rustc_trait_selection/traits/mod.rs
1//! Trait Resolution. See the [rustc dev guide] for more information on how this works.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
4
5pub mod auto_trait;
6pub(crate) mod coherence;
7pub mod const_evaluatable;
8mod dyn_compatibility;
9pub mod effects;
10mod engine;
11mod fulfill;
12pub mod misc;
13pub mod normalize;
14pub mod outlives_bounds;
15pub mod project;
16pub mod query;
17#[allow(hidden_glob_reexports)]
18mod select;
19mod specialize;
20mod structural_normalize;
21#[allow(hidden_glob_reexports)]
22mod util;
23pub mod vtable;
24pub mod wf;
25
26use std::fmt::Debug;
27use std::ops::ControlFlow;
28
29use rustc_errors::ErrorGuaranteed;
30use rustc_hir::def::DefKind;
31pub use rustc_infer::traits::*;
32use rustc_middle::query::Providers;
33use rustc_middle::span_bug;
34use rustc_middle::ty::error::{ExpectedFound, TypeError};
35use rustc_middle::ty::{
36 self, GenericArgs, GenericArgsRef, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
37 TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypingMode, Upcast,
38};
39use rustc_span::Span;
40use rustc_span::def_id::DefId;
41use tracing::{debug, instrument};
42
43pub use self::coherence::{
44 InCrate, IsFirstInputType, OrphanCheckErr, OrphanCheckMode, OverlapResult, UncoveredTyParams,
45 add_placeholder_note, orphan_check_trait_ref, overlapping_inherent_impls,
46 overlapping_trait_impls,
47};
48pub use self::dyn_compatibility::{
49 DynCompatibilityViolation, dyn_compatibility_violations_for_assoc_item,
50 hir_ty_lowering_dyn_compatibility_violations, is_vtable_safe_method,
51};
52pub use self::engine::{ObligationCtxt, TraitEngineExt};
53pub use self::fulfill::{FulfillmentContext, OldSolverError, PendingPredicateObligation};
54pub use self::normalize::NormalizeExt;
55pub use self::project::{normalize_inherent_projection, normalize_projection_term};
56pub use self::select::{
57 EvaluationCache, EvaluationResult, IntercrateAmbiguityCause, OverflowError, SelectionCache,
58 SelectionContext,
59};
60pub use self::specialize::specialization_graph::{
61 FutureCompatOverlapError, FutureCompatOverlapErrorKind,
62};
63pub use self::specialize::{
64 OverlapError, specialization_graph, translate_args, translate_args_with_cause,
65};
66pub use self::structural_normalize::StructurallyNormalizeExt;
67pub use self::util::{
68 BoundVarReplacer, PlaceholderReplacer, elaborate, expand_trait_aliases, impl_item_is_final,
69 sizedness_fast_path, supertrait_def_ids, supertraits, transitive_bounds_that_define_assoc_item,
70 upcast_choices, with_replaced_escaping_bound_vars,
71};
72use crate::error_reporting::InferCtxtErrorExt;
73use crate::infer::outlives::env::OutlivesEnvironment;
74use crate::infer::{InferCtxt, TyCtxtInferExt};
75use crate::regions::InferCtxtRegionExt;
76use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
77
78#[derive(Debug)]
79pub struct FulfillmentError<'tcx> {
80 pub obligation: PredicateObligation<'tcx>,
81 pub code: FulfillmentErrorCode<'tcx>,
82 /// Diagnostics only: the 'root' obligation which resulted in
83 /// the failure to process `obligation`. This is the obligation
84 /// that was initially passed to `register_predicate_obligation`
85 pub root_obligation: PredicateObligation<'tcx>,
86}
87
88impl<'tcx> FulfillmentError<'tcx> {
89 pub fn new(
90 obligation: PredicateObligation<'tcx>,
91 code: FulfillmentErrorCode<'tcx>,
92 root_obligation: PredicateObligation<'tcx>,
93 ) -> FulfillmentError<'tcx> {
94 FulfillmentError { obligation, code, root_obligation }
95 }
96
97 pub fn is_true_error(&self) -> bool {
98 match self.code {
99 FulfillmentErrorCode::Select(_)
100 | FulfillmentErrorCode::Project(_)
101 | FulfillmentErrorCode::Subtype(_, _)
102 | FulfillmentErrorCode::ConstEquate(_, _) => true,
103 FulfillmentErrorCode::Cycle(_) | FulfillmentErrorCode::Ambiguity { overflow: _ } => {
104 false
105 }
106 }
107 }
108}
109
110#[derive(Clone)]
111pub enum FulfillmentErrorCode<'tcx> {
112 /// Inherently impossible to fulfill; this trait is implemented if and only
113 /// if it is already implemented.
