168
169/// Evaluates constraints of the form:
170/// ```ignore (not-rust)
171/// for<...> <T as Trait>::U == V
172/// ```
173/// If successful, this may result in additional obligations. Also returns
174/// the projection cache key used to track these additional obligations.
175#[instrument(level = "debug", skip(selcx))]
176pub(super) fn poly_project_and_unify_term<'cx, 'tcx>(
177    selcx: &mut SelectionContext<'cx, 'tcx>,
178    obligation: &PolyProjectionObligation<'tcx>,
179) -> ProjectAndUnifyResult<'tcx> {
180    let infcx = selcx.infcx;
181    let r = infcx.commit_if_ok(|_snapshot| {
182        let placeholder_predicate = infcx.enter_forall_and_leak_universe(obligation.predicate);
183
184        let placeholder_obligation = obligation.with(infcx.tcx, placeholder_predicate);
185        match project_and_unify_term(selcx, &placeholder_obligation) {
186            ProjectAndUnifyResult::MismatchedProjectionTypes(e) => Err(e),
187            other => Ok(other),
188        }
189    });
190
191    match r {
192        Ok(inner) => inner,
193        Err(err) => ProjectAndUnifyResult::MismatchedProjectionTypes(err),
194    }
195}
196
197/// Evaluates constraints of the form:
198/// ```ignore (not-rust)
199/// <T as Trait>::U == V
200/// ```
201/// If successful, this may result in additional obligations.
202///
203/// See [poly_project_and_unify_term] for an explanation of the return value.
204#[instrument(level = "debug", skip(selcx))]
205fn project_and_unify_term<'cx, 'tcx>(
206    selcx: &mut SelectionContext<'cx, 'tcx>,
207    obligation: &ProjectionObligation<'tcx>,
208) -> ProjectAndUnifyResult<'tcx> {
209    let mut obligations = PredicateObligations::new();
210
211    let infcx = selcx.infcx;
212    let normalized = match opt_normalize_projection_term(
213        selcx,
214        obligation.param_env,
215        obligation.predicate.projection_term,
216        obligation.cause.clone(),
217        obligation.recursion_depth,
218        &mut obligations,
219    ) {
220        Ok(Some(n)) => n,
221        Ok(None) => return ProjectAndUnifyResult::FailedNormalization,
222        Err(InProgress) => return ProjectAndUnifyResult::Recursive,
223    };
224    debug!(?normalized, ?obligations, "project_and_unify_type result");
225    let actual = obligation.predicate.term;
226    // For an example where this is necessary see tests/ui/impl-trait/nested-return-type2.rs
227    // This allows users to omit re-mentioning all bounds on an associated type and just use an
228    // `impl Trait` for the assoc type to add more bounds.
229    let InferOk { value: actual, obligations: new } =
230        selcx.infcx.replace_opaque_types_with_inference_vars(
231            actual,
232            obligation.cause.body_id,
233            obligation.cause.span,
234            obligation.param_env,
235        );
236    obligations.extend(new);
237
238    // Need to define opaque types to support nested opaque types like `impl Fn() -> impl Trait`
239    match infcx.at(&obligation.cause, obligation.param_env).eq(
240        DefineOpaqueTypes::Yes,
241        normalized,
242        actual,
243    ) {
244        Ok(InferOk { obligations: inferred_obligations, value: () }) => {
245            obligations.extend(inferred_obligations);
246            ProjectAndUnifyResult::Holds(obligations)
247        }
248        Err(err) => {
249            debug!("equating types encountered error {:?}", err);
250            ProjectAndUnifyResult::MismatchedProjectionTypes(MismatchedProjectionTypes { err })
251        }
252    }
253}
254
255/// The guts of `normalize`: normalize a specific projection like `<T
256/// as Trait>::Item`. The result is always a type (and possibly
257/// additional obligations). If ambiguity arises, which implies that
258/// there are unresolved type variables in the projection, we will
259/// instantiate it with a fresh type variable `$X` and generate a new
260/// obligation `<T as Trait>::Item == $X` for later.
261pub fn normalize_projection_ty<'a, 'b, 'tcx>(
262    selcx: &'a mut SelectionContext<'b, 'tcx>,
263    param_env: ty::ParamEnv<'tcx>,
264    projection_ty: ty::AliasTy<'tcx>,
265    cause: ObligationCause<'tcx>,
266    depth: usize,
267    obligations: &mut PredicateObligations<'tcx>,
268) -> Term<'tcx> {
269    opt_normalize_projection_term(
270        selcx,
271        param_env,
272        projection_ty.into(),
273        cause.clone(),
274        depth,
275        obligations,
276    )
277    .ok()
278    .flatten()
279    .unwrap_or_else(move || {
280        // if we bottom out in ambiguity, create a type variable
281        // and a deferred predicate to resolve this when more type
282        // information is available.
283
284        selcx
285            .infcx
286            .projection_ty_to_infer(param_env, projection_ty, cause, depth + 1, obligations)
287            .into()
288    })
289}
290
291/// The guts of `normalize`: normalize a specific projection like `<T
292/// as Trait>::Item`. The result is always a type (and possibly
293/// additional obligations). Returns `None` in the case of ambiguity,
294/// which indicates that there are unbound type variables.
295///
296/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
297/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
298/// often immediately appended to another obligations vector. So now this
299/// function takes an obligations vector and appends to it directly, which is
300/// slightly uglier but avoids the need for an extra short-lived allocation.
301#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
302pub(super) fn opt_normalize_projection_term<'a, 'b, 'tcx>(
303    selcx: &'a mut SelectionContext<'b, 'tcx>,
304    param_env: ty::ParamEnv<'tcx>,
305    projection_term: ty::AliasTerm<'tcx>,
306    cause: ObligationCause<'tcx>,
307    depth: usize,
308    obligations: &mut PredicateObligations<'tcx>,
309) -> Result<Option<Term<'tcx>>, InProgress> {
310    let infcx = selcx.infcx;
311    debug_assert!(!selcx.infcx.next_trait_solver());
312    let projection_term = infcx.resolve_vars_if_possible(projection_term);
313    let cache_key = ProjectionCacheKey::new(projection_term, param_env);
314
315    // FIXME(#20304) For now, I am caching here, which is good, but it
316    // means we don't capture the type variables that are created in
317    // the case of ambiguity. Which means we may create a large stream
318    // of such variables. OTOH, if we move the caching up a level, we
319    // would not benefit from caching when proving `T: Trait<U=Foo>`
320    // bounds. It might be the case that we want two distinct caches,
321    // or else another kind of cache entry.
322    let cache_entry = infcx.inner.borrow_mut().projection_cache().try_start(cache_key);
323    match cache_entry {
324        Ok(()) => debug!("no cache"),
325        Err(ProjectionCacheEntry::Ambiguous) => {
326            // If we found ambiguity the last time, that means we will continue
327            // to do so until some type in the key changes (and we know it
328            // hasn't, because we just fully resolved it).
329            debug!("found cache entry: ambiguous");
330            return Ok(None);
331        }
332        Err(ProjectionCacheEntry::InProgress) => {
333            // Under lazy normalization, this can arise when
334            // bootstrapping. That is, imagine an environment with a
335            // where-clause like `A::B == u32`. Now, if we are asked
336            // to normalize `A::B`, we will want to check the
337            // where-clauses in scope. So we will try to unify `A::B`
338            // with `A::B`, which can trigger a recursive
339            // normalization.
340
341            debug!("found cache entry: in-progress");
342
343            // Cache that normalizing this projection resulted in a cycle. This
344            // should ensure that, unless this happens within a snapshot that's
345            // rolled back, fulfillment or evaluation will notice the cycle.
346            infcx.inner.borrow_mut().projection_cache().recur(cache_key);
347            return Err(InProgress);
348        }
349        Err(ProjectionCacheEntry::Recur) => {
350            debug!("recur cache");
351            return Err(InProgress);
352        }
353        Err(ProjectionCacheEntry::NormalizedTerm { ty, complete: _ }) => {
354            // This is the hottest path in this function.
355            //
356            // If we find the value in the cache, then return it along
357            // with the obligations that went along with it. Note
358            // that, when using a fulfillment context, these
359            // obligations could in principle be ignored: they have
360            // already been registered when the cache entry was
361            // created (and hence the new ones will quickly be
362            // discarded as duplicated). But when doing trait
363            // evaluation this is not the case, and dropping the trait
364            // evaluations can causes ICEs (e.g., #43132).
365            debug!(?ty, "found normalized ty");
366            obligations.extend(ty.obligations);
367            return Ok(Some(ty.value));
368        }
369        Err(ProjectionCacheEntry::Error) => {
370            debug!("opt_normalize_projection_type: found error");
371            let result = normalize_to_error(selcx, param_env, projection_term, cause, depth);
372            obligations.extend(result.obligations);
373            return Ok(Some(result.value));
374        }
375    }
376
377    let obligation =
378        Obligation::with_depth(selcx.tcx(), cause.clone(), depth, param_env, projection_term);
379
380    match project(selcx, &obligation) {
381        Ok(Projected::Progress(Progress {
382            term: projected_term,
383            obligations: mut projected_obligations,
384        })) => {
385            // if projection succeeded, then what we get out of this
386            // is also non-normalized (consider: it was derived from
387            // an impl, where-clause etc) and hence we must
388            // re-normalize it
389
390            let projected_term = selcx.infcx.resolve_vars_if_possible(projected_term);
391
392            let mut result = if projected_term.has_aliases() {
393                let normalized_ty = normalize_with_depth_to(
394                    selcx,
395                    param_env,
396                    cause,
397                    depth + 1,
398                    projected_term,
399                    &mut projected_obligations,
400                );
401
402                Normalized { value: normalized_ty, obligations: projected_obligations }
403            } else {
404                Normalized { value: projected_term, obligations: projected_obligations }
405            };
406
407            let mut deduped = SsoHashSet::with_capacity(result.obligations.len());
408            result.obligations.retain(|obligation| deduped.insert(obligation.clone()));
409
410            infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
411            obligations.extend(result.obligations);
412            Ok(Some(result.value))
413        }
414        Ok(Projected::NoProgress(projected_ty)) => {
415            let result =
416                Normalized { value: projected_ty, obligations: PredicateObligations::new() };
417            infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
418            // No need to extend `obligations`.
