rustc_hir_analysis/check/
compare_impl_item.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
use core::ops::ControlFlow;
use std::borrow::Cow;
use std::iter;

use hir::def_id::{DefId, DefIdMap, LocalDefId};
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::{Applicability, ErrorGuaranteed, pluralize, struct_span_code_err};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::{GenericParamKind, ImplItemKind, intravisit};
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::util;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::util::ExplicitSelf;
use rustc_middle::ty::{
    self, GenericArgs, GenericParamDefKind, Ty, TyCtxt, TypeFoldable, TypeFolder,
    TypeSuperFoldable, TypeVisitableExt, TypingMode, Upcast,
};
use rustc_middle::{bug, span_bug};
use rustc_span::Span;
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::regions::InferCtxtRegionExt;
use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
use rustc_trait_selection::traits::{
    self, FulfillmentError, ObligationCause, ObligationCauseCode, ObligationCtxt,
};
use tracing::{debug, instrument};

use super::potentially_plural_count;
use crate::errors::{LifetimesOrBoundsMismatchOnTrait, MethodShouldReturnFuture};

pub(super) mod refine;

/// Call the query `tcx.compare_impl_item()` directly instead.
pub(super) fn compare_impl_item(
    tcx: TyCtxt<'_>,
    impl_item_def_id: LocalDefId,
) -> Result<(), ErrorGuaranteed> {
    let impl_item = tcx.associated_item(impl_item_def_id);
    let trait_item = tcx.associated_item(impl_item.trait_item_def_id.unwrap());
    let impl_trait_ref =
        tcx.impl_trait_ref(impl_item.container_id(tcx)).unwrap().instantiate_identity();
    debug!(?impl_trait_ref);

    match impl_item.kind {
        ty::AssocKind::Fn => compare_impl_method(tcx, impl_item, trait_item, impl_trait_ref),
        ty::AssocKind::Type => compare_impl_ty(tcx, impl_item, trait_item, impl_trait_ref),
        ty::AssocKind::Const => compare_impl_const(tcx, impl_item, trait_item, impl_trait_ref),
    }
}

/// Checks that a method from an impl conforms to the signature of
/// the same method as declared in the trait.
///
/// # Parameters
///
/// - `impl_m`: type of the method we are checking
/// - `trait_m`: the method in the trait
/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
#[instrument(level = "debug", skip(tcx))]
fn compare_impl_method<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    check_method_is_structurally_compatible(tcx, impl_m, trait_m, impl_trait_ref, false)?;
    compare_method_predicate_entailment(tcx, impl_m, trait_m, impl_trait_ref)?;
    Ok(())
}

/// Checks a bunch of different properties of the impl/trait methods for
/// compatibility, such as asyncness, number of argument, self receiver kind,
/// and number of early- and late-bound generics.
fn check_method_is_structurally_compatible<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
    delay: bool,
) -> Result<(), ErrorGuaranteed> {
    compare_self_type(tcx, impl_m, trait_m, impl_trait_ref, delay)?;
    compare_number_of_generics(tcx, impl_m, trait_m, delay)?;
    compare_generic_param_kinds(tcx, impl_m, trait_m, delay)?;
    compare_number_of_method_arguments(tcx, impl_m, trait_m, delay)?;
    compare_synthetic_generics(tcx, impl_m, trait_m, delay)?;
    check_region_bounds_on_impl_item(tcx, impl_m, trait_m, delay)?;
    Ok(())
}

/// This function is best explained by example. Consider a trait with its implementation:
///
/// ```rust
/// trait Trait<'t, T> {
///     // `trait_m`
///     fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
/// }
///
/// struct Foo;
///
/// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
///     // `impl_m`
///     fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo { Foo }
/// }
/// ```
///
/// We wish to decide if those two method types are compatible.
/// For this we have to show that, assuming the bounds of the impl hold, the
/// bounds of `trait_m` imply the bounds of `impl_m`.
///
/// We start out with `trait_to_impl_args`, that maps the trait
/// type parameters to impl type parameters. This is taken from the
/// impl trait reference:
///
/// ```rust,ignore (pseudo-Rust)
/// trait_to_impl_args = {'t => 'j, T => &'i U, Self => Foo}
/// ```
///
/// We create a mapping `dummy_args` that maps from the impl type
/// parameters to fresh types and regions. For type parameters,
/// this is the identity transform, but we could as well use any
/// placeholder types. For regions, we convert from bound to free
/// regions (Note: but only early-bound regions, i.e., those
/// declared on the impl or used in type parameter bounds).
///
/// ```rust,ignore (pseudo-Rust)
/// impl_to_placeholder_args = {'i => 'i0, U => U0, N => N0 }
/// ```
///
/// Now we can apply `placeholder_args` to the type of the impl method
/// to yield a new function type in terms of our fresh, placeholder
/// types:
///
/// ```rust,ignore (pseudo-Rust)
/// <'b> fn(t: &'i0 U0, m: &'b N0) -> Foo
/// ```
///
/// We now want to extract and instantiate the type of the *trait*
/// method and compare it. To do so, we must create a compound
/// instantiation by combining `trait_to_impl_args` and
/// `impl_to_placeholder_args`, and also adding a mapping for the method
/// type parameters. We extend the mapping to also include
/// the method parameters.
///
/// ```rust,ignore (pseudo-Rust)
/// trait_to_placeholder_args = { T => &'i0 U0, Self => Foo, M => N0 }
/// ```
///
/// Applying this to the trait method type yields:
///
/// ```rust,ignore (pseudo-Rust)
/// <'a> fn(t: &'i0 U0, m: &'a N0) -> Foo
/// ```
///
/// This type is also the same but the name of the bound region (`'a`
/// vs `'b`). However, the normal subtyping rules on fn types handle
/// this kind of equivalency just fine.
///
/// We now use these generic parameters to ensure that all declared bounds
/// are satisfied by the implementation's method.
///
/// We do this by creating a parameter environment which contains a
/// generic parameter corresponding to `impl_to_placeholder_args`. We then build
/// `trait_to_placeholder_args` and use it to convert the predicates contained
/// in the `trait_m` generics to the placeholder form.
///
/// Finally we register each of these predicates as an obligation and check that
/// they hold.
#[instrument(level = "debug", skip(tcx, impl_trait_ref))]
fn compare_method_predicate_entailment<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    // This node-id should be used for the `body_id` field on each
    // `ObligationCause` (and the `FnCtxt`).
    //
    // FIXME(@lcnr): remove that after removing `cause.body_id` from
    // obligations.
    let impl_m_def_id = impl_m.def_id.expect_local();
    let impl_m_span = tcx.def_span(impl_m_def_id);
    let cause =
        ObligationCause::new(impl_m_span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
            impl_item_def_id: impl_m_def_id,
            trait_item_def_id: trait_m.def_id,
            kind: impl_m.kind,
        });

    // Create mapping from trait method to impl method.
    let impl_def_id = impl_m.container_id(tcx);
    let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_m.def_id).rebase_onto(
        tcx,
        impl_m.container_id(tcx),
        impl_trait_ref.args,
    );
    debug!(?trait_to_impl_args);

    let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
    let trait_m_predicates = tcx.predicates_of(trait_m.def_id);

    // This is the only tricky bit of the new way we check implementation methods
    // We need to build a set of predicates where only the method-level bounds
    // are from the trait and we assume all other bounds from the implementation
    // to be previously satisfied.
    //
    // We then register the obligations from the impl_m and check to see
    // if all constraints hold.
    let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
    let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
    hybrid_preds.extend(
        trait_m_predicates.instantiate_own(tcx, trait_to_impl_args).map(|(predicate, _)| predicate),
    );

    let is_conditionally_const = tcx.is_conditionally_const(impl_def_id);
    if is_conditionally_const {
        // Augment the hybrid param-env with the const conditions
        // of the impl header and the trait method.
        hybrid_preds.extend(
            tcx.const_conditions(impl_def_id)
                .instantiate_identity(tcx)
                .into_iter()
                .chain(
                    tcx.const_conditions(trait_m.def_id).instantiate_own(tcx, trait_to_impl_args),
                )
                .map(|(trait_ref, _)| {
                    trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe)
                }),
        );
    }

    let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_def_id);
    let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds));
    let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
    debug!(caller_bounds=?param_env.caller_bounds());

    let infcx = &tcx.infer_ctxt().build(TypingMode::non_body_analysis());
    let ocx = ObligationCtxt::new_with_diagnostics(infcx);

    // Create obligations for each predicate declared by the impl
    // definition in the context of the hybrid param-env. This makes
    // sure that the impl's method's where clauses are not more
    // restrictive than the trait's method (and the impl itself).
    let impl_m_own_bounds = impl_m_predicates.instantiate_own_identity();
    for (predicate, span) in impl_m_own_bounds {
        let normalize_cause = traits::ObligationCause::misc(span, impl_m_def_id);
        let predicate = ocx.normalize(&normalize_cause, param_env, predicate);

        let cause =
            ObligationCause::new(span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
                impl_item_def_id: impl_m_def_id,
                trait_item_def_id: trait_m.def_id,
                kind: impl_m.kind,
            });
        ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
    }

    // If we're within a const implementation, we need to make sure that the method
    // does not assume stronger `~const` bounds than the trait definition.
    //
    // This registers the `~const` bounds of the impl method, which we will prove
    // using the hybrid param-env that we earlier augmented with the const conditions
    // from the impl header and trait method declaration.
    if is_conditionally_const {
        for (const_condition, span) in
            tcx.const_conditions(impl_m.def_id).instantiate_own_identity()
        {
            let normalize_cause = traits::ObligationCause::misc(span, impl_m_def_id);
            let const_condition = ocx.normalize(&normalize_cause, param_env, const_condition);

            let cause =
                ObligationCause::new(span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
                    impl_item_def_id: impl_m_def_id,
                    trait_item_def_id: trait_m.def_id,
                    kind: impl_m.kind,
                });
            ocx.register_obligation(traits::Obligation::new(
                tcx,
                cause,
                param_env,
                const_condition.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
            ));
        }
    }