114 Cycle(PredicateObligations<'tcx>),
115 Select(SelectionError<'tcx>),
116 Project(MismatchedProjectionTypes<'tcx>),
117 Subtype(ExpectedFound<Ty<'tcx>>, TypeError<'tcx>), // always comes from a SubtypePredicate
118 ConstEquate(ExpectedFound<ty::Const<'tcx>>, TypeError<'tcx>),
119 Ambiguity {
120 /// Overflow is only `Some(suggest_recursion_limit)` when using the next generation
121 /// trait solver `-Znext-solver`. With the old solver overflow is eagerly handled by
122 /// emitting a fatal error instead.
123 overflow: Option<bool>,
124 },
125}
126
127impl<'tcx> Debug for FulfillmentErrorCode<'tcx> {
128 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
129 match *self {
130 FulfillmentErrorCode::Select(ref e) => write!(f, "{e:?}"),
131 FulfillmentErrorCode::Project(ref e) => write!(f, "{e:?}"),
132 FulfillmentErrorCode::Subtype(ref a, ref b) => {
133 write!(f, "CodeSubtypeError({a:?}, {b:?})")
134 }
135 FulfillmentErrorCode::ConstEquate(ref a, ref b) => {
136 write!(f, "CodeConstEquateError({a:?}, {b:?})")
137 }
138 FulfillmentErrorCode::Ambiguity { overflow: None } => write!(f, "Ambiguity"),
139 FulfillmentErrorCode::Ambiguity { overflow: Some(suggest_increasing_limit) } => {
140 write!(f, "Overflow({suggest_increasing_limit})")
141 }
142 FulfillmentErrorCode::Cycle(ref cycle) => write!(f, "Cycle({cycle:?})"),
143 }
144 }
145}
146
147/// Whether to skip the leak check, as part of a future compatibility warning step.
148///
149/// The "default" for skip-leak-check corresponds to the current
150/// behavior (do not skip the leak check) -- not the behavior we are
151/// transitioning into.
152#[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
153pub enum SkipLeakCheck {
154 Yes,
155 #[default]
156 No,
157}
158
159impl SkipLeakCheck {
160 fn is_yes(self) -> bool {
161 self == SkipLeakCheck::Yes
162 }
163}
164
165/// The mode that trait queries run in.
166#[derive(Copy, Clone, PartialEq, Eq, Debug)]
167pub enum TraitQueryMode {
168 /// Standard/un-canonicalized queries get accurate
169 /// spans etc. passed in and hence can do reasonable
170 /// error reporting on their own.
171 Standard,
172 /// Canonical queries get dummy spans and hence
173 /// must generally propagate errors to
174 /// pre-canonicalization callsites.
175 Canonical,
176}
177
178/// Creates predicate obligations from the generic bounds.
179#[instrument(level = "debug", skip(cause, param_env))]
180pub fn predicates_for_generics<'tcx>(
181 cause: impl Fn(usize, Span) -> ObligationCause<'tcx>,
182 param_env: ty::ParamEnv<'tcx>,
183 generic_bounds: ty::InstantiatedPredicates<'tcx>,
184) -> impl Iterator<Item = PredicateObligation<'tcx>> {
185 generic_bounds.into_iter().enumerate().map(move |(idx, (clause, span))| Obligation {
186 cause: cause(idx, span),
187 recursion_depth: 0,
188 param_env,
189 predicate: clause.as_predicate(),
190 })
191}
192
193/// Determines whether the type `ty` is known to meet `bound` and
194/// returns true if so. Returns false if `ty` either does not meet
195/// `bound` or is not known to meet bound (note that this is
196/// conservative towards *no impl*, which is the opposite of the
197/// `evaluate` methods).
198pub fn type_known_to_meet_bound_modulo_regions<'tcx>(
199 infcx: &InferCtxt<'tcx>,
200 param_env: ty::ParamEnv<'tcx>,
201 ty: Ty<'tcx>,
202 def_id: DefId,
203) -> bool {
204 let trait_ref = ty::TraitRef::new(infcx.tcx, def_id, [ty]);
205 pred_known_to_hold_modulo_regions(infcx, param_env, trait_ref)
206}
207
208/// FIXME(@lcnr): this function doesn't seem right and shouldn't exist?
209///
210/// Ping me on zulip if you want to use this method and need help with finding
211/// an appropriate replacement.