419            Ok(Some(result.value))
420        }
421        Err(ProjectionError::TooManyCandidates) => {
422            debug!("opt_normalize_projection_type: too many candidates");
423            infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
424            Ok(None)
425        }
426        Err(ProjectionError::TraitSelectionError(_)) => {
427            debug!("opt_normalize_projection_type: ERROR");
428            // if we got an error processing the `T as Trait` part,
429            // just return `ty::err` but add the obligation `T :
430            // Trait`, which when processed will cause the error to be
431            // reported later
432            infcx.inner.borrow_mut().projection_cache().error(cache_key);
433            let result = normalize_to_error(selcx, param_env, projection_term, cause, depth);
434            obligations.extend(result.obligations);
435            Ok(Some(result.value))
436        }
437    }
438}
439
440/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
441/// hold. In various error cases, we cannot generate a valid
442/// normalized projection. Therefore, we create an inference variable
443/// return an associated obligation that, when fulfilled, will lead to
444/// an error.
445///
446/// Note that we used to return `Error` here, but that was quite
447/// dubious -- the premise was that an error would *eventually* be
448/// reported, when the obligation was processed. But in general once
449/// you see an `Error` you are supposed to be able to assume that an
450/// error *has been* reported, so that you can take whatever heuristic
451/// paths you want to take. To make things worse, it was possible for
452/// cycles to arise, where you basically had a setup like `<MyType<$0>
453/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
454/// Trait>::Foo>` to `[type error]` would lead to an obligation of
455/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
456/// an error for this obligation, but we legitimately should not,
457/// because it contains `[type error]`. Yuck! (See issue #29857 for
458/// one case where this arose.)
459fn normalize_to_error<'a, 'tcx>(
460    selcx: &SelectionContext<'a, 'tcx>,
461    param_env: ty::ParamEnv<'tcx>,
462    projection_term: ty::AliasTerm<'tcx>,
463    cause: ObligationCause<'tcx>,
464    depth: usize,
465) -> NormalizedTerm<'tcx> {
466    let trait_ref = ty::Binder::dummy(projection_term.trait_ref(selcx.tcx()));
467    let new_value = match projection_term.kind(selcx.tcx()) {
468        ty::AliasTermKind::ProjectionTy
469        | ty::AliasTermKind::InherentTy
470        | ty::AliasTermKind::OpaqueTy
471        | ty::AliasTermKind::WeakTy => selcx.infcx.next_ty_var(cause.span).into(),
472        ty::AliasTermKind::UnevaluatedConst | ty::AliasTermKind::ProjectionConst => {
473            selcx.infcx.next_const_var(cause.span).into()
474        }
475    };
476    let mut obligations = PredicateObligations::new();
477    obligations.push(Obligation {
478        cause,
479        recursion_depth: depth,
480        param_env,
481        predicate: trait_ref.upcast(selcx.tcx()),
482    });
483    Normalized { value: new_value, obligations }
484}
485
486/// Confirm and normalize the given inherent projection.
487#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
488pub fn normalize_inherent_projection<'a, 'b, 'tcx>(
489    selcx: &'a mut SelectionContext<'b, 'tcx>,
490    param_env: ty::ParamEnv<'tcx>,
491    alias_ty: ty::AliasTy<'tcx>,
492    cause: ObligationCause<'tcx>,
493    depth: usize,
494    obligations: &mut PredicateObligations<'tcx>,
495) -> Ty<'tcx> {
496    let tcx = selcx.tcx();
497
498    if !tcx.recursion_limit().value_within_limit(depth) {
499        // Halt compilation because it is important that overflows never be masked.
500        tcx.dcx().emit_fatal(InherentProjectionNormalizationOverflow {
501            span: cause.span,
502            ty: alias_ty.to_string(),
503        });
504    }
505
506    let args = compute_inherent_assoc_ty_args(
507        selcx,
508        param_env,
509        alias_ty,
510        cause.clone(),
511        depth,
512        obligations,
513    );
514
515    // Register the obligations arising from the impl and from the associated type itself.
516    let predicates = tcx.predicates_of(alias_ty.def_id).instantiate(tcx, args);
517    for (predicate, span) in predicates {
518        let predicate = normalize_with_depth_to(
519            selcx,
520            param_env,
521            cause.clone(),
522            depth + 1,
523            predicate,
524            obligations,
525        );
526
527        let nested_cause = ObligationCause::new(
528            cause.span,
529            cause.body_id,
530            // FIXME(inherent_associated_types): Since we can't pass along the self type to the
531            // cause code, inherent projections will be printed with identity instantiation in
532            // diagnostics which is not ideal.
533            // Consider creating separate cause codes for this specific situation.
534            ObligationCauseCode::WhereClause(alias_ty.def_id, span),
535        );
536
537        obligations.push(Obligation::with_depth(
538            tcx,
539            nested_cause,
540            depth + 1,
541            param_env,
542            predicate,
543        ));
544    }
545
546    let ty = tcx.type_of(alias_ty.def_id).instantiate(tcx, args);
547
548    let mut ty = selcx.infcx.resolve_vars_if_possible(ty);
549    if ty.has_aliases() {
550        ty = normalize_with_depth_to(selcx, param_env, cause.clone(), depth + 1, ty, obligations);
551    }
552
553    ty
554}
555
556pub fn compute_inherent_assoc_ty_args<'a, 'b, 'tcx>(
557    selcx: &'a mut SelectionContext<'b, 'tcx>,
558    param_env: ty::ParamEnv<'tcx>,
559    alias_ty: ty::AliasTy<'tcx>,
560    cause: ObligationCause<'tcx>,
561    depth: usize,
562    obligations: &mut PredicateObligations<'tcx>,
563) -> ty::GenericArgsRef<'tcx> {
564    let tcx = selcx.tcx();
565
566    let impl_def_id = tcx.parent(alias_ty.def_id);
567    let impl_args = selcx.infcx.fresh_args_for_item(cause.span, impl_def_id);
568
569    let mut impl_ty = tcx.type_of(impl_def_id).instantiate(tcx, impl_args);
570    if !selcx.infcx.next_trait_solver() {
571        impl_ty = normalize_with_depth_to(
572            selcx,
573            param_env,
574            cause.clone(),
575            depth + 1,
576            impl_ty,
577            obligations,
578        );
579    }
580
581    // Infer the generic parameters of the impl by unifying the
582    // impl type with the self type of the projection.
583    let mut self_ty = alias_ty.self_ty();
584    if !selcx.infcx.next_trait_solver() {
585        self_ty = normalize_with_depth_to(
586            selcx,
587            param_env,
588            cause.clone(),
589            depth + 1,
590            self_ty,
591            obligations,
592        );
593    }
594
595    match selcx.infcx.at(&cause, param_env).eq(DefineOpaqueTypes::Yes, impl_ty, self_ty) {
596        Ok(mut ok) => obligations.append(&mut ok.obligations),
597        Err(_) => {
598            tcx.dcx().span_bug(
599                cause.span,
600                format!("{self_ty:?} was equal to {impl_ty:?} during selection but now it is not"),
601            );
602        }
603    }
604
605    alias_ty.rebase_inherent_args_onto_impl(impl_args, tcx)
606}
607
608enum Projected<'tcx> {
609    Progress(Progress<'tcx>),
610    NoProgress(ty::Term<'tcx>),
611}
612
613struct Progress<'tcx> {
614    term: ty::Term<'tcx>,
615    obligations: PredicateObligations<'tcx>,
616}
617
618impl<'tcx> Progress<'tcx> {
619    fn error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
620        Progress { term: Ty::new_error(tcx, guar).into(), obligations: PredicateObligations::new() }
621    }
622
623    fn with_addl_obligations(mut self, mut obligations: PredicateObligations<'tcx>) -> Self {
624        self.obligations.append(&mut obligations);
625        self
626    }
627}
628
629/// Computes the result of a projection type (if we can).
630///
631/// IMPORTANT:
632/// - `obligation` must be fully normalized
633#[instrument(level = "info", skip(selcx))]
634fn project<'cx, 'tcx>(
635    selcx: &mut SelectionContext<'cx, 'tcx>,
636    obligation: &ProjectionTermObligation<'tcx>,
637) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
638    if !selcx.tcx().recursion_limit().value_within_limit(obligation.recursion_depth) {
639        // This should really be an immediate error, but some existing code
640        // relies on being able to recover from this.
641        return Err(ProjectionError::TraitSelectionError(SelectionError::Overflow(
642            OverflowError::Canonical,
643        )));
644    }
645
646    if let Err(guar) = obligation.predicate.error_reported() {
647        return Ok(Projected::Progress(Progress::error(selcx.tcx(), guar)));
648    }
649
650    let mut candidates = ProjectionCandidateSet::None;
651
652    // Make sure that the following procedures are kept in order. ParamEnv
653    // needs to be first because it has highest priority, and Select checks
654    // the return value of push_candidate which assumes it's ran at last.
655    assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
656
657    assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
658
659    assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
660
661    if let ProjectionCandidateSet::Single(ProjectionCandidate::Object(_)) = candidates {
662        // Avoid normalization cycle from selection (see
663        // `assemble_candidates_from_object_ty`).
664        // FIXME(lazy_normalization): Lazy normalization should save us from
665        // having to special case this.