    // We now need to check that the signature of the impl method is
    // compatible with that of the trait method. We do this by
    // checking that `impl_fty <: trait_fty`.
    //
    // FIXME. Unfortunately, this doesn't quite work right now because
    // associated type normalization is not integrated into subtype
    // checks. For the comparison to be valid, we need to
    // normalize the associated types in the impl/trait methods
    // first. However, because function types bind regions, just
    // calling `FnCtxt::normalize` would have no effect on
    // any associated types appearing in the fn arguments or return
    // type.

    let mut wf_tys = FxIndexSet::default();

    let unnormalized_impl_sig = infcx.instantiate_binder_with_fresh_vars(
        impl_m_span,
        infer::HigherRankedType,
        tcx.fn_sig(impl_m.def_id).instantiate_identity(),
    );

    let norm_cause = ObligationCause::misc(impl_m_span, impl_m_def_id);
    let impl_sig = ocx.normalize(&norm_cause, param_env, unnormalized_impl_sig);
    debug!(?impl_sig);

    let trait_sig = tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_to_impl_args);
    let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);

    // Next, add all inputs and output as well-formed tys. Importantly,
    // we have to do this before normalization, since the normalized ty may
    // not contain the input parameters. See issue #87748.
    wf_tys.extend(trait_sig.inputs_and_output.iter());
    let trait_sig = ocx.normalize(&norm_cause, param_env, trait_sig);
    // We also have to add the normalized trait signature
    // as we don't normalize during implied bounds computation.
    wf_tys.extend(trait_sig.inputs_and_output.iter());
    debug!(?trait_sig);

    // FIXME: We'd want to keep more accurate spans than "the method signature" when
    // processing the comparison between the trait and impl fn, but we sadly lose them
    // and point at the whole signature when a trait bound or specific input or output
    // type would be more appropriate. In other places we have a `Vec<Span>`
    // corresponding to their `Vec<Predicate>`, but we don't have that here.
    // Fixing this would improve the output of test `issue-83765.rs`.
    let result = ocx.sup(&cause, param_env, trait_sig, impl_sig);

    if let Err(terr) = result {
        debug!(?impl_sig, ?trait_sig, ?terr, "sub_types failed");

        let emitted = report_trait_method_mismatch(
            infcx,
            cause,
            param_env,
            terr,
            (trait_m, trait_sig),
            (impl_m, impl_sig),
            impl_trait_ref,
        );
        return Err(emitted);
    }

    if !(impl_sig, trait_sig).references_error() {
        // Select obligations to make progress on inference before processing
        // the wf obligation below.
        // FIXME(-Znext-solver): Not needed when the hack below is removed.
        let errors = ocx.select_where_possible();
        if !errors.is_empty() {
            let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
            return Err(reported);
        }

        // See #108544. Annoying, we can end up in cases where, because of winnowing,
        // we pick param env candidates over a more general impl, leading to more
        // stricter lifetime requirements than we would otherwise need. This can
        // trigger the lint. Instead, let's only consider type outlives and
        // region outlives obligations.
        //
        // FIXME(-Znext-solver): Try removing this hack again once the new
        // solver is stable. We should just be able to register a WF pred for
        // the fn sig.
        let mut wf_args: smallvec::SmallVec<[_; 4]> =
            unnormalized_impl_sig.inputs_and_output.iter().map(|ty| ty.into()).collect();
        // Annoyingly, asking for the WF predicates of an array (with an unevaluated const (only?))
        // will give back the well-formed predicate of the same array.
        let mut wf_args_seen: FxHashSet<_> = wf_args.iter().copied().collect();
        while let Some(arg) = wf_args.pop() {
            let Some(obligations) = rustc_trait_selection::traits::wf::obligations(
                infcx,
                param_env,
                impl_m_def_id,
                0,
                arg,
                impl_m_span,
            ) else {
                continue;
            };
            for obligation in obligations {
                debug!(?obligation);
                match obligation.predicate.kind().skip_binder() {
                    // We need to register Projection oblgiations too, because we may end up with
                    // an implied `X::Item: 'a`, which gets desugared into `X::Item = ?0`, `?0: 'a`.
                    // If we only register the region outlives obligation, this leads to an unconstrained var.
                    // See `implied_bounds_entailment_alias_var.rs` test.
                    ty::PredicateKind::Clause(
                        ty::ClauseKind::RegionOutlives(..)
                        | ty::ClauseKind::TypeOutlives(..)
                        | ty::ClauseKind::Projection(..),
                    ) => ocx.register_obligation(obligation),
                    ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
                        if wf_args_seen.insert(arg) {
                            wf_args.push(arg)
                        }
                    }
                    _ => {}
                }
            }
        }
    }

    // Check that all obligations are satisfied by the implementation's
    // version.
    let errors = ocx.select_all_or_error();
    if !errors.is_empty() {
        let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
        return Err(reported);
    }

    // Finally, resolve all regions. This catches wily misuses of
    // lifetime parameters.
    let outlives_env = OutlivesEnvironment::with_bounds(
        param_env,
        infcx.implied_bounds_tys(param_env, impl_m_def_id, &wf_tys),
    );
    let errors = infcx.resolve_regions(&outlives_env);
    if !errors.is_empty() {
        return Err(infcx
            .tainted_by_errors()
            .unwrap_or_else(|| infcx.err_ctxt().report_region_errors(impl_m_def_id, &errors)));
    }

    Ok(())
}

struct RemapLateParam<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    mapping: &'a FxIndexMap<ty::LateParamRegionKind, ty::LateParamRegionKind>,
}

impl<'tcx> TypeFolder<TyCtxt<'tcx>> for RemapLateParam<'_, 'tcx> {
    fn cx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        if let ty::ReLateParam(fr) = *r {
            ty::Region::new_late_param(
                self.tcx,
                fr.scope,
                self.mapping.get(&fr.kind).copied().unwrap_or(fr.kind),
            )
        } else {
            r
        }
    }
}

/// Given a method def-id in an impl, compare the method signature of the impl
/// against the trait that it's implementing. In doing so, infer the hidden types
/// that this method's signature provides to satisfy each return-position `impl Trait`
/// in the trait signature.
///
/// The method is also responsible for making sure that the hidden types for each
/// RPITIT actually satisfy the bounds of the `impl Trait`, i.e. that if we infer
/// `impl Trait = Foo`, that `Foo: Trait` holds.
///
/// For example, given the sample code:
///
/// ```
/// use std::ops::Deref;
///
/// trait Foo {
///     fn bar() -> impl Deref<Target = impl Sized>;
///              // ^- RPITIT #1        ^- RPITIT #2
/// }
///
/// impl Foo for () {
///     fn bar() -> Box<String> { Box::new(String::new()) }
/// }
/// ```
///
/// The hidden types for the RPITITs in `bar` would be inferred to:
///     * `impl Deref` (RPITIT #1) = `Box<String>`
///     * `impl Sized` (RPITIT #2) = `String`
///
/// The relationship between these two types is straightforward in this case, but
/// may be more tenuously connected via other `impl`s and normalization rules for
/// cases of more complicated nested RPITITs.
#[instrument(skip(tcx), level = "debug", ret)]
pub(super) fn collect_return_position_impl_trait_in_trait_tys<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m_def_id: LocalDefId,
) -> Result<&'tcx DefIdMap<ty::EarlyBinder<'tcx, Ty<'tcx>>>, ErrorGuaranteed> {
    let impl_m = tcx.opt_associated_item(impl_m_def_id.to_def_id()).unwrap();
    let trait_m = tcx.opt_associated_item(impl_m.trait_item_def_id.unwrap()).unwrap();
    let impl_trait_ref =
        tcx.impl_trait_ref(impl_m.impl_container(tcx).unwrap()).unwrap().instantiate_identity();
    // First, check a few of the same things as `compare_impl_method`,
    // just so we don't ICE during instantiation later.
    check_method_is_structurally_compatible(tcx, impl_m, trait_m, impl_trait_ref, true)?;

    let impl_m_hir_id = tcx.local_def_id_to_hir_id(impl_m_def_id);
    let return_span = tcx.hir().fn_decl_by_hir_id(impl_m_hir_id).unwrap().output.span();
    let cause =
        ObligationCause::new(return_span, impl_m_def_id, ObligationCauseCode::CompareImplItem {
            impl_item_def_id: impl_m_def_id,
            trait_item_def_id: trait_m.def_id,
            kind: impl_m.kind,
        });

    // Create mapping from trait to impl (i.e. impl trait header + impl method identity args).
    let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_m.def_id).rebase_onto(
        tcx,
        impl_m.container_id(tcx),
        impl_trait_ref.args,
    );

    let hybrid_preds = tcx
        .predicates_of(impl_m.container_id(tcx))
        .instantiate_identity(tcx)
        .into_iter()
        .chain(tcx.predicates_of(trait_m.def_id).instantiate_own(tcx, trait_to_impl_args))
        .map(|(clause, _)| clause);
    let param_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(hybrid_preds));
    let param_env = traits::normalize_param_env_or_error(
        tcx,
        param_env,
        ObligationCause::misc(tcx.def_span(impl_m_def_id), impl_m_def_id),
    );

    let infcx = &tcx.infer_ctxt().build(TypingMode::non_body_analysis());
    let ocx = ObligationCtxt::new_with_diagnostics(infcx);

    // Normalize the impl signature with fresh variables for lifetime inference.
    let misc_cause = ObligationCause::misc(return_span, impl_m_def_id);
    let impl_sig = ocx.normalize(
        &misc_cause,
        param_env,
        infcx.instantiate_binder_with_fresh_vars(
            return_span,
            infer::HigherRankedType,
            tcx.fn_sig(impl_m.def_id).instantiate_identity(),
        ),
    );
    impl_sig.error_reported()?;
    let impl_return_ty = impl_sig.output();