212#[instrument(level = "debug", skip(infcx, param_env, pred), ret)]
213fn pred_known_to_hold_modulo_regions<'tcx>(
214 infcx: &InferCtxt<'tcx>,
215 param_env: ty::ParamEnv<'tcx>,
216 pred: impl Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>>,
217) -> bool {
218 let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, pred);
219
220 let result = infcx.evaluate_obligation_no_overflow(&obligation);
221 debug!(?result);
222
223 if result.must_apply_modulo_regions() {
224 true
225 } else if result.may_apply() && !infcx.next_trait_solver() {
226 // Sometimes obligations are ambiguous because the recursive evaluator
227 // is not smart enough, so we fall back to fulfillment when we're not certain
228 // that an obligation holds or not. Even still, we must make sure that
229 // the we do no inference in the process of checking this obligation.
230 let goal = infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
231 infcx.probe(|_| {
232 let ocx = ObligationCtxt::new(infcx);
233 ocx.register_obligation(obligation);
234
235 let errors = ocx.evaluate_obligations_error_on_ambiguity();
236 match errors.as_slice() {
237 // Only known to hold if we did no inference.
238 [] => infcx.resolve_vars_if_possible(goal) == goal,
239
240 errors => {
241 debug!(?errors);
242 false
243 }
244 }
245 })
246 } else {
247 false
248 }
249}
250
251#[instrument(level = "debug", skip(tcx, elaborated_env))]
252fn do_normalize_predicates<'tcx>(
253 tcx: TyCtxt<'tcx>,
254 cause: ObligationCause<'tcx>,
255 elaborated_env: ty::ParamEnv<'tcx>,
256 predicates: Vec<ty::Clause<'tcx>>,
257) -> Result<Vec<ty::Clause<'tcx>>, ErrorGuaranteed> {
258 let span = cause.span;
259
260 // FIXME. We should really... do something with these region
261 // obligations. But this call just continues the older
262 // behavior (i.e., doesn't cause any new bugs), and it would
263 // take some further refactoring to actually solve them. In
264 // particular, we would have to handle implied bounds
265 // properly, and that code is currently largely confined to
266 // regionck (though I made some efforts to extract it
267 // out). -nmatsakis
268 //
269 // @arielby: In any case, these obligations are checked
270 // by wfcheck anyway, so I'm not sure we have to check
271 // them here too, and we will remove this function when
272 // we move over to lazy normalization *anyway*.
273 let infcx = tcx.infer_ctxt().ignoring_regions().build(TypingMode::non_body_analysis());
274 let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
275 let predicates = ocx.normalize(&cause, elaborated_env, predicates);
276
277 let errors = ocx.evaluate_obligations_error_on_ambiguity();
278 if !errors.is_empty() {
279 let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
280 return Err(reported);
281 }
282
283 debug!("do_normalize_predicates: normalized predicates = {:?}", predicates);
284
285 // We can use the `elaborated_env` here; the region code only
286 // cares about declarations like `'a: 'b`.
287 // FIXME: It's very weird that we ignore region obligations but apparently
288 // still need to use `resolve_regions` as we need the resolved regions in
289 // the normalized predicates.
290 let errors = infcx.resolve_regions(cause.body_id, elaborated_env, []);
291 if !errors.is_empty() {
292 tcx.dcx().span_delayed_bug(
293 span,
294 format!("failed region resolution while normalizing {elaborated_env:?}: {errors:?}"),
295 );
296 }
297
298 match infcx.fully_resolve(predicates) {
299 Ok(predicates) => Ok(predicates),
300 Err(fixup_err) => {
301 // If we encounter a fixup error, it means that some type
302 // variable wound up unconstrained. I actually don't know
303 // if this can happen, and I certainly don't expect it to
304 // happen often, but if it did happen it probably
305 // represents a legitimate failure due to some kind of
306 // unconstrained variable.
307 //
308 // @lcnr: Let's still ICE here for now. I want a test case
309 // for that.
310 span_bug!(
311 span,
312 "inference variables in normalized parameter environment: {}",
313 fixup_err
314 );
315 }
316 }
317}
318
319// FIXME: this is gonna need to be removed ...
320/// Normalizes the parameter environment, reporting errors if they occur.
321#[instrument(level = "debug", skip(tcx))]
322pub fn normalize_param_env_or_error<'tcx>(
323 tcx: TyCtxt<'tcx>,
324 unnormalized_env: ty::ParamEnv<'tcx>,
325 cause: ObligationCause<'tcx>,
326) -> ty::ParamEnv<'tcx> {
327 // I'm not wild about reporting errors here; I'd prefer to
328 // have the errors get reported at a defined place (e.g.,
329 // during typeck). Instead I have all parameter
330 // environments, in effect, going through this function
331 // and hence potentially reporting errors. This ensures of
332 // course that we never forget to normalize (the
333 // alternative seemed like it would involve a lot of
334 // manual invocations of this fn -- and then we'd have to
335 // deal with the errors at each of those sites).