666    } else {
667        assemble_candidates_from_impls(selcx, obligation, &mut candidates);
668    };
669
670    match candidates {
671        ProjectionCandidateSet::Single(candidate) => {
672            confirm_candidate(selcx, obligation, candidate)
673        }
674        ProjectionCandidateSet::None => {
675            let tcx = selcx.tcx();
676            let term = obligation.predicate.to_term(tcx);
677            Ok(Projected::NoProgress(term))
678        }
679        // Error occurred while trying to processing impls.
680        ProjectionCandidateSet::Error(e) => Err(ProjectionError::TraitSelectionError(e)),
681        // Inherent ambiguity that prevents us from even enumerating the
682        // candidates.
683        ProjectionCandidateSet::Ambiguous => Err(ProjectionError::TooManyCandidates),
684    }
685}
686
687/// The first thing we have to do is scan through the parameter
688/// environment to see whether there are any projection predicates
689/// there that can answer this question.
690fn assemble_candidates_from_param_env<'cx, 'tcx>(
691    selcx: &mut SelectionContext<'cx, 'tcx>,
692    obligation: &ProjectionTermObligation<'tcx>,
693    candidate_set: &mut ProjectionCandidateSet<'tcx>,
694) {
695    assemble_candidates_from_predicates(
696        selcx,
697        obligation,
698        candidate_set,
699        ProjectionCandidate::ParamEnv,
700        obligation.param_env.caller_bounds().iter(),
701        false,
702    );
703}
704
705/// In the case of a nested projection like `<<A as Foo>::FooT as Bar>::BarT`, we may find
706/// that the definition of `Foo` has some clues:
707///
708/// ```ignore (illustrative)
709/// trait Foo {
710///     type FooT : Bar<BarT=i32>
711/// }
712/// ```
713///
714/// Here, for example, we could conclude that the result is `i32`.
715fn assemble_candidates_from_trait_def<'cx, 'tcx>(
716    selcx: &mut SelectionContext<'cx, 'tcx>,
717    obligation: &ProjectionTermObligation<'tcx>,
718    candidate_set: &mut ProjectionCandidateSet<'tcx>,
719) {
720    debug!("assemble_candidates_from_trait_def(..)");
721    let mut ambiguous = false;
722    let _ = selcx.for_each_item_bound(
723        obligation.predicate.self_ty(),
724        |selcx, clause, _| {
725            let Some(clause) = clause.as_projection_clause() else {
726                return ControlFlow::Continue(());
727            };
728            if clause.item_def_id() != obligation.predicate.def_id {
729                return ControlFlow::Continue(());
730            }
731
732            let is_match =
733                selcx.infcx.probe(|_| selcx.match_projection_projections(obligation, clause, true));
734
735            match is_match {
736                ProjectionMatchesProjection::Yes => {
737                    candidate_set.push_candidate(ProjectionCandidate::TraitDef(clause));
738
739                    if !obligation.predicate.has_non_region_infer() {
740                        // HACK: Pick the first trait def candidate for a fully
741                        // inferred predicate. This is to allow duplicates that
742                        // differ only in normalization.
743                        return ControlFlow::Break(());
744                    }
745                }
746                ProjectionMatchesProjection::Ambiguous => {
747                    candidate_set.mark_ambiguous();
748                }
749                ProjectionMatchesProjection::No => {}
750            }
751
752            ControlFlow::Continue(())
753        },
754        // `ProjectionCandidateSet` is borrowed in the above closure,
755        // so just mark ambiguous outside of the closure.
756        || ambiguous = true,
757    );
758
759    if ambiguous {
760        candidate_set.mark_ambiguous();
761    }
762}
763
764/// In the case of a trait object like
765/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
766/// predicate in the trait object.
767///
768/// We don't go through the select candidate for these bounds to avoid cycles:
769/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
770/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
771/// this then has to be normalized without having to prove
772/// `dyn Iterator<Item = ()>: Iterator` again.
773fn assemble_candidates_from_object_ty<'cx, 'tcx>(
774    selcx: &mut SelectionContext<'cx, 'tcx>,
775    obligation: &ProjectionTermObligation<'tcx>,
776    candidate_set: &mut ProjectionCandidateSet<'tcx>,
777) {
778    debug!("assemble_candidates_from_object_ty(..)");
779
780    let tcx = selcx.tcx();
781
782    if !tcx.trait_def(obligation.predicate.trait_def_id(tcx)).implement_via_object {
783        return;
784    }
785
786    let self_ty = obligation.predicate.self_ty();
787    let object_ty = selcx.infcx.shallow_resolve(self_ty);
788    let data = match object_ty.kind() {
789        ty::Dynamic(data, ..) => data,
790        ty::Infer(ty::TyVar(_)) => {
791            // If the self-type is an inference variable, then it MAY wind up
792            // being an object type, so induce an ambiguity.
793            candidate_set.mark_ambiguous();
794            return;
795        }
796        _ => return,
797    };
798    let env_predicates = data
799        .projection_bounds()
800        .filter(|bound| bound.item_def_id() == obligation.predicate.def_id)
801        .map(|p| p.with_self_ty(tcx, object_ty).upcast(tcx));
802
803    assemble_candidates_from_predicates(
804        selcx,
805        obligation,
806        candidate_set,
807        ProjectionCandidate::Object,
808        env_predicates,
809        false,
810    );
811}
812
813#[instrument(
814    level = "debug",
815    skip(selcx, candidate_set, ctor, env_predicates, potentially_unnormalized_candidates)
816)]
817fn assemble_candidates_from_predicates<'cx, 'tcx>(
818    selcx: &mut SelectionContext<'cx, 'tcx>,
819    obligation: &ProjectionTermObligation<'tcx>,
820    candidate_set: &mut ProjectionCandidateSet<'tcx>,
821    ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionCandidate<'tcx>,
822    env_predicates: impl Iterator<Item = ty::Clause<'tcx>>,
823    potentially_unnormalized_candidates: bool,
824) {
825    let infcx = selcx.infcx;
826    let drcx = DeepRejectCtxt::relate_rigid_rigid(selcx.tcx());
827    for predicate in env_predicates {
828        let bound_predicate = predicate.kind();
829        if let ty::ClauseKind::Projection(data) = predicate.kind().skip_binder() {
830            let data = bound_predicate.rebind(data);
831            if data.item_def_id() != obligation.predicate.def_id {
832                continue;
833            }
834
835            if !drcx
836                .args_may_unify(obligation.predicate.args, data.skip_binder().projection_term.args)
837            {
838                continue;
839            }
840
841            let is_match = infcx.probe(|_| {
842                selcx.match_projection_projections(
843                    obligation,
844                    data,
845                    potentially_unnormalized_candidates,
846                )
847            });
848
849            match is_match {
850                ProjectionMatchesProjection::Yes => {
851                    candidate_set.push_candidate(ctor(data));
852
853                    if potentially_unnormalized_candidates
854                        && !obligation.predicate.has_non_region_infer()
855                    {
856                        // HACK: Pick the first trait def candidate for a fully
857                        // inferred predicate. This is to allow duplicates that
858                        // differ only in normalization.
859                        return;
860                    }
861                }
862                ProjectionMatchesProjection::Ambiguous => {
863                    candidate_set.mark_ambiguous();
864                }
865                ProjectionMatchesProjection::No => {}
866            }
867        }
868    }
869}
870
871#[instrument(level = "debug", skip(selcx, obligation, candidate_set))]
872fn assemble_candidates_from_impls<'cx, 'tcx>(
873    selcx: &mut SelectionContext<'cx, 'tcx>,
874    obligation: &ProjectionTermObligation<'tcx>,
875    candidate_set: &mut ProjectionCandidateSet<'tcx>,
876) {
877    // If we are resolving `<T as TraitRef<...>>::Item == Type`,
878    // start out by selecting the predicate `T as TraitRef<...>`:
879    let trait_ref = obligation.predicate.trait_ref(selcx.tcx());
880    let trait_obligation = obligation.with(selcx.tcx(), trait_ref);
881    let _ = selcx.infcx.commit_if_ok(|_| {
882        let impl_source = match selcx.select(&trait_obligation) {
883            Ok(Some(impl_source)) => impl_source,
884            Ok(None) => {
885                candidate_set.mark_ambiguous();
886                return Err(());
887            }
888            Err(e) => {
889                debug!(error = ?e, "selection error");
890                candidate_set.mark_error(e);
891                return Err(());
892            }
893        };
894
895        let eligible = match &impl_source {
896            ImplSource::UserDefined(impl_data) => {
897                // We have to be careful when projecting out of an
898                // impl because of specialization. If we are not in
899                // codegen (i.e., projection mode is not "any"), and the
900                // impl's type is declared as default, then we disable
901                // projection (even if the trait ref is fully
902                // monomorphic). In the case where trait ref is not
903                // fully monomorphic (i.e., includes type parameters),
904                // this is because those type parameters may
905                // ultimately be bound to types from other crates that
906                // may have specialized impls we can't see. In the
907                // case where the trait ref IS fully monomorphic, this
908                // is a policy decision that we made in the RFC in
909                // order to preserve flexibility for the crate that
910                // defined the specializable impl to specialize later
911                // for existing types.
912                //
913                // In either case, we handle this by not adding a
914                // candidate for an impl if it contains a `default`
915                // type.
916                //
917                // NOTE: This should be kept in sync with the similar code in
918                // `rustc_ty_utils::instance::resolve_associated_item()`.
919                match specialization_graph::assoc_def(
920                    selcx.tcx(),
921                    impl_data.impl_def_id,
922                    obligation.predicate.def_id,
923                ) {
924                    Ok(node_item) => {
925                        if node_item.is_final() {
926                            // Non-specializable items are always projectable.
