rustc_trait_selection/traits/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
//! Trait Resolution. See the [rustc dev guide] for more information on how this works.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
pub mod auto_trait;
pub(crate) mod coherence;
pub mod const_evaluatable;
mod dyn_compatibility;
pub mod effects;
mod engine;
mod fulfill;
pub mod misc;
pub mod normalize;
pub mod outlives_bounds;
pub mod project;
pub mod query;
#[allow(hidden_glob_reexports)]
mod select;
mod specialize;
mod structural_normalize;
#[allow(hidden_glob_reexports)]
mod util;
pub mod vtable;
pub mod wf;
use std::fmt::Debug;
use std::ops::ControlFlow;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
pub use rustc_infer::traits::*;
use rustc_middle::query::Providers;
use rustc_middle::span_bug;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{
self, GenericArgs, GenericArgsRef, Ty, TyCtxt, TypeFolder, TypeSuperFoldable,
TypeSuperVisitable, TypingMode, Upcast,
};
use rustc_span::def_id::DefId;
use rustc_span::{DUMMY_SP, Span};
use tracing::{debug, instrument};
pub use self::coherence::{
InCrate, IsFirstInputType, OrphanCheckErr, OrphanCheckMode, OverlapResult, UncoveredTyParams,
add_placeholder_note, orphan_check_trait_ref, overlapping_impls,
};
pub use self::dyn_compatibility::{
DynCompatibilityViolation, dyn_compatibility_violations_for_assoc_item,
hir_ty_lowering_dyn_compatibility_violations, is_vtable_safe_method,
};
pub use self::engine::{ObligationCtxt, TraitEngineExt};
pub use self::fulfill::{FulfillmentContext, OldSolverError, PendingPredicateObligation};
pub use self::normalize::NormalizeExt;
pub use self::project::{normalize_inherent_projection, normalize_projection_ty};
pub use self::select::{
EvaluationCache, EvaluationResult, IntercrateAmbiguityCause, OverflowError, SelectionCache,
SelectionContext,
};
pub use self::specialize::specialization_graph::{
FutureCompatOverlapError, FutureCompatOverlapErrorKind,
};
pub use self::specialize::{
OverlapError, specialization_graph, translate_args, translate_args_with_cause,
};
pub use self::structural_normalize::StructurallyNormalizeExt;
pub use self::util::{
BoundVarReplacer, PlaceholderReplacer, TraitAliasExpander, TraitAliasExpansionInfo, elaborate,
expand_trait_aliases, impl_item_is_final, supertraits,
transitive_bounds_that_define_assoc_item, upcast_choices, with_replaced_escaping_bound_vars,
};
use crate::error_reporting::InferCtxtErrorExt;
use crate::infer::outlives::env::OutlivesEnvironment;
use crate::infer::{InferCtxt, TyCtxtInferExt};
use crate::regions::InferCtxtRegionExt;
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
pub struct FulfillmentError<'tcx> {
pub obligation: PredicateObligation<'tcx>,
pub code: FulfillmentErrorCode<'tcx>,
/// Diagnostics only: the 'root' obligation which resulted in
/// the failure to process `obligation`. This is the obligation
/// that was initially passed to `register_predicate_obligation`
pub root_obligation: PredicateObligation<'tcx>,
}
impl<'tcx> FulfillmentError<'tcx> {
pub fn new(
obligation: PredicateObligation<'tcx>,
code: FulfillmentErrorCode<'tcx>,
root_obligation: PredicateObligation<'tcx>,
) -> FulfillmentError<'tcx> {
FulfillmentError { obligation, code, root_obligation }
}
pub fn is_true_error(&self) -> bool {
match self.code {
FulfillmentErrorCode::Select(_)
| FulfillmentErrorCode::Project(_)
| FulfillmentErrorCode::Subtype(_, _)
| FulfillmentErrorCode::ConstEquate(_, _) => true,
FulfillmentErrorCode::Cycle(_) | FulfillmentErrorCode::Ambiguity { overflow: _ } => {
false
}
}
}
}
impl<'tcx> Debug for FulfillmentError<'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "FulfillmentError({:?},{:?})", self.obligation, self.code)
}
}
#[derive(Clone)]
pub enum FulfillmentErrorCode<'tcx> {
/// Inherently impossible to fulfill; this trait is implemented if and only
/// if it is already implemented.