    // Normalize the trait signature with liberated bound vars, passing it through
    // the ImplTraitInTraitCollector, which gathers all of the RPITITs and replaces
    // them with inference variables.
    // We will use these inference variables to collect the hidden types of RPITITs.
    let mut collector = ImplTraitInTraitCollector::new(&ocx, return_span, param_env, impl_m_def_id);
    let unnormalized_trait_sig = tcx
        .liberate_late_bound_regions(
            impl_m.def_id,
            tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_to_impl_args),
        )
        .fold_with(&mut collector);

    let trait_sig = ocx.normalize(&misc_cause, param_env, unnormalized_trait_sig);
    trait_sig.error_reported()?;
    let trait_return_ty = trait_sig.output();

    // RPITITs are allowed to use the implied predicates of the method that
    // defines them. This is because we want code like:
    // ```
    // trait Foo {
    //     fn test<'a, T>(_: &'a T) -> impl Sized;
    // }
    // impl Foo for () {
    //     fn test<'a, T>(x: &'a T) -> &'a T { x }
    // }
    // ```
    // .. to compile. However, since we use both the normalized and unnormalized
    // inputs and outputs from the instantiated trait signature, we will end up
    // seeing the hidden type of an RPIT in the signature itself. Naively, this
    // means that we will use the hidden type to imply the hidden type's own
    // well-formedness.
    //
    // To avoid this, we replace the infer vars used for hidden type inference
    // with placeholders, which imply nothing about outlives bounds, and then
    // prove below that the hidden types are well formed.
    let universe = infcx.create_next_universe();
    let mut idx = 0;
    let mapping: FxIndexMap<_, _> = collector
        .types
        .iter()
        .map(|(_, &(ty, _))| {
            assert!(
                infcx.resolve_vars_if_possible(ty) == ty && ty.is_ty_var(),
                "{ty:?} should not have been constrained via normalization",
                ty = infcx.resolve_vars_if_possible(ty)
            );
            idx += 1;
            (
                ty,
                Ty::new_placeholder(tcx, ty::Placeholder {
                    universe,
                    bound: ty::BoundTy {
                        var: ty::BoundVar::from_usize(idx),
                        kind: ty::BoundTyKind::Anon,
                    },
                }),
            )
        })
        .collect();
    let mut type_mapper = BottomUpFolder {
        tcx,
        ty_op: |ty| *mapping.get(&ty).unwrap_or(&ty),
        lt_op: |lt| lt,
        ct_op: |ct| ct,
    };
    let wf_tys = FxIndexSet::from_iter(
        unnormalized_trait_sig
            .inputs_and_output
            .iter()
            .chain(trait_sig.inputs_and_output.iter())
            .map(|ty| ty.fold_with(&mut type_mapper)),
    );

    match ocx.eq(&cause, param_env, trait_return_ty, impl_return_ty) {
        Ok(()) => {}
        Err(terr) => {
            let mut diag = struct_span_code_err!(
                tcx.dcx(),
                cause.span,
                E0053,
                "method `{}` has an incompatible return type for trait",
                trait_m.name
            );
            let hir = tcx.hir();
            infcx.err_ctxt().note_type_err(
                &mut diag,
                &cause,
                hir.get_if_local(impl_m.def_id)
                    .and_then(|node| node.fn_decl())
                    .map(|decl| (decl.output.span(), Cow::from("return type in trait"), false)),
                Some(param_env.and(infer::ValuePairs::Terms(ExpectedFound {
                    expected: trait_return_ty.into(),
                    found: impl_return_ty.into(),
                }))),
                terr,
                false,
            );
            return Err(diag.emit());
        }
    }

    debug!(?trait_sig, ?impl_sig, "equating function signatures");

    // Unify the whole function signature. We need to do this to fully infer
    // the lifetimes of the return type, but do this after unifying just the
    // return types, since we want to avoid duplicating errors from
    // `compare_method_predicate_entailment`.
    match ocx.eq(&cause, param_env, trait_sig, impl_sig) {
        Ok(()) => {}
        Err(terr) => {
            // This function gets called during `compare_method_predicate_entailment` when normalizing a
            // signature that contains RPITIT. When the method signatures don't match, we have to
            // emit an error now because `compare_method_predicate_entailment` will not report the error
            // when normalization fails.
            let emitted = report_trait_method_mismatch(
                infcx,
                cause,
                param_env,
                terr,
                (trait_m, trait_sig),
                (impl_m, impl_sig),
                impl_trait_ref,
            );
            return Err(emitted);
        }
    }

    if !unnormalized_trait_sig.output().references_error() && collector.types.is_empty() {
        tcx.dcx().delayed_bug(
            "expect >0 RPITITs in call to `collect_return_position_impl_trait_in_trait_tys`",
        );
    }

    // FIXME: This has the same issue as #108544, but since this isn't breaking
    // existing code, I'm not particularly inclined to do the same hack as above
    // where we process wf obligations manually. This can be fixed in a forward-
    // compatible way later.
    let collected_types = collector.types;
    for (_, &(ty, _)) in &collected_types {
        ocx.register_obligation(traits::Obligation::new(
            tcx,
            misc_cause.clone(),
            param_env,
            ty::ClauseKind::WellFormed(ty.into()),
        ));
    }

    // Check that all obligations are satisfied by the implementation's
    // RPITs.
    let errors = ocx.select_all_or_error();
    if !errors.is_empty() {
        if let Err(guar) = try_report_async_mismatch(tcx, infcx, &errors, trait_m, impl_m, impl_sig)
        {
            return Err(guar);
        }

        let guar = infcx.err_ctxt().report_fulfillment_errors(errors);
        return Err(guar);
    }

    // Finally, resolve all regions. This catches wily misuses of
    // lifetime parameters.
    let outlives_env = OutlivesEnvironment::with_bounds(
        param_env,
        infcx.implied_bounds_tys(param_env, impl_m_def_id, &wf_tys),
    );
    ocx.resolve_regions_and_report_errors(impl_m_def_id, &outlives_env)?;

    let mut remapped_types = DefIdMap::default();
    for (def_id, (ty, args)) in collected_types {
        match infcx.fully_resolve(ty) {
            Ok(ty) => {
                // `ty` contains free regions that we created earlier while liberating the
                // trait fn signature. However, projection normalization expects `ty` to
                // contains `def_id`'s early-bound regions.
                let id_args = GenericArgs::identity_for_item(tcx, def_id);
                debug!(?id_args, ?args);
                let map: FxIndexMap<_, _> = std::iter::zip(args, id_args)
                    .skip(tcx.generics_of(trait_m.def_id).count())
                    .filter_map(|(a, b)| Some((a.as_region()?, b.as_region()?)))
                    .collect();
                debug!(?map);

                // NOTE(compiler-errors): RPITITs, like all other RPITs, have early-bound
                // region args that are synthesized during AST lowering. These are args
                // that are appended to the parent args (trait and trait method). However,
                // we're trying to infer the uninstantiated type value of the RPITIT inside
                // the *impl*, so we can later use the impl's method args to normalize
                // an RPITIT to a concrete type (`confirm_impl_trait_in_trait_candidate`).
                //
                // Due to the design of RPITITs, during AST lowering, we have no idea that
                // an impl method corresponds to a trait method with RPITITs in it. Therefore,
                // we don't have a list of early-bound region args for the RPITIT in the impl.
                // Since early region parameters are index-based, we can't just rebase these
                // (trait method) early-bound region args onto the impl, and there's no
                // guarantee that the indices from the trait args and impl args line up.
                // So to fix this, we subtract the number of trait args and add the number of
                // impl args to *renumber* these early-bound regions to their corresponding
                // indices in the impl's generic parameters list.
                //
                // Also, we only need to account for a difference in trait and impl args,
                // since we previously enforce that the trait method and impl method have the
                // same generics.
                let num_trait_args = impl_trait_ref.args.len();
                let num_impl_args = tcx.generics_of(impl_m.container_id(tcx)).own_params.len();
                let ty = match ty.try_fold_with(&mut RemapHiddenTyRegions {
                    tcx,
                    map,
                    num_trait_args,
                    num_impl_args,
                    def_id,
                    impl_m_def_id: impl_m.def_id,
                    ty,
                    return_span,
                }) {
                    Ok(ty) => ty,
                    Err(guar) => Ty::new_error(tcx, guar),
                };
                remapped_types.insert(def_id, ty::EarlyBinder::bind(ty));
            }
            Err(err) => {
                // This code path is not reached in any tests, but may be
                // reachable. If this is triggered, it should be converted to
                // `span_delayed_bug` and the triggering case turned into a
                // test.
                tcx.dcx()
                    .span_bug(return_span, format!("could not fully resolve: {ty} => {err:?}"));
            }
        }
    }

    // We may not collect all RPITITs that we see in the HIR for a trait signature
    // because an RPITIT was located within a missing item. Like if we have a sig
    // returning `-> Missing<impl Sized>`, that gets converted to `-> {type error}`,
    // and when walking through the signature we end up never collecting the def id
    // of the `impl Sized`. Insert that here, so we don't ICE later.
    for assoc_item in tcx.associated_types_for_impl_traits_in_associated_fn(trait_m.def_id) {
        if !remapped_types.contains_key(assoc_item) {
            remapped_types.insert(
                *assoc_item,
                ty::EarlyBinder::bind(Ty::new_error_with_message(
                    tcx,
                    return_span,
                    "missing synthetic item for RPITIT",
                )),
            );
        }
    }