927                            true
928                        } else {
929                            // Only reveal a specializable default if we're past type-checking
930                            // and the obligation is monomorphic, otherwise passes such as
931                            // transmute checking and polymorphic MIR optimizations could
932                            // get a result which isn't correct for all monomorphizations.
933                            match selcx.infcx.typing_mode() {
934                                TypingMode::Coherence
935                                | TypingMode::Analysis { .. }
936                                | TypingMode::Borrowck { .. }
937                                | TypingMode::PostBorrowckAnalysis { .. } => {
938                                    debug!(
939                                        assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
940                                        ?obligation.predicate,
941                                        "not eligible due to default",
942                                    );
943                                    false
944                                }
945                                TypingMode::PostAnalysis => {
946                                    // NOTE(eddyb) inference variables can resolve to parameters, so
947                                    // assume `poly_trait_ref` isn't monomorphic, if it contains any.
948                                    let poly_trait_ref =
949                                        selcx.infcx.resolve_vars_if_possible(trait_ref);
950                                    !poly_trait_ref.still_further_specializable()
951                                }
952                            }
953                        }
954                    }
955                    // Always project `ErrorGuaranteed`, since this will just help
956                    // us propagate `TyKind::Error` around which suppresses ICEs
957                    // and spurious, unrelated inference errors.
958                    Err(ErrorGuaranteed { .. }) => true,
959                }
960            }
961            ImplSource::Builtin(BuiltinImplSource::Misc | BuiltinImplSource::Trivial, _) => {
962                // While a builtin impl may be known to exist, the associated type may not yet
963                // be known. Any type with multiple potential associated types is therefore
964                // not eligible.
965                let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
966
967                let tcx = selcx.tcx();
968                let lang_items = selcx.tcx().lang_items();
969                if [
970                    lang_items.coroutine_trait(),
971                    lang_items.future_trait(),
972                    lang_items.iterator_trait(),
973                    lang_items.async_iterator_trait(),
974                    lang_items.fn_trait(),
975                    lang_items.fn_mut_trait(),
976                    lang_items.fn_once_trait(),
977                    lang_items.async_fn_trait(),
978                    lang_items.async_fn_mut_trait(),
979                    lang_items.async_fn_once_trait(),
980                ]
981                .contains(&Some(trait_ref.def_id))
982                {
983                    true
984                } else if tcx.is_lang_item(trait_ref.def_id, LangItem::AsyncFnKindHelper) {
985                    // FIXME(async_closures): Validity constraints here could be cleaned up.
986                    if obligation.predicate.args.type_at(0).is_ty_var()
987                        || obligation.predicate.args.type_at(4).is_ty_var()
988                        || obligation.predicate.args.type_at(5).is_ty_var()
989                    {
990                        candidate_set.mark_ambiguous();
991                        true
992                    } else {
993                        obligation.predicate.args.type_at(0).to_opt_closure_kind().is_some()
994                            && obligation.predicate.args.type_at(1).to_opt_closure_kind().is_some()
995                    }
996                } else if tcx.is_lang_item(trait_ref.def_id, LangItem::DiscriminantKind) {
997                    match self_ty.kind() {
998                        ty::Bool
999                        | ty::Char
1000                        | ty::Int(_)
1001                        | ty::Uint(_)
1002                        | ty::Float(_)
1003                        | ty::Adt(..)
1004                        | ty::Foreign(_)
1005                        | ty::Str
1006                        | ty::Array(..)
1007                        | ty::Pat(..)
1008                        | ty::Slice(_)
1009                        | ty::RawPtr(..)
1010                        | ty::Ref(..)
1011                        | ty::FnDef(..)
1012                        | ty::FnPtr(..)
1013                        | ty::Dynamic(..)
1014                        | ty::Closure(..)
1015                        | ty::CoroutineClosure(..)
1016                        | ty::Coroutine(..)
1017                        | ty::CoroutineWitness(..)
1018                        | ty::Never
1019                        | ty::Tuple(..)
1020                        // Integers and floats always have `u8` as their discriminant.
1021                        | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1022
1023                        ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"),
1024
1025                        // type parameters, opaques, and unnormalized projections don't have
1026                        // a known discriminant and may need to be normalized further or rely
1027                        // on param env for discriminant projections
1028                        ty::Param(_)
1029                        | ty::Alias(..)
1030                        | ty::Bound(..)
1031                        | ty::Placeholder(..)
1032                        | ty::Infer(..)
1033                        | ty::Error(_) => false,
1034                    }
1035                } else if tcx.is_lang_item(trait_ref.def_id, LangItem::AsyncDestruct) {
1036                    match self_ty.kind() {
1037                        ty::Bool
1038                        | ty::Char
1039                        | ty::Int(_)
1040                        | ty::Uint(_)
1041                        | ty::Float(_)
1042                        | ty::Adt(..)
1043                        | ty::Str
1044                        | ty::Array(..)
1045                        | ty::Slice(_)
1046                        | ty::RawPtr(..)
1047                        | ty::Ref(..)
1048                        | ty::FnDef(..)
1049                        | ty::FnPtr(..)
1050                        | ty::UnsafeBinder(_)
1051                        | ty::Dynamic(..)
1052                        | ty::Closure(..)
1053                        | ty::CoroutineClosure(..)
1054                        | ty::Coroutine(..)
1055                        | ty::CoroutineWitness(..)
1056                        | ty::Pat(..)
1057                        | ty::Never
1058                        | ty::Tuple(..)
1059                        | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1060
1061                        // type parameters, opaques, and unnormalized projections don't have
1062                        // a known async destructor and may need to be normalized further or rely
1063                        // on param env for async destructor projections
1064                        ty::Param(_)
1065                        | ty::Foreign(_)
1066                        | ty::Alias(..)
1067                        | ty::Bound(..)
1068                        | ty::Placeholder(..)
1069                        | ty::Infer(_)
1070                        | ty::Error(_) => false,
1071                    }
1072                } else if tcx.is_lang_item(trait_ref.def_id, LangItem::PointeeTrait) {
1073                    let tail = selcx.tcx().struct_tail_raw(
1074                        self_ty,
1075                        |ty| {
1076                            // We throw away any obligations we get from this, since we normalize
1077                            // and confirm these obligations once again during confirmation
1078                            normalize_with_depth(
1079                                selcx,
1080                                obligation.param_env,
1081                                obligation.cause.clone(),
1082                                obligation.recursion_depth + 1,
1083                                ty,
1084                            )
1085                            .value
1086                        },
1087                        || {},
1088                    );
1089
1090                    match tail.kind() {
1091                        ty::Bool
1092                        | ty::Char
1093                        | ty::Int(_)
1094                        | ty::Uint(_)
1095                        | ty::Float(_)
1096                        | ty::Str
1097                        | ty::Array(..)
1098                        | ty::Pat(..)
1099                        | ty::Slice(_)
1100                        | ty::RawPtr(..)
1101                        | ty::Ref(..)
1102                        | ty::FnDef(..)
1103                        | ty::FnPtr(..)
1104                        | ty::Dynamic(..)
1105                        | ty::Closure(..)
1106                        | ty::CoroutineClosure(..)
1107                        | ty::Coroutine(..)
1108                        | ty::CoroutineWitness(..)
1109                        | ty::Never
1110                        // Extern types have unit metadata, according to RFC 2850
1111                        | ty::Foreign(_)
1112                        // If returned by `struct_tail` this is a unit struct
1113                        // without any fields, or not a struct, and therefore is Sized.
1114                        | ty::Adt(..)
1115                        // If returned by `struct_tail` this is the empty tuple.
1116                        | ty::Tuple(..)
1117                        // Integers and floats are always Sized, and so have unit type metadata.
1118                        | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..))
1119                        // This happens if we reach the recursion limit when finding the struct tail.
1120                        | ty::Error(..) => true,
1121
1122                        // We normalize from `Wrapper<Tail>::Metadata` to `Tail::Metadata` if able.
1123                        // Otherwise, type parameters, opaques, and unnormalized projections have
1124                        // unit metadata if they're known (e.g. by the param_env) to be sized.
1125                        ty::Param(_) | ty::Alias(..)
1126                            if self_ty != tail
1127                                || selcx.infcx.predicate_must_hold_modulo_regions(
1128                                    &obligation.with(
1129                                        selcx.tcx(),
1130                                        ty::TraitRef::new(
1131                                            selcx.tcx(),
1132                                            selcx.tcx().require_lang_item(
1133                                                LangItem::Sized,
1134                                                Some(obligation.cause.span),
1135                                            ),
1136                                            [self_ty],
1137                                        ),
1138                                    ),
1139                                ) =>
1140                        {
1141                            true
1142                        }
1143
1144                        ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"),
1145
1146                        // FIXME(compiler-errors): are Bound and Placeholder types ever known sized?
1147                        ty::Param(_)
1148                        | ty::Alias(..)
1149                        | ty::Bound(..)
1150                        | ty::Placeholder(..)
1151                        | ty::Infer(..) => {
1152                            if tail.has_infer_types() {
1153                                candidate_set.mark_ambiguous();
1154                            }
1155                            false
1156                        }
1157                    }
1158                } else if tcx.trait_is_auto(trait_ref.def_id) {
1159                    tcx.dcx().span_delayed_bug(
1160                        tcx.def_span(obligation.predicate.def_id),
1161                        "associated types not allowed on auto traits",
1162                    );
1163                    false
1164                } else {
1165                    bug!("unexpected builtin trait with associated type: {trait_ref:?}")
1166                }
1167            }
1168            ImplSource::Param(..) => {
1169                // This case tell us nothing about the value of an
1170                // associated type. Consider:
1171                //
1172                // ```
1173                // trait SomeTrait { type Foo; }
1174                // fn foo<T:SomeTrait>(...) { }
1175                // ```
1176                //
1177                // If the user writes `<T as SomeTrait>::Foo`, then the `T
1178                // : SomeTrait` binding does not help us decide what the
1179                // type `Foo` is (at least, not more specifically than
1180                // what we already knew).