Cycle(PredicateObligations<'tcx>),
Select(SelectionError<'tcx>),
Project(MismatchedProjectionTypes<'tcx>),
Subtype(ExpectedFound<Ty<'tcx>>, TypeError<'tcx>), // always comes from a SubtypePredicate
ConstEquate(ExpectedFound<ty::Const<'tcx>>, TypeError<'tcx>),
Ambiguity {
/// Overflow is only `Some(suggest_recursion_limit)` when using the next generation
/// trait solver `-Znext-solver`. With the old solver overflow is eagerly handled by
/// emitting a fatal error instead.
overflow: Option<bool>,
},
}
impl<'tcx> Debug for FulfillmentErrorCode<'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match *self {
FulfillmentErrorCode::Select(ref e) => write!(f, "{e:?}"),
FulfillmentErrorCode::Project(ref e) => write!(f, "{e:?}"),
FulfillmentErrorCode::Subtype(ref a, ref b) => {
write!(f, "CodeSubtypeError({a:?}, {b:?})")
}
FulfillmentErrorCode::ConstEquate(ref a, ref b) => {
write!(f, "CodeConstEquateError({a:?}, {b:?})")
}
FulfillmentErrorCode::Ambiguity { overflow: None } => write!(f, "Ambiguity"),
FulfillmentErrorCode::Ambiguity { overflow: Some(suggest_increasing_limit) } => {
write!(f, "Overflow({suggest_increasing_limit})")
}
FulfillmentErrorCode::Cycle(ref cycle) => write!(f, "Cycle({cycle:?})"),
}
}
}
/// Whether to skip the leak check, as part of a future compatibility warning step.
///
/// The "default" for skip-leak-check corresponds to the current
/// behavior (do not skip the leak check) -- not the behavior we are
/// transitioning into.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
pub enum SkipLeakCheck {
Yes,
#[default]
No,
}
impl SkipLeakCheck {
fn is_yes(self) -> bool {
self == SkipLeakCheck::Yes
}
}
/// The mode that trait queries run in.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum TraitQueryMode {
/// Standard/un-canonicalized queries get accurate
/// spans etc. passed in and hence can do reasonable
/// error reporting on their own.
Standard,
/// Canonical queries get dummy spans and hence
/// must generally propagate errors to
/// pre-canonicalization callsites.
Canonical,
}
/// Creates predicate obligations from the generic bounds.
#[instrument(level = "debug", skip(cause, param_env))]
pub fn predicates_for_generics<'tcx>(
cause: impl Fn(usize, Span) -> ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
generic_bounds: ty::InstantiatedPredicates<'tcx>,
) -> impl Iterator<Item = PredicateObligation<'tcx>> {
generic_bounds.into_iter().enumerate().map(move |(idx, (clause, span))| Obligation {
cause: cause(idx, span),
recursion_depth: 0,
param_env,
predicate: clause.as_predicate(),
})
}
/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
pub fn type_known_to_meet_bound_modulo_regions<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
def_id: DefId,
) -> bool {
let trait_ref = ty::TraitRef::new(infcx.tcx, def_id, [ty]);
pred_known_to_hold_modulo_regions(infcx, param_env, trait_ref)
}
/// FIXME(@lcnr): this function doesn't seem right and shouldn't exist?
///
/// Ping me on zulip if you want to use this method and need help with finding
/// an appropriate replacement.
#[instrument(level = "debug", skip(infcx, param_env, pred), ret)]
fn pred_known_to_hold_modulo_regions<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
pred: impl Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>>,
) -> bool {
let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, pred);
let result = infcx.evaluate_obligation_no_overflow(&obligation);
debug!(?result);
if result.must_apply_modulo_regions() {
true
} else if result.may_apply() {
// Sometimes obligations are ambiguous because the recursive evaluator
// is not smart enough, so we fall back to fulfillment when we're not certain
// that an obligation holds or not. Even still, we must make sure that
// the we do no inference in the process of checking this obligation.
let goal = infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
infcx.probe(|_| {
let ocx = ObligationCtxt::new(infcx);
ocx.register_obligation(obligation);
let errors = ocx.select_all_or_error();
match errors.as_slice() {
// Only known to hold if we did no inference.