    Ok(&*tcx.arena.alloc(remapped_types))
}

struct ImplTraitInTraitCollector<'a, 'tcx, E> {
    ocx: &'a ObligationCtxt<'a, 'tcx, E>,
    types: FxIndexMap<DefId, (Ty<'tcx>, ty::GenericArgsRef<'tcx>)>,
    span: Span,
    param_env: ty::ParamEnv<'tcx>,
    body_id: LocalDefId,
}

impl<'a, 'tcx, E> ImplTraitInTraitCollector<'a, 'tcx, E>
where
    E: 'tcx,
{
    fn new(
        ocx: &'a ObligationCtxt<'a, 'tcx, E>,
        span: Span,
        param_env: ty::ParamEnv<'tcx>,
        body_id: LocalDefId,
    ) -> Self {
        ImplTraitInTraitCollector { ocx, types: FxIndexMap::default(), span, param_env, body_id }
    }
}

impl<'tcx, E> TypeFolder<TyCtxt<'tcx>> for ImplTraitInTraitCollector<'_, 'tcx, E>
where
    E: 'tcx,
{
    fn cx(&self) -> TyCtxt<'tcx> {
        self.ocx.infcx.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        if let ty::Alias(ty::Projection, proj) = ty.kind()
            && self.cx().is_impl_trait_in_trait(proj.def_id)
        {
            if let Some((ty, _)) = self.types.get(&proj.def_id) {
                return *ty;
            }
            //FIXME(RPITIT): Deny nested RPITIT in args too
            if proj.args.has_escaping_bound_vars() {
                bug!("FIXME(RPITIT): error here");
            }
            // Replace with infer var
            let infer_ty = self.ocx.infcx.next_ty_var(self.span);
            self.types.insert(proj.def_id, (infer_ty, proj.args));
            // Recurse into bounds
            for (pred, pred_span) in self
                .cx()
                .explicit_item_bounds(proj.def_id)
                .iter_instantiated_copied(self.cx(), proj.args)
            {
                let pred = pred.fold_with(self);
                let pred = self.ocx.normalize(
                    &ObligationCause::misc(self.span, self.body_id),
                    self.param_env,
                    pred,
                );

                self.ocx.register_obligation(traits::Obligation::new(
                    self.cx(),
                    ObligationCause::new(
                        self.span,
                        self.body_id,
                        ObligationCauseCode::WhereClause(proj.def_id, pred_span),
                    ),
                    self.param_env,
                    pred,
                ));
            }
            infer_ty
        } else {
            ty.super_fold_with(self)
        }
    }
}

struct RemapHiddenTyRegions<'tcx> {
    tcx: TyCtxt<'tcx>,
    /// Map from early/late params of the impl to identity regions of the RPITIT (GAT)
    /// in the trait.
    map: FxIndexMap<ty::Region<'tcx>, ty::Region<'tcx>>,
    num_trait_args: usize,
    num_impl_args: usize,
    /// Def id of the RPITIT (GAT) in the *trait*.
    def_id: DefId,
    /// Def id of the impl method which owns the opaque hidden type we're remapping.
    impl_m_def_id: DefId,
    /// The hidden type we're remapping. Useful for diagnostics.
    ty: Ty<'tcx>,
    /// Span of the return type. Useful for diagnostics.
    return_span: Span,
}

impl<'tcx> ty::FallibleTypeFolder<TyCtxt<'tcx>> for RemapHiddenTyRegions<'tcx> {
    type Error = ErrorGuaranteed;

    fn cx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn try_fold_region(
        &mut self,
        region: ty::Region<'tcx>,
    ) -> Result<ty::Region<'tcx>, Self::Error> {
        match region.kind() {
            // Never remap bound regions or `'static`
            ty::ReBound(..) | ty::ReStatic | ty::ReError(_) => return Ok(region),
            // We always remap liberated late-bound regions from the function.
            ty::ReLateParam(_) => {}
            // Remap early-bound regions as long as they don't come from the `impl` itself,
            // in which case we don't really need to renumber them.
            ty::ReEarlyParam(ebr) => {
                if ebr.index as usize >= self.num_impl_args {
                    // Remap
                } else {
                    return Ok(region);
                }
            }
            ty::ReVar(_) | ty::RePlaceholder(_) | ty::ReErased => unreachable!(
                "should not have leaked vars or placeholders into hidden type of RPITIT"
            ),
        }

        let e = if let Some(id_region) = self.map.get(&region) {
            if let ty::ReEarlyParam(e) = id_region.kind() {
                e
            } else {
                bug!(
                    "expected to map region {region} to early-bound identity region, but got {id_region}"
                );
            }
        } else {
            let guar = match region.opt_param_def_id(self.tcx, self.impl_m_def_id) {
                Some(def_id) => {
                    let return_span = if let ty::Alias(ty::Opaque, opaque_ty) = self.ty.kind() {
                        self.tcx.def_span(opaque_ty.def_id)
                    } else {
                        self.return_span
                    };
                    self.tcx
                        .dcx()
                        .struct_span_err(
                            return_span,
                            "return type captures more lifetimes than trait definition",
                        )
                        .with_span_label(self.tcx.def_span(def_id), "this lifetime was captured")
                        .with_span_note(
                            self.tcx.def_span(self.def_id),
                            "hidden type must only reference lifetimes captured by this impl trait",
                        )
                        .with_note(format!("hidden type inferred to be `{}`", self.ty))
                        .emit()
                }
                None => {
                    // This code path is not reached in any tests, but may be
                    // reachable. If this is triggered, it should be converted
                    // to `delayed_bug` and the triggering case turned into a
                    // test.
                    self.tcx.dcx().bug("should've been able to remap region");
                }
            };
            return Err(guar);
        };

        Ok(ty::Region::new_early_param(self.tcx, ty::EarlyParamRegion {
            name: e.name,
            index: (e.index as usize - self.num_trait_args + self.num_impl_args) as u32,
        }))
    }
}

fn report_trait_method_mismatch<'tcx>(
    infcx: &InferCtxt<'tcx>,
    mut cause: ObligationCause<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    terr: TypeError<'tcx>,
    (trait_m, trait_sig): (ty::AssocItem, ty::FnSig<'tcx>),
    (impl_m, impl_sig): (ty::AssocItem, ty::FnSig<'tcx>),
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> ErrorGuaranteed {
    let tcx = infcx.tcx;
    let (impl_err_span, trait_err_span) =
        extract_spans_for_error_reporting(infcx, terr, &cause, impl_m, trait_m);

    let mut diag = struct_span_code_err!(
        tcx.dcx(),
        impl_err_span,
        E0053,
        "method `{}` has an incompatible type for trait",
        trait_m.name
    );
    match &terr {
        TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
            if trait_m.fn_has_self_parameter =>
        {
            let ty = trait_sig.inputs()[0];
            let sugg = match ExplicitSelf::determine(ty, |ty| ty == impl_trait_ref.self_ty()) {
                ExplicitSelf::ByValue => "self".to_owned(),
                ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
                ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
                _ => format!("self: {ty}"),
            };

            // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
            // span points only at the type `Box<Self`>, but we want to cover the whole
            // argument pattern and type.
            let (sig, body) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
            let span = tcx
                .hir()
                .body_param_names(body)
                .zip(sig.decl.inputs.iter())
                .map(|(param, ty)| param.span.to(ty.span))
                .next()
                .unwrap_or(impl_err_span);

            diag.span_suggestion_verbose(
                span,
                "change the self-receiver type to match the trait",
                sugg,
                Applicability::MachineApplicable,
            );
        }
        TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
            if trait_sig.inputs().len() == *i {
                // Suggestion to change output type. We do not suggest in `async` functions
                // to avoid complex logic or incorrect output.
                if let ImplItemKind::Fn(sig, _) =
                    &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind
                    && !sig.header.asyncness.is_async()
                {
                    let msg = "change the output type to match the trait";
                    let ap = Applicability::MachineApplicable;
                    match sig.decl.output {
                        hir::FnRetTy::DefaultReturn(sp) => {
                            let sugg = format!(" -> {}", trait_sig.output());
                            diag.span_suggestion_verbose(sp, msg, sugg, ap);
                        }
                        hir::FnRetTy::Return(hir_ty) => {
                            let sugg = trait_sig.output();
                            diag.span_suggestion_verbose(hir_ty.span, msg, sugg, ap);
                        }
                    };
                };
            } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
                diag.span_suggestion_verbose(
                    impl_err_span,
                    "change the parameter type to match the trait",
                    trait_ty,
                    Applicability::MachineApplicable,
                );
            }
        }
        _ => {}
    }

    cause.span = impl_err_span;
    infcx.err_ctxt().note_type_err(
        &mut diag,
        &cause,
        trait_err_span.map(|sp| (sp, Cow::from("type in trait"), false)),
        Some(param_env.and(infer::ValuePairs::PolySigs(ExpectedFound {
            expected: ty::Binder::dummy(trait_sig),
            found: ty::Binder::dummy(impl_sig),
        }))),
        terr,
        false,
    );

    diag.emit()
}

fn check_region_bounds_on_impl_item<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    delay: bool,
) -> Result<(), ErrorGuaranteed> {
    let impl_generics = tcx.generics_of(impl_m.def_id);
    let impl_params = impl_generics.own_counts().lifetimes;

    let trait_generics = tcx.generics_of(trait_m.def_id);
    let trait_params = trait_generics.own_counts().lifetimes;

    debug!(?trait_generics, ?impl_generics);

    // Must have same number of early-bound lifetime parameters.
    // Unfortunately, if the user screws up the bounds, then this
    // will change classification between early and late. E.g.,
    // if in trait we have `<'a,'b:'a>`, and in impl we just have
    // `<'a,'b>`, then we have 2 early-bound lifetime parameters
    // in trait but 0 in the impl. But if we report "expected 2
    // but found 0" it's confusing, because it looks like there
    // are zero. Since I don't quite know how to phrase things at
    // the moment, give a kind of vague error message.
    if trait_params != impl_params {
        let span = tcx
            .hir()
            .get_generics(impl_m.def_id.expect_local())
            .expect("expected impl item to have generics or else we can't compare them")
            .span;

        let mut generics_span = None;
        let mut bounds_span = vec![];
        let mut where_span = None;
        if let Some(trait_node) = tcx.hir().get_if_local(trait_m.def_id)
            && let Some(trait_generics) = trait_node.generics()
        {
            generics_span = Some(trait_generics.span);
            // FIXME: we could potentially look at the impl's bounds to not point at bounds that
            // *are* present in the impl.
            for p in trait_generics.predicates {
                if let hir::WherePredicateKind::BoundPredicate(pred) = p.kind {
                    for b in pred.bounds {
                        if let hir::GenericBound::Outlives(lt) = b {
                            bounds_span.push(lt.ident.span);
                        }
                    }
                }
            }
            if let Some(impl_node) = tcx.hir().get_if_local(impl_m.def_id)
                && let Some(impl_generics) = impl_node.generics()
            {
                let mut impl_bounds = 0;
                for p in impl_generics.predicates {
                    if let hir::WherePredicateKind::BoundPredicate(pred) = p.kind {
                        for b in pred.bounds {
                            if let hir::GenericBound::Outlives(_) = b {
                                impl_bounds += 1;
                            }
                        }
                    }
                }
                if impl_bounds == bounds_span.len() {
                    bounds_span = vec![];
                } else if impl_generics.has_where_clause_predicates {
                    where_span = Some(impl_generics.where_clause_span);
                }
            }
        }
        let reported = tcx
            .dcx()
            .create_err(LifetimesOrBoundsMismatchOnTrait {
                span,
                item_kind: impl_m.descr(),
                ident: impl_m.ident(tcx),
                generics_span,
                bounds_span,
                where_span,
            })
            .emit_unless(delay);
        return Err(reported);
    }