336 //
337 // In any case, in practice, typeck constructs all the
338 // parameter environments once for every fn as it goes,
339 // and errors will get reported then; so outside of type inference we
340 // can be sure that no errors should occur.
341 let mut predicates: Vec<_> = util::elaborate(
342 tcx,
343 unnormalized_env.caller_bounds().into_iter().map(|predicate| {
344 if tcx.features().generic_const_exprs() || tcx.next_trait_solver_globally() {
345 return predicate;
346 }
347
348 struct ConstNormalizer<'tcx>(TyCtxt<'tcx>);
349
350 impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ConstNormalizer<'tcx> {
351 fn cx(&self) -> TyCtxt<'tcx> {
352 self.0
353 }
354
355 fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
356 // FIXME(return_type_notation): track binders in this normalizer, as
357 // `ty::Const::normalize` can only work with properly preserved binders.
358
359 if c.has_escaping_bound_vars() {
360 return ty::Const::new_misc_error(self.0);
361 }
362
363 // While it is pretty sus to be evaluating things with an empty param env, it
364 // should actually be okay since without `feature(generic_const_exprs)` the only
365 // const arguments that have a non-empty param env are array repeat counts. These
366 // do not appear in the type system though.
367 if let ty::ConstKind::Unevaluated(uv) = c.kind()
368 && self.0.def_kind(uv.def) == DefKind::AnonConst
369 {
370 let infcx = self.0.infer_ctxt().build(TypingMode::non_body_analysis());
371 let c = evaluate_const(&infcx, c, ty::ParamEnv::empty());
372 // We should never wind up with any `infcx` local state when normalizing anon consts
373 // under min const generics.
374 assert!(!c.has_infer() && !c.has_placeholders());
375 return c;
376 }
377
378 c
379 }
380 }
381
382 // This whole normalization step is a hack to work around the fact that
383 // `normalize_param_env_or_error` is fundamentally broken from using an
384 // unnormalized param env with a trait solver that expects the param env
385 // to be normalized.
386 //
387 // When normalizing the param env we can end up evaluating obligations
388 // that have been normalized but can only be proven via a where clause
389 // which is still in its unnormalized form. example:
390 //
391 // Attempting to prove `T: Trait<<u8 as Identity>::Assoc>` in a param env
392 // with a `T: Trait<<u8 as Identity>::Assoc>` where clause will fail because
393 // we first normalize obligations before proving them so we end up proving
394 // `T: Trait<u8>`. Since lazy normalization is not implemented equating `u8`
395 // with `<u8 as Identity>::Assoc` fails outright so we incorrectly believe that
396 // we cannot prove `T: Trait<u8>`.
397 //
398 // The same thing is true for const generics- attempting to prove
399 // `T: Trait<ConstKind::Unevaluated(...)>` with the same thing as a where clauses
400 // will fail. After normalization we may be attempting to prove `T: Trait<4>` with
401 // the unnormalized where clause `T: Trait<ConstKind::Unevaluated(...)>`. In order
402 // for the obligation to hold `4` must be equal to `ConstKind::Unevaluated(...)`
403 // but as we do not have lazy norm implemented, equating the two consts fails outright.
404 //
405 // Ideally we would not normalize consts here at all but it is required for backwards
406 // compatibility. Eventually when lazy norm is implemented this can just be removed.
407 // We do not normalize types here as there is no backwards compatibility requirement
408 // for us to do so.
409 predicate.fold_with(&mut ConstNormalizer(tcx))
410 }),
411 )
412 .collect();
413
414 debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);
415
416 let elaborated_env = ty::ParamEnv::new(tcx.mk_clauses(&predicates));
417 if !elaborated_env.has_aliases() {
418 return elaborated_env;
419 }
420
421 // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
422 // normalization expects its param-env to be already normalized, which means we have
423 // a circularity.
424 //
425 // The way we handle this is by normalizing the param-env inside an unnormalized version
426 // of the param-env, which means that if the param-env contains unnormalized projections,
427 // we'll have some normalization failures. This is unfortunate.
428 //
429 // Lazy normalization would basically handle this by treating just the
430 // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
431 //
432 // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
433 // types, so to make the situation less bad, we normalize all the predicates *but*
434 // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
435 // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
436 //
437 // This works fairly well because trait matching does not actually care about param-env
438 // TypeOutlives predicates - these are normally used by regionck.