1181                //
1182                // But wait, you say! What about an example like this:
1183                //
1184                // ```
1185                // fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
1186                // ```
1187                //
1188                // Doesn't the `T : SomeTrait<Foo=usize>` predicate help
1189                // resolve `T::Foo`? And of course it does, but in fact
1190                // that single predicate is desugared into two predicates
1191                // in the compiler: a trait predicate (`T : SomeTrait`) and a
1192                // projection. And the projection where clause is handled
1193                // in `assemble_candidates_from_param_env`.
1194                false
1195            }
1196            ImplSource::Builtin(BuiltinImplSource::Object { .. }, _) => {
1197                // Handled by the `Object` projection candidate. See
1198                // `assemble_candidates_from_object_ty` for an explanation of
1199                // why we special case object types.
1200                false
1201            }
1202            ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _) => {
1203                // These traits have no associated types.
1204                selcx.tcx().dcx().span_delayed_bug(
1205                    obligation.cause.span,
1206                    format!("Cannot project an associated type from `{impl_source:?}`"),
1207                );
1208                return Err(());
1209            }
1210        };
1211
1212        if eligible {
1213            if candidate_set.push_candidate(ProjectionCandidate::Select(impl_source)) {
1214                Ok(())
1215            } else {
1216                Err(())
1217            }
1218        } else {
1219            Err(())
1220        }
1221    });
1222}
1223
1224fn confirm_candidate<'cx, 'tcx>(
1225    selcx: &mut SelectionContext<'cx, 'tcx>,
1226    obligation: &ProjectionTermObligation<'tcx>,
1227    candidate: ProjectionCandidate<'tcx>,
1228) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
1229    debug!(?obligation, ?candidate, "confirm_candidate");
1230    let mut result = match candidate {
1231        ProjectionCandidate::ParamEnv(poly_projection)
1232        | ProjectionCandidate::Object(poly_projection) => Ok(Projected::Progress(
1233            confirm_param_env_candidate(selcx, obligation, poly_projection, false),
1234        )),
1235        ProjectionCandidate::TraitDef(poly_projection) => Ok(Projected::Progress(
1236            confirm_param_env_candidate(selcx, obligation, poly_projection, true),
1237        )),
1238        ProjectionCandidate::Select(impl_source) => {
1239            confirm_select_candidate(selcx, obligation, impl_source)
1240        }
1241    };
1242
1243    // When checking for cycle during evaluation, we compare predicates with
1244    // "syntactic" equality. Since normalization generally introduces a type
1245    // with new region variables, we need to resolve them to existing variables
1246    // when possible for this to work. See `auto-trait-projection-recursion.rs`
1247    // for a case where this matters.
1248    if let Ok(Projected::Progress(progress)) = &mut result
1249        && progress.term.has_infer_regions()
1250    {
1251        progress.term = progress.term.fold_with(&mut OpportunisticRegionResolver::new(selcx.infcx));
1252    }
1253
1254    result
1255}
1256
1257fn confirm_select_candidate<'cx, 'tcx>(
1258    selcx: &mut SelectionContext<'cx, 'tcx>,
1259    obligation: &ProjectionTermObligation<'tcx>,
1260    impl_source: Selection<'tcx>,
1261) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
1262    match impl_source {
1263        ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
1264        ImplSource::Builtin(BuiltinImplSource::Misc | BuiltinImplSource::Trivial, data) => {
1265            let tcx = selcx.tcx();
1266            let trait_def_id = obligation.predicate.trait_def_id(tcx);
1267            let progress = if tcx.is_lang_item(trait_def_id, LangItem::Coroutine) {
1268                confirm_coroutine_candidate(selcx, obligation, data)
1269            } else if tcx.is_lang_item(trait_def_id, LangItem::Future) {
1270                confirm_future_candidate(selcx, obligation, data)
1271            } else if tcx.is_lang_item(trait_def_id, LangItem::Iterator) {
1272                confirm_iterator_candidate(selcx, obligation, data)
1273            } else if tcx.is_lang_item(trait_def_id, LangItem::AsyncIterator) {
1274                confirm_async_iterator_candidate(selcx, obligation, data)
1275            } else if selcx.tcx().fn_trait_kind_from_def_id(trait_def_id).is_some() {
1276                if obligation.predicate.self_ty().is_closure()
1277                    || obligation.predicate.self_ty().is_coroutine_closure()
1278                {
1279                    confirm_closure_candidate(selcx, obligation, data)
1280                } else {
1281                    confirm_fn_pointer_candidate(selcx, obligation, data)
1282                }
1283            } else if selcx.tcx().async_fn_trait_kind_from_def_id(trait_def_id).is_some() {
1284                confirm_async_closure_candidate(selcx, obligation, data)
1285            } else if tcx.is_lang_item(trait_def_id, LangItem::AsyncFnKindHelper) {
1286                confirm_async_fn_kind_helper_candidate(selcx, obligation, data)
1287            } else {
1288                confirm_builtin_candidate(selcx, obligation, data)
1289            };
1290            Ok(Projected::Progress(progress))
1291        }
1292        ImplSource::Builtin(BuiltinImplSource::Object { .. }, _)
1293        | ImplSource::Param(..)
1294        | ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _) => {
1295            // we don't create Select candidates with this kind of resolution
1296            span_bug!(
1297                obligation.cause.span,
1298                "Cannot project an associated type from `{:?}`",
1299                impl_source
1300            )
1301        }
1302    }
1303}
1304
1305fn confirm_coroutine_candidate<'cx, 'tcx>(
1306    selcx: &mut SelectionContext<'cx, 'tcx>,
1307    obligation: &ProjectionTermObligation<'tcx>,
1308    nested: PredicateObligations<'tcx>,
1309) -> Progress<'tcx> {
1310    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
1311    let ty::Coroutine(_, args) = self_ty.kind() else {
1312        unreachable!(
1313            "expected coroutine self type for built-in coroutine candidate, found {self_ty}"
1314        )
1315    };
1316    let coroutine_sig = args.as_coroutine().sig();
1317    let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
1318        selcx,
1319        obligation.param_env,
1320        obligation.cause.clone(),
1321        obligation.recursion_depth + 1,
1322        coroutine_sig,
1323    );
1324
1325    debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_coroutine_candidate");
1326
1327    let tcx = selcx.tcx();
1328
1329    let coroutine_def_id = tcx.require_lang_item(LangItem::Coroutine, None);
1330
1331    let (trait_ref, yield_ty, return_ty) = super::util::coroutine_trait_ref_and_outputs(
1332        tcx,
1333        coroutine_def_id,
1334        obligation.predicate.self_ty(),
1335        coroutine_sig,
1336    );
1337
1338    let ty = if tcx.is_lang_item(obligation.predicate.def_id, LangItem::CoroutineReturn) {
1339        return_ty
1340    } else if tcx.is_lang_item(obligation.predicate.def_id, LangItem::CoroutineYield) {
1341        yield_ty
1342    } else {
1343        span_bug!(
1344            tcx.def_span(obligation.predicate.def_id),
1345            "unexpected associated type: `Coroutine::{}`",
1346            tcx.item_name(obligation.predicate.def_id),
1347        );
1348    };
1349
1350    let predicate = ty::ProjectionPredicate {
1351        projection_term: ty::AliasTerm::new_from_args(
1352            tcx,
1353            obligation.predicate.def_id,
1354            trait_ref.args,
1355        ),
1356        term: ty.into(),
1357    };
1358
1359    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
1360        .with_addl_obligations(nested)
1361        .with_addl_obligations(obligations)
1362}
1363
1364fn confirm_future_candidate<'cx, 'tcx>(
1365    selcx: &mut SelectionContext<'cx, 'tcx>,
1366    obligation: &ProjectionTermObligation<'tcx>,
1367    nested: PredicateObligations<'tcx>,
1368) -> Progress<'tcx> {
1369    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
1370    let ty::Coroutine(_, args) = self_ty.kind() else {
1371        unreachable!(
1372            "expected coroutine self type for built-in async future candidate, found {self_ty}"
1373        )
1374    };
1375    let coroutine_sig = args.as_coroutine().sig();
1376    let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
1377        selcx,
1378        obligation.param_env,
1379        obligation.cause.clone(),
1380        obligation.recursion_depth + 1,
1381        coroutine_sig,
1382    );
1383
1384    debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_future_candidate");
1385
1386    let tcx = selcx.tcx();
1387    let fut_def_id = tcx.require_lang_item(LangItem::Future, None);
1388
1389    let (trait_ref, return_ty) = super::util::future_trait_ref_and_outputs(
1390        tcx,
1391        fut_def_id,
1392        obligation.predicate.self_ty(),