    Ok(())
}

#[instrument(level = "debug", skip(infcx))]
fn extract_spans_for_error_reporting<'tcx>(
    infcx: &infer::InferCtxt<'tcx>,
    terr: TypeError<'_>,
    cause: &ObligationCause<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
) -> (Span, Option<Span>) {
    let tcx = infcx.tcx;
    let mut impl_args = {
        let (sig, _) = tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
        sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
    };

    let trait_args = trait_m.def_id.as_local().map(|def_id| {
        let (sig, _) = tcx.hir().expect_trait_item(def_id).expect_fn();
        sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
    });

    match terr {
        TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
            (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
        }
        _ => (cause.span, tcx.hir().span_if_local(trait_m.def_id)),
    }
}

fn compare_self_type<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
    delay: bool,
) -> Result<(), ErrorGuaranteed> {
    // Try to give more informative error messages about self typing
    // mismatches. Note that any mismatch will also be detected
    // below, where we construct a canonical function type that
    // includes the self parameter as a normal parameter. It's just
    // that the error messages you get out of this code are a bit more
    // inscrutable, particularly for cases where one method has no
    // self.

    let self_string = |method: ty::AssocItem| {
        let untransformed_self_ty = match method.container {
            ty::AssocItemContainer::Impl => impl_trait_ref.self_ty(),
            ty::AssocItemContainer::Trait => tcx.types.self_param,
        };
        let self_arg_ty = tcx.fn_sig(method.def_id).instantiate_identity().input(0);
        let (infcx, param_env) = tcx
            .infer_ctxt()
            .build_with_typing_env(ty::TypingEnv::non_body_analysis(tcx, method.def_id));
        let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
        let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty);
        match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
            ExplicitSelf::ByValue => "self".to_owned(),
            ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
            ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
            _ => format!("self: {self_arg_ty}"),
        }
    };

    match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
        (false, false) | (true, true) => {}

        (false, true) => {
            let self_descr = self_string(impl_m);
            let impl_m_span = tcx.def_span(impl_m.def_id);
            let mut err = struct_span_code_err!(
                tcx.dcx(),
                impl_m_span,
                E0185,
                "method `{}` has a `{}` declaration in the impl, but not in the trait",
                trait_m.name,
                self_descr
            );
            err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
            if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
                err.span_label(span, format!("trait method declared without `{self_descr}`"));
            } else {
                err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
            }
            return Err(err.emit_unless(delay));
        }

        (true, false) => {
            let self_descr = self_string(trait_m);
            let impl_m_span = tcx.def_span(impl_m.def_id);
            let mut err = struct_span_code_err!(
                tcx.dcx(),
                impl_m_span,
                E0186,
                "method `{}` has a `{}` declaration in the trait, but not in the impl",
                trait_m.name,
                self_descr
            );
            err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
            if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
                err.span_label(span, format!("`{self_descr}` used in trait"));
            } else {
                err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
            }

            return Err(err.emit_unless(delay));
        }
    }

    Ok(())
}

/// Checks that the number of generics on a given assoc item in a trait impl is the same
/// as the number of generics on the respective assoc item in the trait definition.
///
/// For example this code emits the errors in the following code:
/// ```rust,compile_fail
/// trait Trait {
///     fn foo();
///     type Assoc<T>;
/// }
///
/// impl Trait for () {
///     fn foo<T>() {}
///     //~^ error
///     type Assoc = u32;
///     //~^ error
/// }
/// ```
///
/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
fn compare_number_of_generics<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_: ty::AssocItem,
    trait_: ty::AssocItem,
    delay: bool,
) -> Result<(), ErrorGuaranteed> {
    let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
    let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();

    // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
    // in `compare_generic_param_kinds` which will give a nicer error message than something like:
    // "expected 1 type parameter, found 0 type parameters"
    if (trait_own_counts.types + trait_own_counts.consts)
        == (impl_own_counts.types + impl_own_counts.consts)
    {
        return Ok(());
    }

    // We never need to emit a separate error for RPITITs, since if an RPITIT
    // has mismatched type or const generic arguments, then the method that it's
    // inheriting the generics from will also have mismatched arguments, and
    // we'll report an error for that instead. Delay a bug for safety, though.
    if trait_.is_impl_trait_in_trait() {
        // FIXME: no tests trigger this. If you find example code that does
        // trigger this, please add it to the test suite.
        tcx.dcx()
            .bug("errors comparing numbers of generics of trait/impl functions were not emitted");
    }

    let matchings = [
        ("type", trait_own_counts.types, impl_own_counts.types),
        ("const", trait_own_counts.consts, impl_own_counts.consts),
    ];

    let item_kind = impl_.descr();

    let mut err_occurred = None;
    for (kind, trait_count, impl_count) in matchings {
        if impl_count != trait_count {
            let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
                let mut spans = generics
                    .params
                    .iter()
                    .filter(|p| match p.kind {
                        hir::GenericParamKind::Lifetime {
                            kind: hir::LifetimeParamKind::Elided(_),
                        } => {
                            // A fn can have an arbitrary number of extra elided lifetimes for the
                            // same signature.
                            !matches!(kind, ty::AssocKind::Fn)
                        }
                        _ => true,
                    })
                    .map(|p| p.span)
                    .collect::<Vec<Span>>();
                if spans.is_empty() {
                    spans = vec![generics.span]
                }
                spans
            };
            let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
                let trait_item = tcx.hir().expect_trait_item(def_id);
                let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
                let impl_trait_spans: Vec<Span> = trait_item
                    .generics
                    .params
                    .iter()
                    .filter_map(|p| match p.kind {
                        GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
                        _ => None,
                    })
                    .collect();
                (Some(arg_spans), impl_trait_spans)
            } else {
                let trait_span = tcx.hir().span_if_local(trait_.def_id);
                (trait_span.map(|s| vec![s]), vec![])
            };

            let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
            let impl_item_impl_trait_spans: Vec<Span> = impl_item
                .generics
                .params
                .iter()
                .filter_map(|p| match p.kind {
                    GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
                    _ => None,
                })
                .collect();
            let spans = arg_spans(impl_.kind, impl_item.generics);
            let span = spans.first().copied();

            let mut err = tcx.dcx().struct_span_err(
                spans,
                format!(
                    "{} `{}` has {} {kind} parameter{} but its trait \
                     declaration has {} {kind} parameter{}",
                    item_kind,
                    trait_.name,
                    impl_count,
                    pluralize!(impl_count),
                    trait_count,
                    pluralize!(trait_count),
                    kind = kind,
                ),
            );
            err.code(E0049);

            let msg =
                format!("expected {trait_count} {kind} parameter{}", pluralize!(trait_count),);
            if let Some(spans) = trait_spans {
                let mut spans = spans.iter();
                if let Some(span) = spans.next() {
                    err.span_label(*span, msg);
                }
                for span in spans {
                    err.span_label(*span, "");
                }
            } else {
                err.span_label(tcx.def_span(trait_.def_id), msg);
            }

            if let Some(span) = span {
                err.span_label(
                    span,
                    format!("found {} {} parameter{}", impl_count, kind, pluralize!(impl_count),),
                );
            }

            for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
                err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
            }

            let reported = err.emit_unless(delay);
            err_occurred = Some(reported);
        }
    }

    if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
}

fn compare_number_of_method_arguments<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    delay: bool,
) -> Result<(), ErrorGuaranteed> {
    let impl_m_fty = tcx.fn_sig(impl_m.def_id);
    let trait_m_fty = tcx.fn_sig(trait_m.def_id);
    let trait_number_args = trait_m_fty.skip_binder().inputs().skip_binder().len();
    let impl_number_args = impl_m_fty.skip_binder().inputs().skip_binder().len();

    if trait_number_args != impl_number_args {
        let trait_span = trait_m
            .def_id
            .as_local()
            .and_then(|def_id| {
                let (trait_m_sig, _) = &tcx.hir().expect_trait_item(def_id).expect_fn();
                let pos = trait_number_args.saturating_sub(1);
                trait_m_sig.decl.inputs.get(pos).map(|arg| {
                    if pos == 0 {
                        arg.span
                    } else {
                        arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
                    }
                })
            })
            .or_else(|| tcx.hir().span_if_local(trait_m.def_id));

        let (impl_m_sig, _) = &tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).expect_fn();
        let pos = impl_number_args.saturating_sub(1);
        let impl_span = impl_m_sig
            .decl
            .inputs
            .get(pos)
            .map(|arg| {
                if pos == 0 {
                    arg.span
                } else {
                    arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
                }
            })
            .unwrap_or_else(|| tcx.def_span(impl_m.def_id));

        let mut err = struct_span_code_err!(
            tcx.dcx(),
            impl_span,
            E0050,
            "method `{}` has {} but the declaration in trait `{}` has {}",
            trait_m.name,
            potentially_plural_count(impl_number_args, "parameter"),
            tcx.def_path_str(trait_m.def_id),
            trait_number_args
        );

        if let Some(trait_span) = trait_span {
            err.span_label(
                trait_span,
                format!(
                    "trait requires {}",
                    potentially_plural_count(trait_number_args, "parameter")
                ),
            );
        } else {
            err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
        }