439 let outlives_predicates: Vec<_> = predicates
440 .extract_if(.., |predicate| {
441 matches!(predicate.kind().skip_binder(), ty::ClauseKind::TypeOutlives(..))
442 })
443 .collect();
444
445 debug!(
446 "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
447 predicates, outlives_predicates
448 );
449 let Ok(non_outlives_predicates) =
450 do_normalize_predicates(tcx, cause.clone(), elaborated_env, predicates)
451 else {
452 // An unnormalized env is better than nothing.
453 debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
454 return elaborated_env;
455 };
456
457 debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
458
459 // Not sure whether it is better to include the unnormalized TypeOutlives predicates
460 // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
461 // predicates here anyway. Keeping them here anyway because it seems safer.
462 let outlives_env = non_outlives_predicates.iter().chain(&outlives_predicates).cloned();
463 let outlives_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(outlives_env));
464 let Ok(outlives_predicates) =
465 do_normalize_predicates(tcx, cause, outlives_env, outlives_predicates)
466 else {
467 // An unnormalized env is better than nothing.
468 debug!("normalize_param_env_or_error: errored resolving outlives predicates");
469 return elaborated_env;
470 };
471 debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
472
473 let mut predicates = non_outlives_predicates;
474 predicates.extend(outlives_predicates);
475 debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
476 ty::ParamEnv::new(tcx.mk_clauses(&predicates))
477}
478
479#[derive(Debug)]
480pub enum EvaluateConstErr {
481 /// The constant being evaluated was either a generic parameter or inference variable, *or*,
482 /// some unevaluated constant with either generic parameters or inference variables in its
483 /// generic arguments.
484 HasGenericsOrInfers,
485 /// The type this constant evaluated to is not valid for use in const generics. This should
486 /// always result in an error when checking the constant is correctly typed for the parameter
487 /// it is an argument to, so a bug is delayed when encountering this.
488 InvalidConstParamTy(ErrorGuaranteed),
489 /// CTFE failed to evaluate the constant in some unrecoverable way (e.g. encountered a `panic!`).
490 /// This is also used when the constant was already tainted by error.
491 EvaluationFailure(ErrorGuaranteed),
492}
493
494// FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine
495// FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own
496// normalization scheme
497/// Evaluates a type system constant returning a `ConstKind::Error` in cases where CTFE failed and
498/// returning the passed in constant if it was not fully concrete (i.e. depended on generic parameters
499/// or inference variables)
500///
501/// You should not call this function unless you are implementing normalization itself. Prefer to use
502/// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`.
503pub fn evaluate_const<'tcx>(
504 infcx: &InferCtxt<'tcx>,
505 ct: ty::Const<'tcx>,
506 param_env: ty::ParamEnv<'tcx>,
507) -> ty::Const<'tcx> {
508 match try_evaluate_const(infcx, ct, param_env) {
509 Ok(ct) => ct,
510 Err(EvaluateConstErr::EvaluationFailure(e) | EvaluateConstErr::InvalidConstParamTy(e)) => {
511 ty::Const::new_error(infcx.tcx, e)
512 }
513 Err(EvaluateConstErr::HasGenericsOrInfers) => ct,
514 }
515}
516
517// FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine
518// FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own
519// normalization scheme
520/// Evaluates a type system constant making sure to not allow constants that depend on generic parameters
521/// or inference variables to succeed in evaluating.
522///
523/// You should not call this function unless you are implementing normalization itself. Prefer to use
524/// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`.
525#[instrument(level = "debug", skip(infcx), ret)]
526pub fn try_evaluate_const<'tcx>(
527 infcx: &InferCtxt<'tcx>,
528 ct: ty::Const<'tcx>,
529 param_env: ty::ParamEnv<'tcx>,
530) -> Result<ty::Const<'tcx>, EvaluateConstErr> {
531 let tcx = infcx.tcx;
532 let ct = infcx.resolve_vars_if_possible(ct);
533 debug!(?ct);
534
535 match ct.kind() {
536 ty::ConstKind::Value(..) => Ok(ct),
537 ty::ConstKind::Error(e) => Err(EvaluateConstErr::EvaluationFailure(e)),
538 ty::ConstKind::Param(_)
539 | ty::ConstKind::Infer(_)
540 | ty::ConstKind::Bound(_, _)
541 | ty::ConstKind::Placeholder(_)
542 | ty::ConstKind::Expr(_) => Err(EvaluateConstErr::HasGenericsOrInfers),
543 ty::ConstKind::Unevaluated(uv) => {
544 let opt_anon_const_kind =
545 (tcx.def_kind(uv.def) == DefKind::AnonConst).then(|| tcx.anon_const_kind(uv.def));
546
547 // Postpone evaluation of constants that depend on generic parameters or
548 // inference variables.