1393        coroutine_sig,
1394    );
1395
1396    debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name(), sym::Output);
1397
1398    let predicate = ty::ProjectionPredicate {
1399        projection_term: ty::AliasTerm::new_from_args(
1400            tcx,
1401            obligation.predicate.def_id,
1402            trait_ref.args,
1403        ),
1404        term: return_ty.into(),
1405    };
1406
1407    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
1408        .with_addl_obligations(nested)
1409        .with_addl_obligations(obligations)
1410}
1411
1412fn confirm_iterator_candidate<'cx, 'tcx>(
1413    selcx: &mut SelectionContext<'cx, 'tcx>,
1414    obligation: &ProjectionTermObligation<'tcx>,
1415    nested: PredicateObligations<'tcx>,
1416) -> Progress<'tcx> {
1417    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
1418    let ty::Coroutine(_, args) = self_ty.kind() else {
1419        unreachable!("expected coroutine self type for built-in gen candidate, found {self_ty}")
1420    };
1421    let gen_sig = args.as_coroutine().sig();
1422    let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1423        selcx,
1424        obligation.param_env,
1425        obligation.cause.clone(),
1426        obligation.recursion_depth + 1,
1427        gen_sig,
1428    );
1429
1430    debug!(?obligation, ?gen_sig, ?obligations, "confirm_iterator_candidate");
1431
1432    let tcx = selcx.tcx();
1433    let iter_def_id = tcx.require_lang_item(LangItem::Iterator, None);
1434
1435    let (trait_ref, yield_ty) = super::util::iterator_trait_ref_and_outputs(
1436        tcx,
1437        iter_def_id,
1438        obligation.predicate.self_ty(),
1439        gen_sig,
1440    );
1441
1442    debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name(), sym::Item);
1443
1444    let predicate = ty::ProjectionPredicate {
1445        projection_term: ty::AliasTerm::new_from_args(
1446            tcx,
1447            obligation.predicate.def_id,
1448            trait_ref.args,
1449        ),
1450        term: yield_ty.into(),
1451    };
1452
1453    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
1454        .with_addl_obligations(nested)
1455        .with_addl_obligations(obligations)
1456}
1457
1458fn confirm_async_iterator_candidate<'cx, 'tcx>(
1459    selcx: &mut SelectionContext<'cx, 'tcx>,
1460    obligation: &ProjectionTermObligation<'tcx>,
1461    nested: PredicateObligations<'tcx>,
1462) -> Progress<'tcx> {
1463    let ty::Coroutine(_, args) = selcx.infcx.shallow_resolve(obligation.predicate.self_ty()).kind()
1464    else {
1465        unreachable!()
1466    };
1467    let gen_sig = args.as_coroutine().sig();
1468    let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1469        selcx,
1470        obligation.param_env,
1471        obligation.cause.clone(),
1472        obligation.recursion_depth + 1,
1473        gen_sig,
1474    );
1475
1476    debug!(?obligation, ?gen_sig, ?obligations, "confirm_async_iterator_candidate");
1477
1478    let tcx = selcx.tcx();
1479    let iter_def_id = tcx.require_lang_item(LangItem::AsyncIterator, None);
1480
1481    let (trait_ref, yield_ty) = super::util::async_iterator_trait_ref_and_outputs(
1482        tcx,
1483        iter_def_id,
1484        obligation.predicate.self_ty(),
1485        gen_sig,
1486    );
1487
1488    debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name(), sym::Item);
1489
1490    let ty::Adt(_poll_adt, args) = *yield_ty.kind() else {
1491        bug!();
1492    };
1493    let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else {
1494        bug!();
1495    };
1496    let item_ty = args.type_at(0);
1497
1498    let predicate = ty::ProjectionPredicate {
1499        projection_term: ty::AliasTerm::new_from_args(
1500            tcx,
1501            obligation.predicate.def_id,
1502            trait_ref.args,
1503        ),
1504        term: item_ty.into(),
1505    };
1506
1507    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
1508        .with_addl_obligations(nested)
1509        .with_addl_obligations(obligations)
1510}
1511
1512fn confirm_builtin_candidate<'cx, 'tcx>(
1513    selcx: &mut SelectionContext<'cx, 'tcx>,
1514    obligation: &ProjectionTermObligation<'tcx>,
1515    data: PredicateObligations<'tcx>,
1516) -> Progress<'tcx> {
1517    let tcx = selcx.tcx();
1518    let self_ty = obligation.predicate.self_ty();
1519    let item_def_id = obligation.predicate.def_id;
1520    let trait_def_id = tcx.trait_of_item(item_def_id).unwrap();
1521    let args = tcx.mk_args(&[self_ty.into()]);
1522    let (term, obligations) = if tcx.is_lang_item(trait_def_id, LangItem::DiscriminantKind) {
1523        let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
1524        assert_eq!(discriminant_def_id, item_def_id);
1525
1526        (self_ty.discriminant_ty(tcx).into(), PredicateObligations::new())
1527    } else if tcx.is_lang_item(trait_def_id, LangItem::AsyncDestruct) {
1528        let destructor_def_id = tcx.associated_item_def_ids(trait_def_id)[0];
1529        assert_eq!(destructor_def_id, item_def_id);
1530
1531        (self_ty.async_destructor_ty(tcx).into(), PredicateObligations::new())
1532    } else if tcx.is_lang_item(trait_def_id, LangItem::PointeeTrait) {
1533        let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
1534        assert_eq!(metadata_def_id, item_def_id);
1535
1536        let mut obligations = PredicateObligations::new();
1537        let normalize = |ty| {
1538            normalize_with_depth_to(
1539                selcx,
1540                obligation.param_env,
1541                obligation.cause.clone(),
1542                obligation.recursion_depth + 1,
1543                ty,
1544                &mut obligations,
1545            )
1546        };
1547        let metadata_ty = self_ty.ptr_metadata_ty_or_tail(tcx, normalize).unwrap_or_else(|tail| {
1548            if tail == self_ty {
1549                // This is the "fallback impl" for type parameters, unnormalizable projections
1550                // and opaque types: If the `self_ty` is `Sized`, then the metadata is `()`.
1551                // FIXME(ptr_metadata): This impl overlaps with the other impls and shouldn't
1552                // exist. Instead, `Pointee<Metadata = ()>` should be a supertrait of `Sized`.
1553                let sized_predicate = ty::TraitRef::new(
1554                    tcx,
1555                    tcx.require_lang_item(LangItem::Sized, Some(obligation.cause.span)),
1556                    [self_ty],
1557                );
1558                obligations.push(obligation.with(tcx, sized_predicate));
1559                tcx.types.unit
1560            } else {
1561                // We know that `self_ty` has the same metadata as `tail`. This allows us
1562                // to prove predicates like `Wrapper<Tail>::Metadata == Tail::Metadata`.
1563                Ty::new_projection(tcx, metadata_def_id, [tail])
1564            }
1565        });
1566        (metadata_ty.into(), obligations)
1567    } else {
1568        bug!("unexpected builtin trait with associated type: {:?}", obligation.predicate);
1569    };
1570
1571    let predicate = ty::ProjectionPredicate {
1572        projection_term: ty::AliasTerm::new_from_args(tcx, item_def_id, args),
1573        term,
1574    };
1575
1576    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
1577        .with_addl_obligations(obligations)
1578        .with_addl_obligations(data)
1579}
1580
1581fn confirm_fn_pointer_candidate<'cx, 'tcx>(
1582    selcx: &mut SelectionContext<'cx, 'tcx>,
1583    obligation: &ProjectionTermObligation<'tcx>,
1584    nested: PredicateObligations<'tcx>,
1585) -> Progress<'tcx> {
1586    let tcx = selcx.tcx();
1587    let fn_type = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
1588    let sig = fn_type.fn_sig(tcx);
1589    let Normalized { value: sig, obligations } = normalize_with_depth(
1590        selcx,
1591        obligation.param_env,
1592        obligation.cause.clone(),
1593        obligation.recursion_depth + 1,
1594        sig,
1595    );
1596
1597    confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
1598        .with_addl_obligations(nested)
1599        .with_addl_obligations(obligations)
1600}
1601
1602fn confirm_closure_candidate<'cx, 'tcx>(
1603    selcx: &mut SelectionContext<'cx, 'tcx>,
1604    obligation: &ProjectionTermObligation<'tcx>,
1605    nested: PredicateObligations<'tcx>,
1606) -> Progress<'tcx> {
1607    let tcx = selcx.tcx();
1608    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
1609    let closure_sig = match *self_ty.kind() {
1610        ty::Closure(_, args) => args.as_closure().sig(),
1611
1612        // Construct a "normal" `FnOnce` signature for coroutine-closure. This is
1613        // basically duplicated with the `AsyncFnOnce::CallOnce` confirmation, but
1614        // I didn't see a good way to unify those.
1615        ty::CoroutineClosure(def_id, args) => {
1616            let args = args.as_coroutine_closure();
1617            let kind_ty = args.kind_ty();
1618            args.coroutine_closure_sig().map_bound(|sig| {
1619                // If we know the kind and upvars, use that directly.
1620                // Otherwise, defer to `AsyncFnKindHelper::Upvars` to delay
1621                // the projection, like the `AsyncFn*` traits do.