        err.span_label(
            impl_span,
            format!(
                "expected {}, found {}",
                potentially_plural_count(trait_number_args, "parameter"),
                impl_number_args
            ),
        );

        return Err(err.emit_unless(delay));
    }

    Ok(())
}

fn compare_synthetic_generics<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_m: ty::AssocItem,
    trait_m: ty::AssocItem,
    delay: bool,
) -> Result<(), ErrorGuaranteed> {
    // FIXME(chrisvittal) Clean up this function, list of FIXME items:
    //     1. Better messages for the span labels
    //     2. Explanation as to what is going on
    // If we get here, we already have the same number of generics, so the zip will
    // be okay.
    let mut error_found = None;
    let impl_m_generics = tcx.generics_of(impl_m.def_id);
    let trait_m_generics = tcx.generics_of(trait_m.def_id);
    let impl_m_type_params =
        impl_m_generics.own_params.iter().filter_map(|param| match param.kind {
            GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
            GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
        });
    let trait_m_type_params =
        trait_m_generics.own_params.iter().filter_map(|param| match param.kind {
            GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
            GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
        });
    for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
        iter::zip(impl_m_type_params, trait_m_type_params)
    {
        if impl_synthetic != trait_synthetic {
            let impl_def_id = impl_def_id.expect_local();
            let impl_span = tcx.def_span(impl_def_id);
            let trait_span = tcx.def_span(trait_def_id);
            let mut err = struct_span_code_err!(
                tcx.dcx(),
                impl_span,
                E0643,
                "method `{}` has incompatible signature for trait",
                trait_m.name
            );
            err.span_label(trait_span, "declaration in trait here");
            if impl_synthetic {
                // The case where the impl method uses `impl Trait` but the trait method uses
                // explicit generics
                err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
                let _: Option<_> = try {
                    // try taking the name from the trait impl
                    // FIXME: this is obviously suboptimal since the name can already be used
                    // as another generic argument
                    let new_name = tcx.opt_item_name(trait_def_id)?;
                    let trait_m = trait_m.def_id.as_local()?;
                    let trait_m = tcx.hir().expect_trait_item(trait_m);

                    let impl_m = impl_m.def_id.as_local()?;
                    let impl_m = tcx.hir().expect_impl_item(impl_m);

                    // in case there are no generics, take the spot between the function name
                    // and the opening paren of the argument list
                    let new_generics_span = tcx.def_ident_span(impl_def_id)?.shrink_to_hi();
                    // in case there are generics, just replace them
                    let generics_span = impl_m.generics.span.substitute_dummy(new_generics_span);
                    // replace with the generics from the trait
                    let new_generics =
                        tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;

                    err.multipart_suggestion(
                        "try changing the `impl Trait` argument to a generic parameter",
                        vec![
                            // replace `impl Trait` with `T`
                            (impl_span, new_name.to_string()),
                            // replace impl method generics with trait method generics
                            // This isn't quite right, as users might have changed the names
                            // of the generics, but it works for the common case
                            (generics_span, new_generics),
                        ],
                        Applicability::MaybeIncorrect,
                    );
                };
            } else {
                // The case where the trait method uses `impl Trait`, but the impl method uses
                // explicit generics.
                err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
                let _: Option<_> = try {
                    let impl_m = impl_m.def_id.as_local()?;
                    let impl_m = tcx.hir().expect_impl_item(impl_m);
                    let (sig, _) = impl_m.expect_fn();
                    let input_tys = sig.decl.inputs;

                    struct Visitor(hir::def_id::LocalDefId);
                    impl<'v> intravisit::Visitor<'v> for Visitor {
                        type Result = ControlFlow<Span>;
                        fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) -> Self::Result {
                            if let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = ty.kind
                                && let Res::Def(DefKind::TyParam, def_id) = path.res
                                && def_id == self.0.to_def_id()
                            {
                                ControlFlow::Break(ty.span)
                            } else {
                                intravisit::walk_ty(self, ty)
                            }
                        }
                    }

                    let span = input_tys.iter().find_map(|ty| {
                        intravisit::Visitor::visit_ty(&mut Visitor(impl_def_id), ty).break_value()
                    })?;

                    let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
                    let bounds = bounds.first()?.span().to(bounds.last()?.span());
                    let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;

                    err.multipart_suggestion(
                        "try removing the generic parameter and using `impl Trait` instead",
                        vec![
                            // delete generic parameters
                            (impl_m.generics.span, String::new()),
                            // replace param usage with `impl Trait`
                            (span, format!("impl {bounds}")),
                        ],
                        Applicability::MaybeIncorrect,
                    );
                };
            }
            error_found = Some(err.emit_unless(delay));
        }
    }
    if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
}

/// Checks that all parameters in the generics of a given assoc item in a trait impl have
/// the same kind as the respective generic parameter in the trait def.
///
/// For example all 4 errors in the following code are emitted here:
/// ```rust,ignore (pseudo-Rust)
/// trait Foo {
///     fn foo<const N: u8>();
///     type Bar<const N: u8>;
///     fn baz<const N: u32>();
///     type Blah<T>;
/// }
///
/// impl Foo for () {
///     fn foo<const N: u64>() {}
///     //~^ error
///     type Bar<const N: u64> = ();
///     //~^ error
///     fn baz<T>() {}
///     //~^ error
///     type Blah<const N: i64> = u32;
///     //~^ error
/// }
/// ```
///
/// This function does not handle lifetime parameters
fn compare_generic_param_kinds<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_item: ty::AssocItem,
    trait_item: ty::AssocItem,
    delay: bool,
) -> Result<(), ErrorGuaranteed> {
    assert_eq!(impl_item.kind, trait_item.kind);

    let ty_const_params_of = |def_id| {
        tcx.generics_of(def_id).own_params.iter().filter(|param| {
            matches!(
                param.kind,
                GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
            )
        })
    };

    for (param_impl, param_trait) in
        iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
    {
        use GenericParamDefKind::*;
        if match (&param_impl.kind, &param_trait.kind) {
            (Const { .. }, Const { .. })
                if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
            {
                true
            }
            (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
            // this is exhaustive so that anyone adding new generic param kinds knows
            // to make sure this error is reported for them.
            (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
            (Lifetime { .. }, _) | (_, Lifetime { .. }) => {
                bug!("lifetime params are expected to be filtered by `ty_const_params_of`")
            }
        } {
            let param_impl_span = tcx.def_span(param_impl.def_id);
            let param_trait_span = tcx.def_span(param_trait.def_id);

            let mut err = struct_span_code_err!(
                tcx.dcx(),
                param_impl_span,
                E0053,
                "{} `{}` has an incompatible generic parameter for trait `{}`",
                impl_item.descr(),
                trait_item.name,
                &tcx.def_path_str(tcx.parent(trait_item.def_id))
            );

            let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
                Const { .. } => {
                    format!(
                        "{} const parameter of type `{}`",
                        prefix,
                        tcx.type_of(param.def_id).instantiate_identity()
                    )
                }
                Type { .. } => format!("{prefix} type parameter"),
                Lifetime { .. } => span_bug!(
                    tcx.def_span(param.def_id),
                    "lifetime params are expected to be filtered by `ty_const_params_of`"
                ),
            };

            let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
            err.span_label(trait_header_span, "");
            err.span_label(param_trait_span, make_param_message("expected", param_trait));

            let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
            err.span_label(impl_header_span, "");
            err.span_label(param_impl_span, make_param_message("found", param_impl));

            let reported = err.emit_unless(delay);
            return Err(reported);
        }
    }

    Ok(())
}

fn compare_impl_const<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_const_item: ty::AssocItem,
    trait_const_item: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    compare_number_of_generics(tcx, impl_const_item, trait_const_item, false)?;
    compare_generic_param_kinds(tcx, impl_const_item, trait_const_item, false)?;
    check_region_bounds_on_impl_item(tcx, impl_const_item, trait_const_item, false)?;
    compare_const_predicate_entailment(tcx, impl_const_item, trait_const_item, impl_trait_ref)
}

/// The equivalent of [compare_method_predicate_entailment], but for associated constants
/// instead of associated functions.
// FIXME(generic_const_items): If possible extract the common parts of `compare_{type,const}_predicate_entailment`.
#[instrument(level = "debug", skip(tcx))]
fn compare_const_predicate_entailment<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_ct: ty::AssocItem,
    trait_ct: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    let impl_ct_def_id = impl_ct.def_id.expect_local();
    let impl_ct_span = tcx.def_span(impl_ct_def_id);

    // The below is for the most part highly similar to the procedure
    // for methods above. It is simpler in many respects, especially
    // because we shouldn't really have to deal with lifetimes or
    // predicates. In fact some of this should probably be put into
    // shared functions because of DRY violations...
    let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_ct.def_id).rebase_onto(
        tcx,
        impl_ct.container_id(tcx),
        impl_trait_ref.args,
    );

    // Create a parameter environment that represents the implementation's
    // associated const.
    let impl_ty = tcx.type_of(impl_ct_def_id).instantiate_identity();

    let trait_ty = tcx.type_of(trait_ct.def_id).instantiate(tcx, trait_to_impl_args);
    let code = ObligationCauseCode::CompareImplItem {
        impl_item_def_id: impl_ct_def_id,
        trait_item_def_id: trait_ct.def_id,
        kind: impl_ct.kind,
    };
    let mut cause = ObligationCause::new(impl_ct_span, impl_ct_def_id, code.clone());

    let impl_ct_predicates = tcx.predicates_of(impl_ct.def_id);
    let trait_ct_predicates = tcx.predicates_of(trait_ct.def_id);