549 //
550 // We use `TypingMode::PostAnalysis` here which is not *technically* correct
551 // to be revealing opaque types here as borrowcheck has not run yet. However,
552 // CTFE itself uses `TypingMode::PostAnalysis` unconditionally even during
553 // typeck and not doing so has a lot of (undesirable) fallout (#101478, #119821).
554 // As a result we always use a revealed env when resolving the instance to evaluate.
555 //
556 // FIXME: `const_eval_resolve_for_typeck` should probably just modify the env itself
557 // instead of having this logic here
558 let (args, typing_env) = match opt_anon_const_kind {
559 // We handle `generic_const_exprs` separately as reasonable ways of handling constants in the type system
560 // completely fall apart under `generic_const_exprs` and makes this whole function Really hard to reason
561 // about if you have to consider gce whatsoever.
562 Some(ty::AnonConstKind::GCE) => {
563 if uv.has_non_region_infer() || uv.has_non_region_param() {
564 // `feature(generic_const_exprs)` causes anon consts to inherit all parent generics. This can cause
565 // inference variables and generic parameters to show up in `ty::Const` even though the anon const
566 // does not actually make use of them. We handle this case specially and attempt to evaluate anyway.
567 match tcx.thir_abstract_const(uv.def) {
568 Ok(Some(ct)) => {
569 let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, uv.args));
570 if let Err(e) = ct.error_reported() {
571 return Err(EvaluateConstErr::EvaluationFailure(e));
572 } else if ct.has_non_region_infer() || ct.has_non_region_param() {
573 // If the anon const *does* actually use generic parameters or inference variables from
574 // the generic arguments provided for it, then we should *not* attempt to evaluate it.
575 return Err(EvaluateConstErr::HasGenericsOrInfers);
576 } else {
577 let args =
578 replace_param_and_infer_args_with_placeholder(tcx, uv.args);
579 let typing_env = infcx
580 .typing_env(tcx.erase_and_anonymize_regions(param_env))
581 .with_post_analysis_normalized(tcx);
582 (args, typing_env)
583 }
584 }
585 Err(_) | Ok(None) => {
586 let args = GenericArgs::identity_for_item(tcx, uv.def);
587 let typing_env = ty::TypingEnv::post_analysis(tcx, uv.def);
588 (args, typing_env)
589 }
590 }
591 } else {
592 let typing_env = infcx
593 .typing_env(tcx.erase_and_anonymize_regions(param_env))
594 .with_post_analysis_normalized(tcx);
595 (uv.args, typing_env)
596 }
597 }
598 Some(ty::AnonConstKind::RepeatExprCount) => {
599 if uv.has_non_region_infer() {
600 // Diagnostics will sometimes replace the identity args of anon consts in
601 // array repeat expr counts with inference variables so we have to handle this
602 // even though it is not something we should ever actually encounter.
603 //
604 // Array repeat expr counts are allowed to syntactically use generic parameters
605 // but must not actually depend on them in order to evalaute successfully. This means
606 // that it is actually fine to evalaute them in their own environment rather than with
607 // the actually provided generic arguments.
608 tcx.dcx().delayed_bug("AnonConst with infer args but no error reported");
609 }
610
611 // The generic args of repeat expr counts under `min_const_generics` are not supposed to
612 // affect evaluation of the constant as this would make it a "truly" generic const arg.
613 // To prevent this we discard all the generic arguments and evalaute with identity args
614 // and in its own environment instead of the current environment we are normalizing in.
615 let args = GenericArgs::identity_for_item(tcx, uv.def);
616 let typing_env = ty::TypingEnv::post_analysis(tcx, uv.def);
617
618 (args, typing_env)
619 }
620 _ => {
621 // We are only dealing with "truly" generic/uninferred constants here:
622 // - GCEConsts have been handled separately
623 // - Repeat expr count back compat consts have also been handled separately
624 // So we are free to simply defer evaluation here.
625 //
626 // FIXME: This assumes that `args` are normalized which is not necessarily true
627 //
628 // Const patterns are converted to type system constants before being
629 // evaluated. However, we don't care about them here as pattern evaluation
630 // logic does not go through type system normalization. If it did this would
631 // be a backwards compatibility problem as we do not enforce "syntactic" non-
632 // usage of generic parameters like we do here.