1622                let output_ty = if let Some(_) = kind_ty.to_opt_closure_kind()
1623                    // Fall back to projection if upvars aren't constrained
1624                    && !args.tupled_upvars_ty().is_ty_var()
1625                {
1626                    sig.to_coroutine_given_kind_and_upvars(
1627                        tcx,
1628                        args.parent_args(),
1629                        tcx.coroutine_for_closure(def_id),
1630                        ty::ClosureKind::FnOnce,
1631                        tcx.lifetimes.re_static,
1632                        args.tupled_upvars_ty(),
1633                        args.coroutine_captures_by_ref_ty(),
1634                    )
1635                } else {
1636                    let upvars_projection_def_id =
1637                        tcx.require_lang_item(LangItem::AsyncFnKindUpvars, None);
1638                    let tupled_upvars_ty = Ty::new_projection(
1639                        tcx,
1640                        upvars_projection_def_id,
1641                        [
1642                            ty::GenericArg::from(kind_ty),
1643                            Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce).into(),
1644                            tcx.lifetimes.re_static.into(),
1645                            sig.tupled_inputs_ty.into(),
1646                            args.tupled_upvars_ty().into(),
1647                            args.coroutine_captures_by_ref_ty().into(),
1648                        ],
1649                    );
1650                    sig.to_coroutine(
1651                        tcx,
1652                        args.parent_args(),
1653                        Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce),
1654                        tcx.coroutine_for_closure(def_id),
1655                        tupled_upvars_ty,
1656                    )
1657                };
1658                tcx.mk_fn_sig(
1659                    [sig.tupled_inputs_ty],
1660                    output_ty,
1661                    sig.c_variadic,
1662                    sig.safety,
1663                    sig.abi,
1664                )
1665            })
1666        }
1667
1668        _ => {
1669            unreachable!("expected closure self type for closure candidate, found {self_ty}");
1670        }
1671    };
1672
1673    let Normalized { value: closure_sig, obligations } = normalize_with_depth(
1674        selcx,
1675        obligation.param_env,
1676        obligation.cause.clone(),
1677        obligation.recursion_depth + 1,
1678        closure_sig,
1679    );
1680
1681    debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
1682
1683    confirm_callable_candidate(selcx, obligation, closure_sig, util::TupleArgumentsFlag::No)
1684        .with_addl_obligations(nested)
1685        .with_addl_obligations(obligations)
1686}
1687
1688fn confirm_callable_candidate<'cx, 'tcx>(
1689    selcx: &mut SelectionContext<'cx, 'tcx>,
1690    obligation: &ProjectionTermObligation<'tcx>,
1691    fn_sig: ty::PolyFnSig<'tcx>,
1692    flag: util::TupleArgumentsFlag,
1693) -> Progress<'tcx> {
1694    let tcx = selcx.tcx();
1695
1696    debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
1697
1698    let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
1699    let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
1700
1701    let predicate = super::util::closure_trait_ref_and_return_type(
1702        tcx,
1703        fn_once_def_id,
1704        obligation.predicate.self_ty(),
1705        fn_sig,
1706        flag,
1707    )
1708    .map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
1709        projection_term: ty::AliasTerm::new_from_args(tcx, fn_once_output_def_id, trait_ref.args),
1710        term: ret_type.into(),
1711    });
1712
1713    confirm_param_env_candidate(selcx, obligation, predicate, true)
1714}
1715
1716fn confirm_async_closure_candidate<'cx, 'tcx>(
1717    selcx: &mut SelectionContext<'cx, 'tcx>,
1718    obligation: &ProjectionTermObligation<'tcx>,
1719    nested: PredicateObligations<'tcx>,
1720) -> Progress<'tcx> {
1721    let tcx = selcx.tcx();
1722    let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
1723
1724    let goal_kind =
1725        tcx.async_fn_trait_kind_from_def_id(obligation.predicate.trait_def_id(tcx)).unwrap();
1726    let env_region = match goal_kind {
1727        ty::ClosureKind::Fn | ty::ClosureKind::FnMut => obligation.predicate.args.region_at(2),
1728        ty::ClosureKind::FnOnce => tcx.lifetimes.re_static,
1729    };
1730    let item_name = tcx.item_name(obligation.predicate.def_id);
1731
1732    let poly_cache_entry = match *self_ty.kind() {
1733        ty::CoroutineClosure(def_id, args) => {
1734            let args = args.as_coroutine_closure();
1735            let kind_ty = args.kind_ty();
1736            let sig = args.coroutine_closure_sig().skip_binder();
1737
1738            let term = match item_name {
1739                sym::CallOnceFuture | sym::CallRefFuture => {
1740                    if let Some(closure_kind) = kind_ty.to_opt_closure_kind()
1741                        // Fall back to projection if upvars aren't constrained
1742                        && !args.tupled_upvars_ty().is_ty_var()
1743                    {
1744                        if !closure_kind.extends(goal_kind) {
1745                            bug!("we should not be confirming if the closure kind is not met");
1746                        }
1747                        sig.to_coroutine_given_kind_and_upvars(
1748                            tcx,
1749                            args.parent_args(),
1750                            tcx.coroutine_for_closure(def_id),
1751                            goal_kind,
1752                            env_region,
1753                            args.tupled_upvars_ty(),
1754                            args.coroutine_captures_by_ref_ty(),
1755                        )
1756                    } else {
1757                        let upvars_projection_def_id =
1758                            tcx.require_lang_item(LangItem::AsyncFnKindUpvars, None);
1759                        // When we don't know the closure kind (and therefore also the closure's upvars,
1760                        // which are computed at the same time), we must delay the computation of the
1761                        // generator's upvars. We do this using the `AsyncFnKindHelper`, which as a trait
1762                        // goal functions similarly to the old `ClosureKind` predicate, and ensures that
1763                        // the goal kind <= the closure kind. As a projection `AsyncFnKindHelper::Upvars`
1764                        // will project to the right upvars for the generator, appending the inputs and
1765                        // coroutine upvars respecting the closure kind.
1766                        // N.B. No need to register a `AsyncFnKindHelper` goal here, it's already in `nested`.
1767                        let tupled_upvars_ty = Ty::new_projection(
1768                            tcx,
1769                            upvars_projection_def_id,
1770                            [
1771                                ty::GenericArg::from(kind_ty),
1772                                Ty::from_closure_kind(tcx, goal_kind).into(),
1773                                env_region.into(),
1774                                sig.tupled_inputs_ty.into(),
1775                                args.tupled_upvars_ty().into(),
1776                                args.coroutine_captures_by_ref_ty().into(),
1777                            ],
1778                        );
1779                        sig.to_coroutine(
1780                            tcx,
1781                            args.parent_args(),
1782                            Ty::from_closure_kind(tcx, goal_kind),
1783                            tcx.coroutine_for_closure(def_id),
1784                            tupled_upvars_ty,
1785                        )
1786                    }
1787                }
1788                sym::Output => sig.return_ty,
1789                name => bug!("no such associated type: {name}"),
1790            };
1791            let projection_term = match item_name {
1792                sym::CallOnceFuture | sym::Output => ty::AliasTerm::new(
1793                    tcx,
1794                    obligation.predicate.def_id,
1795                    [self_ty, sig.tupled_inputs_ty],
1796                ),
1797                sym::CallRefFuture => ty::AliasTerm::new(
1798                    tcx,
1799                    obligation.predicate.def_id,
1800                    [ty::GenericArg::from(self_ty), sig.tupled_inputs_ty.into(), env_region.into()],
1801                ),
1802                name => bug!("no such associated type: {name}"),
1803            };
1804
1805            args.coroutine_closure_sig()
1806                .rebind(ty::ProjectionPredicate { projection_term, term: term.into() })
1807        }
1808        ty::FnDef(..) | ty::FnPtr(..) => {
1809            let bound_sig = self_ty.fn_sig(tcx);
1810            let sig = bound_sig.skip_binder();
1811
1812            let term = match item_name {
1813                sym::CallOnceFuture | sym::CallRefFuture => sig.output(),
1814                sym::Output => {
1815                    let future_output_def_id = tcx.require_lang_item(LangItem::FutureOutput, None);
1816                    Ty::new_projection(tcx, future_output_def_id, [sig.output()])
1817                }
1818                name => bug!("no such associated type: {name}"),
1819            };
1820            let projection_term = match item_name {
1821                sym::CallOnceFuture | sym::Output => ty::AliasTerm::new(
1822                    tcx,
1823                    obligation.predicate.def_id,
1824                    [self_ty, Ty::new_tup(tcx, sig.inputs())],
1825                ),
1826                sym::CallRefFuture => ty::AliasTerm::new(
1827                    tcx,
1828                    obligation.predicate.def_id,
1829                    [
1830                        ty::GenericArg::from(self_ty),
1831                        Ty::new_tup(tcx, sig.inputs()).into(),
1832                        env_region.into(),
1833                    ],
1834                ),
1835                name => bug!("no such associated type: {name}"),
1836            };
1837
1838            bound_sig.rebind(ty::ProjectionPredicate { projection_term, term: term.into() })
1839        }
1840        ty::Closure(_, args) => {
1841            let args = args.as_closure();
1842            let bound_sig = args.sig();
1843            let sig = bound_sig.skip_binder();
1844
1845            let term = match item_name {
1846                sym::CallOnceFuture | sym::CallRefFuture => sig.output(),
1847                sym::Output => {
1848                    let future_output_def_id = tcx.require_lang_item(LangItem::FutureOutput, None);
1849                    Ty::new_projection(tcx, future_output_def_id, [sig.output()])
1850                }
1851                name => bug!("no such associated type: {name}"),
1852            };
1853            let projection_term = match item_name {
1854                sym::CallOnceFuture | sym::Output => {
1855                    ty::AliasTerm::new(tcx, obligation.predicate.def_id, [self_ty, sig.inputs()[0]])
1856                }
1857                sym::CallRefFuture => ty::AliasTerm::new(
1858                    tcx,
1859                    obligation.predicate.def_id,
1860                    [ty::GenericArg::from(self_ty), sig.inputs()[0].into(), env_region.into()],
1861                ),
1862                name => bug!("no such associated type: {name}"),
1863            };
1864
1865            bound_sig.rebind(ty::ProjectionPredicate { projection_term, term: term.into() })
1866        }
1867        _ => bug!("expected callable type for AsyncFn candidate"),
1868    };
1869
1870    confirm_param_env_candidate(selcx, obligation, poly_cache_entry, true)
1871        .with_addl_obligations(nested)
1872}
1873
1874fn confirm_async_fn_kind_helper_candidate<'cx, 'tcx>(
1875    selcx: &mut SelectionContext<'cx, 'tcx>,
1876    obligation: &ProjectionTermObligation<'tcx>,
1877    nested: PredicateObligations<'tcx>,
1878) -> Progress<'tcx> {
1879    let [
1880        // We already checked that the goal_kind >= closure_kind
1881        _closure_kind_ty,
1882        goal_kind_ty,
1883        borrow_region,
1884        tupled_inputs_ty,
1885        tupled_upvars_ty,
1886        coroutine_captures_by_ref_ty,
1887    ] = **obligation.predicate.args
1888    else {
1889        bug!();
1890    };
1891
1892    let predicate = ty::ProjectionPredicate {
1893        projection_term: ty::AliasTerm::new_from_args(
1894            selcx.tcx(),
1895            obligation.predicate.def_id,
1896            obligation.predicate.args,
1897        ),
1898        term: ty::CoroutineClosureSignature::tupled_upvars_by_closure_kind(
1899            selcx.tcx(),
1900            goal_kind_ty.expect_ty().to_opt_closure_kind().unwrap(),
1901            tupled_inputs_ty.expect_ty(),
1902            tupled_upvars_ty.expect_ty(),
1903            coroutine_captures_by_ref_ty.expect_ty(),
1904            borrow_region.expect_region(),
1905        )
1906        .into(),
1907    };
1908
1909    confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
1910        .with_addl_obligations(nested)
1911}
1912
1913fn confirm_param_env_candidate<'cx, 'tcx>(
1914    selcx: &mut SelectionContext<'cx, 'tcx>,
1915    obligation: &ProjectionTermObligation<'tcx>,
1916    poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
1917    potentially_unnormalized_candidate: bool,
1918) -> Progress<'tcx> {
1919    let infcx = selcx.infcx;
1920    let cause = &obligation.cause;
1921    let param_env = obligation.param_env;
1922
1923    let cache_entry = infcx.instantiate_binder_with_fresh_vars(
1924        cause.span,
1925        BoundRegionConversionTime::HigherRankedType,
1926        poly_cache_entry,
1927    );
1928
1929    let cache_projection = cache_entry.projection_term;
1930    let mut nested_obligations = PredicateObligations::new();
1931    let obligation_projection = obligation.predicate;
1932    let obligation_projection = ensure_sufficient_stack(|| {
1933        normalize_with_depth_to(
1934            selcx,
1935            obligation.param_env,
1936            obligation.cause.clone(),
1937            obligation.recursion_depth + 1,
1938            obligation_projection,
1939            &mut nested_obligations,
1940        )
1941    });
1942    let cache_projection = if potentially_unnormalized_candidate {
1943        ensure_sufficient_stack(|| {
1944            normalize_with_depth_to(
1945                selcx,
1946                obligation.param_env,
1947                obligation.cause.clone(),
1948                obligation.recursion_depth + 1,
1949                cache_projection,
1950                &mut nested_obligations,
1951            )
1952        })
1953    } else {
1954        cache_projection
1955    };
1956
1957    debug!(?cache_projection, ?obligation_projection);
1958
1959    match infcx.at(cause, param_env).eq(
1960        DefineOpaqueTypes::Yes,
1961        cache_projection,
1962        obligation_projection,
1963    ) {
1964        Ok(InferOk { value: _, obligations }) => {
1965            nested_obligations.extend(obligations);
1966            assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
1967            // FIXME(associated_const_equality): Handle consts here as well? Maybe this progress type should just take
1968            // a term instead.