    // The predicates declared by the impl definition, the trait and the
    // associated const in the trait are assumed.
    let impl_predicates = tcx.predicates_of(impl_ct_predicates.parent.unwrap());
    let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
    hybrid_preds.extend(
        trait_ct_predicates
            .instantiate_own(tcx, trait_to_impl_args)
            .map(|(predicate, _)| predicate),
    );

    let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds));
    let param_env = traits::normalize_param_env_or_error(
        tcx,
        param_env,
        ObligationCause::misc(impl_ct_span, impl_ct_def_id),
    );

    let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);

    let impl_ct_own_bounds = impl_ct_predicates.instantiate_own_identity();
    for (predicate, span) in impl_ct_own_bounds {
        let cause = ObligationCause::misc(span, impl_ct_def_id);
        let predicate = ocx.normalize(&cause, param_env, predicate);

        let cause = ObligationCause::new(span, impl_ct_def_id, code.clone());
        ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
    }

    // There is no "body" here, so just pass dummy id.
    let impl_ty = ocx.normalize(&cause, param_env, impl_ty);
    debug!(?impl_ty);

    let trait_ty = ocx.normalize(&cause, param_env, trait_ty);
    debug!(?trait_ty);

    let err = ocx.sup(&cause, param_env, trait_ty, impl_ty);

    if let Err(terr) = err {
        debug!(?impl_ty, ?trait_ty);

        // Locate the Span containing just the type of the offending impl
        let (ty, _) = tcx.hir().expect_impl_item(impl_ct_def_id).expect_const();
        cause.span = ty.span;

        let mut diag = struct_span_code_err!(
            tcx.dcx(),
            cause.span,
            E0326,
            "implemented const `{}` has an incompatible type for trait",
            trait_ct.name
        );

        let trait_c_span = trait_ct.def_id.as_local().map(|trait_ct_def_id| {
            // Add a label to the Span containing just the type of the const
            let (ty, _) = tcx.hir().expect_trait_item(trait_ct_def_id).expect_const();
            ty.span
        });

        infcx.err_ctxt().note_type_err(
            &mut diag,
            &cause,
            trait_c_span.map(|span| (span, Cow::from("type in trait"), false)),
            Some(param_env.and(infer::ValuePairs::Terms(ExpectedFound {
                expected: trait_ty.into(),
                found: impl_ty.into(),
            }))),
            terr,
            false,
        );
        return Err(diag.emit());
    };

    // Check that all obligations are satisfied by the implementation's
    // version.
    let errors = ocx.select_all_or_error();
    if !errors.is_empty() {
        return Err(infcx.err_ctxt().report_fulfillment_errors(errors));
    }

    let outlives_env = OutlivesEnvironment::new(param_env);
    ocx.resolve_regions_and_report_errors(impl_ct_def_id, &outlives_env)
}

#[instrument(level = "debug", skip(tcx))]
fn compare_impl_ty<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_ty: ty::AssocItem,
    trait_ty: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    compare_number_of_generics(tcx, impl_ty, trait_ty, false)?;
    compare_generic_param_kinds(tcx, impl_ty, trait_ty, false)?;
    check_region_bounds_on_impl_item(tcx, impl_ty, trait_ty, false)?;
    compare_type_predicate_entailment(tcx, impl_ty, trait_ty, impl_trait_ref)?;
    check_type_bounds(tcx, trait_ty, impl_ty, impl_trait_ref)
}

/// The equivalent of [compare_method_predicate_entailment], but for associated types
/// instead of associated functions.
#[instrument(level = "debug", skip(tcx))]
fn compare_type_predicate_entailment<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_ty: ty::AssocItem,
    trait_ty: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    let impl_def_id = impl_ty.container_id(tcx);
    let trait_to_impl_args = GenericArgs::identity_for_item(tcx, impl_ty.def_id).rebase_onto(
        tcx,
        impl_def_id,
        impl_trait_ref.args,
    );

    let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
    let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);

    let impl_ty_own_bounds = impl_ty_predicates.instantiate_own_identity();
    // If there are no bounds, then there are no const conditions, so no need to check that here.
    if impl_ty_own_bounds.len() == 0 {
        // Nothing to check.
        return Ok(());
    }

    // This `DefId` should be used for the `body_id` field on each
    // `ObligationCause` (and the `FnCtxt`). This is what
    // `regionck_item` expects.
    let impl_ty_def_id = impl_ty.def_id.expect_local();
    debug!(?trait_to_impl_args);

    // The predicates declared by the impl definition, the trait and the
    // associated type in the trait are assumed.
    let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
    let mut hybrid_preds = impl_predicates.instantiate_identity(tcx).predicates;
    hybrid_preds.extend(
        trait_ty_predicates
            .instantiate_own(tcx, trait_to_impl_args)
            .map(|(predicate, _)| predicate),
    );
    debug!(?hybrid_preds);

    let impl_ty_span = tcx.def_span(impl_ty_def_id);
    let normalize_cause = ObligationCause::misc(impl_ty_span, impl_ty_def_id);

    let is_conditionally_const = tcx.is_conditionally_const(impl_ty.def_id);
    if is_conditionally_const {
        // Augment the hybrid param-env with the const conditions
        // of the impl header and the trait assoc type.
        hybrid_preds.extend(
            tcx.const_conditions(impl_ty_predicates.parent.unwrap())
                .instantiate_identity(tcx)
                .into_iter()
                .chain(
                    tcx.const_conditions(trait_ty.def_id).instantiate_own(tcx, trait_to_impl_args),
                )
                .map(|(trait_ref, _)| {
                    trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe)
                }),
        );
    }

    let param_env = ty::ParamEnv::new(tcx.mk_clauses(&hybrid_preds));
    let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
    debug!(caller_bounds=?param_env.caller_bounds());

    let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);

    for (predicate, span) in impl_ty_own_bounds {
        let cause = ObligationCause::misc(span, impl_ty_def_id);
        let predicate = ocx.normalize(&cause, param_env, predicate);

        let cause =
            ObligationCause::new(span, impl_ty_def_id, ObligationCauseCode::CompareImplItem {
                impl_item_def_id: impl_ty.def_id.expect_local(),
                trait_item_def_id: trait_ty.def_id,
                kind: impl_ty.kind,
            });
        ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
    }

    if is_conditionally_const {
        // Validate the const conditions of the impl associated type.
        let impl_ty_own_const_conditions =
            tcx.const_conditions(impl_ty.def_id).instantiate_own_identity();
        for (const_condition, span) in impl_ty_own_const_conditions {
            let normalize_cause = traits::ObligationCause::misc(span, impl_ty_def_id);
            let const_condition = ocx.normalize(&normalize_cause, param_env, const_condition);

            let cause =
                ObligationCause::new(span, impl_ty_def_id, ObligationCauseCode::CompareImplItem {
                    impl_item_def_id: impl_ty_def_id,
                    trait_item_def_id: trait_ty.def_id,
                    kind: impl_ty.kind,
                });
            ocx.register_obligation(traits::Obligation::new(
                tcx,
                cause,
                param_env,
                const_condition.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
            ));
        }
    }

    // Check that all obligations are satisfied by the implementation's
    // version.
    let errors = ocx.select_all_or_error();
    if !errors.is_empty() {
        let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
        return Err(reported);
    }

    // Finally, resolve all regions. This catches wily misuses of
    // lifetime parameters.
    let outlives_env = OutlivesEnvironment::new(param_env);
    ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
}

/// Validate that `ProjectionCandidate`s created for this associated type will
/// be valid.
///
/// Usually given
///
/// trait X { type Y: Copy } impl X for T { type Y = S; }
///
/// We are able to normalize `<T as X>::Y` to `S`, and so when we check the
/// impl is well-formed we have to prove `S: Copy`.
///
/// For default associated types the normalization is not possible (the value
/// from the impl could be overridden). We also can't normalize generic
/// associated types (yet) because they contain bound parameters.
#[instrument(level = "debug", skip(tcx))]
pub(super) fn check_type_bounds<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ty: ty::AssocItem,
    impl_ty: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    // Avoid bogus "type annotations needed `Foo: Bar`" errors on `impl Bar for Foo` in case
    // other `Foo` impls are incoherent.
    tcx.ensure().coherent_trait(impl_trait_ref.def_id)?;

    let param_env = tcx.param_env(impl_ty.def_id);
    debug!(?param_env);

    let container_id = impl_ty.container_id(tcx);
    let impl_ty_def_id = impl_ty.def_id.expect_local();
    let impl_ty_args = GenericArgs::identity_for_item(tcx, impl_ty.def_id);
    let rebased_args = impl_ty_args.rebase_onto(tcx, container_id, impl_trait_ref.args);

    let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);

    // A synthetic impl Trait for RPITIT desugaring or assoc type for effects desugaring has no HIR,
    // which we currently use to get the span for an impl's associated type. Instead, for these,
    // use the def_span for the synthesized  associated type.
    let impl_ty_span = if impl_ty.is_impl_trait_in_trait() {
        tcx.def_span(impl_ty_def_id)
    } else {
        match tcx.hir_node_by_def_id(impl_ty_def_id) {
            hir::Node::TraitItem(hir::TraitItem {
                kind: hir::TraitItemKind::Type(_, Some(ty)),
                ..
            }) => ty.span,
            hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Type(ty), .. }) => ty.span,
            item => span_bug!(
                tcx.def_span(impl_ty_def_id),
                "cannot call `check_type_bounds` on item: {item:?}",
            ),
        }
    };
    let assumed_wf_types = ocx.assumed_wf_types_and_report_errors(param_env, impl_ty_def_id)?;

    let normalize_cause = ObligationCause::new(
        impl_ty_span,
        impl_ty_def_id,
        ObligationCauseCode::CheckAssociatedTypeBounds {
            impl_item_def_id: impl_ty.def_id.expect_local(),
            trait_item_def_id: trait_ty.def_id,
        },
    );
    let mk_cause = |span: Span| {
        let code = ObligationCauseCode::WhereClause(trait_ty.def_id, span);
        ObligationCause::new(impl_ty_span, impl_ty_def_id, code)
    };

    let mut obligations: Vec<_> = tcx
        .explicit_item_bounds(trait_ty.def_id)
        .iter_instantiated_copied(tcx, rebased_args)
        .map(|(concrete_ty_bound, span)| {
            debug!(?concrete_ty_bound);
            traits::Obligation::new(tcx, mk_cause(span), param_env, concrete_ty_bound)
        })
        .collect();