633 if uv.args.has_non_region_param() || uv.args.has_non_region_infer() {
634 return Err(EvaluateConstErr::HasGenericsOrInfers);
635 }
636
637 let typing_env = infcx
638 .typing_env(tcx.erase_and_anonymize_regions(param_env))
639 .with_post_analysis_normalized(tcx);
640 (uv.args, typing_env)
641 }
642 };
643
644 let uv = ty::UnevaluatedConst::new(uv.def, args);
645 let erased_uv = tcx.erase_and_anonymize_regions(uv);
646
647 use rustc_middle::mir::interpret::ErrorHandled;
648 // FIXME: `def_span` will point at the definition of this const; ideally, we'd point at
649 // where it gets used as a const generic.
650 match tcx.const_eval_resolve_for_typeck(typing_env, erased_uv, tcx.def_span(uv.def)) {
651 Ok(Ok(val)) => Ok(ty::Const::new_value(
652 tcx,
653 val,
654 tcx.type_of(uv.def).instantiate(tcx, uv.args),
655 )),
656 Ok(Err(_)) => {
657 let e = tcx.dcx().delayed_bug(
658 "Type system constant with non valtree'able type evaluated but no error emitted",
659 );
660 Err(EvaluateConstErr::InvalidConstParamTy(e))
661 }
662 Err(ErrorHandled::Reported(info, _)) => {
663 Err(EvaluateConstErr::EvaluationFailure(info.into()))
664 }
665 Err(ErrorHandled::TooGeneric(_)) => Err(EvaluateConstErr::HasGenericsOrInfers),
666 }
667 }
668 }
669}
670
671/// Replaces args that reference param or infer variables with suitable
672/// placeholders. This function is meant to remove these param and infer
673/// args when they're not actually needed to evaluate a constant.
674fn replace_param_and_infer_args_with_placeholder<'tcx>(
675 tcx: TyCtxt<'tcx>,
676 args: GenericArgsRef<'tcx>,
677) -> GenericArgsRef<'tcx> {
678 struct ReplaceParamAndInferWithPlaceholder<'tcx> {
679 tcx: TyCtxt<'tcx>,
680 idx: ty::BoundVar,
681 }
682
683 impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
684 fn cx(&self) -> TyCtxt<'tcx> {
685 self.tcx
686 }
687
688 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
689 if let ty::Infer(_) = t.kind() {
690 let idx = self.idx;
691 self.idx += 1;
692 Ty::new_placeholder(
693 self.tcx,
694 ty::PlaceholderType {
695 universe: ty::UniverseIndex::ROOT,
696 bound: ty::BoundTy { var: idx, kind: ty::BoundTyKind::Anon },
697 },
698 )
699 } else {
700 t.super_fold_with(self)
701 }
702 }
703
704 fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
705 if let ty::ConstKind::Infer(_) = c.kind() {
706 let idx = self.idx;
707 self.idx += 1;
708 ty::Const::new_placeholder(
709 self.tcx,
710 ty::PlaceholderConst {
711 universe: ty::UniverseIndex::ROOT,
712 bound: ty::BoundConst { var: idx },
713 },
714 )
715 } else {
716 c.super_fold_with(self)
717 }
718 }
719 }
720
721 args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: ty::BoundVar::ZERO })
722}
723
724/// Normalizes the predicates and checks whether they hold in an empty environment. If this
725/// returns true, then either normalize encountered an error or one of the predicates did not
726/// hold. Used when creating vtables to check for unsatisfiable methods. This should not be
727/// used during analysis.
728pub fn impossible_predicates<'tcx>(tcx: TyCtxt<'tcx>, predicates: Vec<ty::Clause<'tcx>>) -> bool {
729 debug!("impossible_predicates(predicates={:?})", predicates);
730 let (infcx, param_env) = tcx
731 .infer_ctxt()
732 .with_next_trait_solver(true)
733 .build_with_typing_env(ty::TypingEnv::fully_monomorphized());
734
735 let ocx = ObligationCtxt::new(&infcx);
736 let predicates = ocx.normalize(&ObligationCause::dummy(), param_env, predicates);
737 for predicate in predicates {
738 let obligation = Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate);
739 ocx.register_obligation(obligation);
740 }
741
742 // Use `try_evaluate_obligations` to only return impossible for true errors,
743 // and not ambiguities or overflows. Since the new trait solver forces
744 // some currently undetected overlap between `dyn Trait: Trait` built-in
745 // vs user-written impls to AMBIGUOUS, this may return ambiguity even
746 // with no infer vars. There may also be ways to encounter ambiguity due
747 // to post-mono overflow.