1969            Progress { term: cache_entry.term, obligations: nested_obligations }
1970        }
1971        Err(e) => {
1972            let msg = format!(
1973                "Failed to unify obligation `{obligation:?}` with poly_projection `{poly_cache_entry:?}`: {e:?}",
1974            );
1975            debug!("confirm_param_env_candidate: {}", msg);
1976            let err = Ty::new_error_with_message(infcx.tcx, obligation.cause.span, msg);
1977            Progress { term: err.into(), obligations: PredicateObligations::new() }
1978        }
1979    }
1980}
1981
1982fn confirm_impl_candidate<'cx, 'tcx>(
1983    selcx: &mut SelectionContext<'cx, 'tcx>,
1984    obligation: &ProjectionTermObligation<'tcx>,
1985    impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
1986) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
1987    let tcx = selcx.tcx();
1988
1989    let ImplSourceUserDefinedData { impl_def_id, args, mut nested } = impl_impl_source;
1990
1991    let assoc_item_id = obligation.predicate.def_id;
1992    let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
1993
1994    let param_env = obligation.param_env;
1995    let assoc_ty = match specialization_graph::assoc_def(tcx, impl_def_id, assoc_item_id) {
1996        Ok(assoc_ty) => assoc_ty,
1997        Err(guar) => return Ok(Projected::Progress(Progress::error(tcx, guar))),
1998    };
1999
2000    // This means that the impl is missing a definition for the
2001    // associated type. This is either because the associate item
2002    // has impossible-to-satisfy predicates (since those were
2003    // allowed in <https://github.com/rust-lang/rust/pull/135480>),
2004    // or because the impl is literally missing the definition.
2005    if !assoc_ty.item.defaultness(tcx).has_value() {
2006        debug!(
2007            "confirm_impl_candidate: no associated type {:?} for {:?}",
2008            assoc_ty.item.name(),
2009            obligation.predicate
2010        );
2011        if tcx.impl_self_is_guaranteed_unsized(impl_def_id) {
2012            // We treat this projection as rigid here, which is represented via
2013            // `Projected::NoProgress`. This will ensure that the projection is
2014            // checked for well-formedness, and it's either satisfied by a trivial
2015            // where clause in its env or it results in an error.
2016            return Ok(Projected::NoProgress(obligation.predicate.to_term(tcx)));
2017        } else {
2018            return Ok(Projected::Progress(Progress {
2019                term: Ty::new_misc_error(tcx).into(),
2020                obligations: nested,
2021            }));
2022        }
2023    }
2024
2025    // If we're trying to normalize `<Vec<u32> as X>::A<S>` using
2026    //`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
2027    //
2028    // * `obligation.predicate.args` is `[Vec<u32>, S]`
2029    // * `args` is `[u32]`
2030    // * `args` ends up as `[u32, S]`
2031    let args = obligation.predicate.args.rebase_onto(tcx, trait_def_id, args);
2032    let args = translate_args(selcx.infcx, param_env, impl_def_id, args, assoc_ty.defining_node);
2033    let is_const = matches!(tcx.def_kind(assoc_ty.item.def_id), DefKind::AssocConst);
2034
2035    let term: ty::EarlyBinder<'tcx, ty::Term<'tcx>> = if is_const {
2036        let did = assoc_ty.item.def_id;
2037        let identity_args = crate::traits::GenericArgs::identity_for_item(tcx, did);
2038        let uv = ty::UnevaluatedConst::new(did, identity_args);
2039        ty::EarlyBinder::bind(ty::Const::new_unevaluated(tcx, uv).into())
2040    } else {
2041        tcx.type_of(assoc_ty.item.def_id).map_bound(|ty| ty.into())
2042    };
2043
2044    let progress = if !tcx.check_args_compatible(assoc_ty.item.def_id, args) {
2045        let err = Ty::new_error_with_message(
2046            tcx,
2047            obligation.cause.span,
2048            "impl item and trait item have different parameters",
2049        );
2050        Progress { term: err.into(), obligations: nested }
2051    } else {
2052        assoc_ty_own_obligations(selcx, obligation, &mut nested);
2053        Progress { term: term.instantiate(tcx, args), obligations: nested }
2054    };
2055    Ok(Projected::Progress(progress))
2056}
2057
2058// Get obligations corresponding to the predicates from the where-clause of the
2059// associated type itself.
2060fn assoc_ty_own_obligations<'cx, 'tcx>(
2061    selcx: &mut SelectionContext<'cx, 'tcx>,
2062    obligation: &ProjectionTermObligation<'tcx>,
2063    nested: &mut PredicateObligations<'tcx>,
2064) {
2065    let tcx = selcx.tcx();
2066    let predicates = tcx
2067        .predicates_of(obligation.predicate.def_id)
2068        .instantiate_own(tcx, obligation.predicate.args);
2069    for (predicate, span) in predicates {
2070        let normalized = normalize_with_depth_to(
2071            selcx,
2072            obligation.param_env,
2073            obligation.cause.clone(),
2074            obligation.recursion_depth + 1,
2075            predicate,
2076            nested,
2077        );
2078
2079        let nested_cause = if matches!(
2080            obligation.cause.code(),
2081            ObligationCauseCode::CompareImplItem { .. }
2082                | ObligationCauseCode::CheckAssociatedTypeBounds { .. }
2083                | ObligationCauseCode::AscribeUserTypeProvePredicate(..)
2084        ) {
2085            obligation.cause.clone()
2086        } else {
2087            ObligationCause::new(
2088                obligation.cause.span,
2089                obligation.cause.body_id,
2090                ObligationCauseCode::WhereClause(obligation.predicate.def_id, span),
2091            )
2092        };
2093        nested.push(Obligation::with_depth(
2094            tcx,
2095            nested_cause,
2096            obligation.recursion_depth + 1,
2097            obligation.param_env,
2098            normalized,
2099        ));
2100    }
2101}
2102
2103pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
2104    fn from_poly_projection_obligation(
2105        selcx: &mut SelectionContext<'cx, 'tcx>,
2106        obligation: &PolyProjectionObligation<'tcx>,
2107    ) -> Option<Self>;
2108}
2109
2110impl<'cx, 'tcx> ProjectionCacheKeyExt<'cx, 'tcx> for ProjectionCacheKey<'tcx> {
2111    fn from_poly_projection_obligation(
2112        selcx: &mut SelectionContext<'cx, 'tcx>,
2113        obligation: &PolyProjectionObligation<'tcx>,
2114    ) -> Option<Self> {
2115        let infcx = selcx.infcx;
2116        // We don't do cross-snapshot caching of obligations with escaping regions,
2117        // so there's no cache key to use
2118        obligation.predicate.no_bound_vars().map(|predicate| {
2119            ProjectionCacheKey::new(
2120                // We don't attempt to match up with a specific type-variable state
2121                // from a specific call to `opt_normalize_projection_type` - if
2122                // there's no precise match, the original cache entry is "stranded"
2123                // anyway.
2124                infcx.resolve_vars_if_possible(predicate.projection_term),
2125                obligation.param_env,
2126            )
2127        })
2128    }
2129}