    // Only in a const implementation do we need to check that the `~const` item bounds hold.
    if tcx.is_conditionally_const(impl_ty_def_id) {
        obligations.extend(
            tcx.explicit_implied_const_bounds(trait_ty.def_id)
                .iter_instantiated_copied(tcx, rebased_args)
                .map(|(c, span)| {
                    traits::Obligation::new(
                        tcx,
                        mk_cause(span),
                        param_env,
                        c.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
                    )
                }),
        );
    }
    debug!(item_bounds=?obligations);

    // Normalize predicates with the assumption that the GAT may always normalize
    // to its definition type. This should be the param-env we use to *prove* the
    // predicate too, but we don't do that because of performance issues.
    // See <https://github.com/rust-lang/rust/pull/117542#issue-1976337685>.
    let trait_projection_ty = Ty::new_projection_from_args(tcx, trait_ty.def_id, rebased_args);
    let impl_identity_ty = tcx.type_of(impl_ty.def_id).instantiate_identity();
    let normalize_param_env = param_env_with_gat_bounds(tcx, impl_ty, impl_trait_ref);
    for mut obligation in util::elaborate(tcx, obligations) {
        let normalized_predicate = if infcx.next_trait_solver() {
            obligation.predicate.fold_with(&mut ReplaceTy {
                tcx,
                from: trait_projection_ty,
                to: impl_identity_ty,
            })
        } else {
            ocx.normalize(&normalize_cause, normalize_param_env, obligation.predicate)
        };
        debug!(?normalized_predicate);
        obligation.predicate = normalized_predicate;

        ocx.register_obligation(obligation);
    }
    // Check that all obligations are satisfied by the implementation's
    // version.
    let errors = ocx.select_all_or_error();
    if !errors.is_empty() {
        let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
        return Err(reported);
    }

    // Finally, resolve all regions. This catches wily misuses of
    // lifetime parameters.
    let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_def_id, &assumed_wf_types);
    let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
    ocx.resolve_regions_and_report_errors(impl_ty_def_id, &outlives_env)
}

struct ReplaceTy<'tcx> {
    tcx: TyCtxt<'tcx>,
    from: Ty<'tcx>,
    to: Ty<'tcx>,
}

impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceTy<'tcx> {
    fn cx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        if self.from == ty { self.to } else { ty.super_fold_with(self) }
    }
}

/// Install projection predicates that allow GATs to project to their own
/// definition types. This is not allowed in general in cases of default
/// associated types in trait definitions, or when specialization is involved,
/// but is needed when checking these definition types actually satisfy the
/// trait bounds of the GAT.
///
/// # How it works
///
/// ```ignore (example)
/// impl<A, B> Foo<u32> for (A, B) {
///     type Bar<C> = Wrapper<A, B, C>
/// }
/// ```
///
/// - `impl_trait_ref` would be `<(A, B) as Foo<u32>>`
/// - `normalize_impl_ty_args` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
/// - `normalize_impl_ty` would be `Wrapper<A, B, ^0.0>`
/// - `rebased_args` would be `[(A, B), u32, ^0.0]`, combining the args from
///    the *trait* with the generic associated type parameters (as bound vars).
///
/// A note regarding the use of bound vars here:
/// Imagine as an example
/// ```
/// trait Family {
///     type Member<C: Eq>;
/// }
///
/// impl Family for VecFamily {
///     type Member<C: Eq> = i32;
/// }
/// ```
/// Here, we would generate
/// ```ignore (pseudo-rust)
/// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
/// ```
///
/// when we really would like to generate
/// ```ignore (pseudo-rust)
/// forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
/// ```
///
/// But, this is probably fine, because although the first clause can be used with types `C` that
/// do not implement `Eq`, for it to cause some kind of problem, there would have to be a
/// `VecFamily::Member<X>` for some type `X` where `!(X: Eq)`, that appears in the value of type
/// `Member<C: Eq> = ....` That type would fail a well-formedness check that we ought to be doing
/// elsewhere, which would check that any `<T as Family>::Member<X>` meets the bounds declared in
/// the trait (notably, that `X: Eq` and `T: Family`).
fn param_env_with_gat_bounds<'tcx>(
    tcx: TyCtxt<'tcx>,
    impl_ty: ty::AssocItem,
    impl_trait_ref: ty::TraitRef<'tcx>,
) -> ty::ParamEnv<'tcx> {
    let param_env = tcx.param_env(impl_ty.def_id);
    let container_id = impl_ty.container_id(tcx);
    let mut predicates = param_env.caller_bounds().to_vec();

    // for RPITITs, we should install predicates that allow us to project all
    // of the RPITITs associated with the same body. This is because checking
    // the item bounds of RPITITs often involves nested RPITITs having to prove
    // bounds about themselves.
    let impl_tys_to_install = match impl_ty.opt_rpitit_info {
        None => vec![impl_ty],
        Some(
            ty::ImplTraitInTraitData::Impl { fn_def_id }
            | ty::ImplTraitInTraitData::Trait { fn_def_id, .. },
        ) => tcx
            .associated_types_for_impl_traits_in_associated_fn(fn_def_id)
            .iter()
            .map(|def_id| tcx.associated_item(*def_id))
            .collect(),
    };

    for impl_ty in impl_tys_to_install {
        let trait_ty = match impl_ty.container {
            ty::AssocItemContainer::Trait => impl_ty,
            ty::AssocItemContainer::Impl => tcx.associated_item(impl_ty.trait_item_def_id.unwrap()),
        };

        let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
            smallvec::SmallVec::with_capacity(tcx.generics_of(impl_ty.def_id).own_params.len());
        // Extend the impl's identity args with late-bound GAT vars
        let normalize_impl_ty_args = ty::GenericArgs::identity_for_item(tcx, container_id)
            .extend_to(tcx, impl_ty.def_id, |param, _| match param.kind {
                GenericParamDefKind::Type { .. } => {
                    let kind = ty::BoundTyKind::Param(param.def_id, param.name);
                    let bound_var = ty::BoundVariableKind::Ty(kind);
                    bound_vars.push(bound_var);
                    Ty::new_bound(tcx, ty::INNERMOST, ty::BoundTy {
                        var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                        kind,
                    })
                    .into()
                }
                GenericParamDefKind::Lifetime => {
                    let kind = ty::BoundRegionKind::Named(param.def_id, param.name);
                    let bound_var = ty::BoundVariableKind::Region(kind);
                    bound_vars.push(bound_var);
                    ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion {
                        var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                        kind,
                    })
                    .into()
                }
                GenericParamDefKind::Const { .. } => {
                    let bound_var = ty::BoundVariableKind::Const;
                    bound_vars.push(bound_var);
                    ty::Const::new_bound(
                        tcx,
                        ty::INNERMOST,
                        ty::BoundVar::from_usize(bound_vars.len() - 1),
                    )
                    .into()
                }
            });
        // When checking something like
        //
        // trait X { type Y: PartialEq<<Self as X>::Y> }
        // impl X for T { default type Y = S; }
        //
        // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
        // we want <T as X>::Y to normalize to S. This is valid because we are
        // checking the default value specifically here. Add this equality to the
        // ParamEnv for normalization specifically.
        let normalize_impl_ty =
            tcx.type_of(impl_ty.def_id).instantiate(tcx, normalize_impl_ty_args);
        let rebased_args =
            normalize_impl_ty_args.rebase_onto(tcx, container_id, impl_trait_ref.args);
        let bound_vars = tcx.mk_bound_variable_kinds(&bound_vars);

        match normalize_impl_ty.kind() {
            ty::Alias(ty::Projection, proj)
                if proj.def_id == trait_ty.def_id && proj.args == rebased_args =>
            {
                // Don't include this predicate if the projected type is
                // exactly the same as the projection. This can occur in
                // (somewhat dubious) code like this:
                //
                // impl<T> X for T where T: X { type Y = <T as X>::Y; }
            }
            _ => predicates.push(
                ty::Binder::bind_with_vars(
                    ty::ProjectionPredicate {
                        projection_term: ty::AliasTerm::new_from_args(
                            tcx,
                            trait_ty.def_id,
                            rebased_args,
                        ),
                        term: normalize_impl_ty.into(),
                    },
                    bound_vars,
                )
                .upcast(tcx),
            ),
        };
    }

    ty::ParamEnv::new(tcx.mk_clauses(&predicates))
}

/// Manually check here that `async fn foo()` wasn't matched against `fn foo()`,
/// and extract a better error if so.
fn try_report_async_mismatch<'tcx>(
    tcx: TyCtxt<'tcx>,
    infcx: &InferCtxt<'tcx>,
    errors: &[FulfillmentError<'tcx>],
    trait_m: ty::AssocItem,
    impl_m: ty::AssocItem,
    impl_sig: ty::FnSig<'tcx>,
) -> Result<(), ErrorGuaranteed> {
    if !tcx.asyncness(trait_m.def_id).is_async() {
        return Ok(());
    }

    let ty::Alias(ty::Projection, ty::AliasTy { def_id: async_future_def_id, .. }) =
        *tcx.fn_sig(trait_m.def_id).skip_binder().skip_binder().output().kind()
    else {
        bug!("expected `async fn` to return an RPITIT");
    };

    for error in errors {
        if let ObligationCauseCode::WhereClause(def_id, _) = *error.root_obligation.cause.code()
            && def_id == async_future_def_id
            && let Some(proj) = error.root_obligation.predicate.as_projection_clause()
            && let Some(proj) = proj.no_bound_vars()
            && infcx.can_eq(
                error.root_obligation.param_env,
                proj.term.expect_type(),
                impl_sig.output(),
            )
        {
            // FIXME: We should suggest making the fn `async`, but extracting
            // the right span is a bit difficult.
            return Err(tcx.sess.dcx().emit_err(MethodShouldReturnFuture {
                span: tcx.def_span(impl_m.def_id),
                method_name: trait_m.name,
                trait_item_span: tcx.hir().span_if_local(trait_m.def_id),
            }));
        }
    }

    Ok(())
}