748 let true_errors = ocx.try_evaluate_obligations();
749 if !true_errors.is_empty() {
750 return true;
751 }
752
753 false
754}
755
756fn instantiate_and_check_impossible_predicates<'tcx>(
757 tcx: TyCtxt<'tcx>,
758 key: (DefId, GenericArgsRef<'tcx>),
759) -> bool {
760 debug!("instantiate_and_check_impossible_predicates(key={:?})", key);
761
762 let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
763
764 // Specifically check trait fulfillment to avoid an error when trying to resolve
765 // associated items.
766 if let Some(trait_def_id) = tcx.trait_of_assoc(key.0) {
767 let trait_ref = ty::TraitRef::from_assoc(tcx, trait_def_id, key.1);
768 predicates.push(trait_ref.upcast(tcx));
769 }
770
771 predicates.retain(|predicate| !predicate.has_param());
772 let result = impossible_predicates(tcx, predicates);
773
774 debug!("instantiate_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
775 result
776}
777
778/// Checks whether a trait's associated item is impossible to reference on a given impl.
779///
780/// This only considers predicates that reference the impl's generics, and not
781/// those that reference the method's generics.
782fn is_impossible_associated_item(
783 tcx: TyCtxt<'_>,
784 (impl_def_id, trait_item_def_id): (DefId, DefId),
785) -> bool {
786 struct ReferencesOnlyParentGenerics<'tcx> {
787 tcx: TyCtxt<'tcx>,
788 generics: &'tcx ty::Generics,
789 trait_item_def_id: DefId,
790 }
791 impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for ReferencesOnlyParentGenerics<'tcx> {
792 type Result = ControlFlow<()>;
793 fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
794 // If this is a parameter from the trait item's own generics, then bail
795 if let ty::Param(param) = *t.kind()
796 && let param_def_id = self.generics.type_param(param, self.tcx).def_id
797 && self.tcx.parent(param_def_id) == self.trait_item_def_id
798 {
799 return ControlFlow::Break(());
800 }
801 t.super_visit_with(self)
802 }
803 fn visit_region(&mut self, r: ty::Region<'tcx>) -> Self::Result {
804 if let ty::ReEarlyParam(param) = r.kind()
805 && let param_def_id = self.generics.region_param(param, self.tcx).def_id
806 && self.tcx.parent(param_def_id) == self.trait_item_def_id
807 {
808 return ControlFlow::Break(());
809 }
810 ControlFlow::Continue(())
811 }
812 fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result {
813 if let ty::ConstKind::Param(param) = ct.kind()
814 && let param_def_id = self.generics.const_param(param, self.tcx).def_id
815 && self.tcx.parent(param_def_id) == self.trait_item_def_id
816 {
817 return ControlFlow::Break(());
818 }
819 ct.super_visit_with(self)
820 }
821 }
822
823 let generics = tcx.generics_of(trait_item_def_id);
824 let predicates = tcx.predicates_of(trait_item_def_id);
825
826 // Be conservative in cases where we have `W<T: ?Sized>` and a method like `Self: Sized`,
827 // since that method *may* have some substitutions where the predicates hold.
828 //
829 // This replicates the logic we use in coherence.
830 let infcx = tcx
831 .infer_ctxt()
832 .ignoring_regions()
833 .with_next_trait_solver(true)
834 .build(TypingMode::Coherence);
835 let param_env = ty::ParamEnv::empty();
836 let fresh_args = infcx.fresh_args_for_item(tcx.def_span(impl_def_id), impl_def_id);
837
838 let impl_trait_ref = tcx
839 .impl_trait_ref(impl_def_id)
840 .expect("expected impl to correspond to trait")
841 .instantiate(tcx, fresh_args);
842
843 let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id };
844 let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| {
845 pred.visit_with(&mut visitor).is_continue().then(|| {
846 Obligation::new(
847 tcx,
848 ObligationCause::dummy_with_span(*span),
849 param_env,
850 ty::EarlyBinder::bind(*pred).instantiate(tcx, impl_trait_ref.args),
851 )
852 })
853 });
854
855 let ocx = ObligationCtxt::new(&infcx);
856 ocx.register_obligations(predicates_for_trait);
857 !ocx.try_evaluate_obligations().is_empty()
858}
859
860pub fn provide(providers: &mut Providers) {
861 dyn_compatibility::provide(providers);
862 vtable::provide(providers);
863 *providers = Providers {
864 specialization_graph_of: specialize::specialization_graph_provider,
865 specializes: specialize::specializes,
866 specialization_enabled_in: specialize::specialization_enabled_in,
867 instantiate_and_check_impossible_predicates,
868 is_impossible_associated_item,
869 ..*providers
870 };
871}