[] => infcx.resolve_vars_if_possible(goal) == goal,
errors => {
debug!(?errors);
false
}
}
})
} else {
false
}
}
#[instrument(level = "debug", skip(tcx, elaborated_env))]
fn do_normalize_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
cause: ObligationCause<'tcx>,
elaborated_env: ty::ParamEnv<'tcx>,
predicates: Vec<ty::Clause<'tcx>>,
) -> Result<Vec<ty::Clause<'tcx>>, ErrorGuaranteed> {
let span = cause.span;
// FIXME. We should really... do something with these region
// obligations. But this call just continues the older
// behavior (i.e., doesn't cause any new bugs), and it would
// take some further refactoring to actually solve them. In
// particular, we would have to handle implied bounds
// properly, and that code is currently largely confined to
// regionck (though I made some efforts to extract it
// out). -nmatsakis
//
// @arielby: In any case, these obligations are checked
// by wfcheck anyway, so I'm not sure we have to check
// them here too, and we will remove this function when
// we move over to lazy normalization *anyway*.
let infcx = tcx.infer_ctxt().ignoring_regions().build(TypingMode::non_body_analysis());
let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
let predicates = ocx.normalize(&cause, elaborated_env, predicates);
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
let reported = infcx.err_ctxt().report_fulfillment_errors(errors);
return Err(reported);
}
debug!("do_normalize_predicates: normalized predicates = {:?}", predicates);
// We can use the `elaborated_env` here; the region code only
// cares about declarations like `'a: 'b`.
let outlives_env = OutlivesEnvironment::new(elaborated_env);
// FIXME: It's very weird that we ignore region obligations but apparently
// still need to use `resolve_regions` as we need the resolved regions in
// the normalized predicates.
let errors = infcx.resolve_regions(&outlives_env);
if !errors.is_empty() {
tcx.dcx().span_delayed_bug(
span,
format!("failed region resolution while normalizing {elaborated_env:?}: {errors:?}"),
);
}
match infcx.fully_resolve(predicates) {
Ok(predicates) => Ok(predicates),
Err(fixup_err) => {
// If we encounter a fixup error, it means that some type
// variable wound up unconstrained. I actually don't know
// if this can happen, and I certainly don't expect it to
// happen often, but if it did happen it probably
// represents a legitimate failure due to some kind of
// unconstrained variable.
//
// @lcnr: Let's still ICE here for now. I want a test case
// for that.
span_bug!(
span,
"inference variables in normalized parameter environment: {}",
fixup_err
);
}
}
}
// FIXME: this is gonna need to be removed ...
/// Normalizes the parameter environment, reporting errors if they occur.
#[instrument(level = "debug", skip(tcx))]
pub fn normalize_param_env_or_error<'tcx>(
tcx: TyCtxt<'tcx>,
unnormalized_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
) -> ty::ParamEnv<'tcx> {
// I'm not wild about reporting errors here; I'd prefer to
// have the errors get reported at a defined place (e.g.,
// during typeck). Instead I have all parameter
// environments, in effect, going through this function
// and hence potentially reporting errors. This ensures of
// course that we never forget to normalize (the
// alternative seemed like it would involve a lot of
// manual invocations of this fn -- and then we'd have to
// deal with the errors at each of those sites).
//
// In any case, in practice, typeck constructs all the
// parameter environments once for every fn as it goes,
// and errors will get reported then; so outside of type inference we
// can be sure that no errors should occur.
let mut predicates: Vec<_> = util::elaborate(
tcx,
unnormalized_env.caller_bounds().into_iter().map(|predicate| {
if tcx.features().generic_const_exprs() {
return predicate;
}
struct ConstNormalizer<'tcx>(TyCtxt<'tcx>);
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ConstNormalizer<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.0
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
// FIXME(return_type_notation): track binders in this normalizer, as
// `ty::Const::normalize` can only work with properly preserved binders.
if c.has_escaping_bound_vars() {
return ty::Const::new_misc_error(self.0);
}
// While it is pretty sus to be evaluating things with an empty param env, it
// should actually be okay since without `feature(generic_const_exprs)` the only
// const arguments that have a non-empty param env are array repeat counts. These
// do not appear in the type system though.
if let ty::ConstKind::Unevaluated(uv) = c.kind()
&& self.0.def_kind(uv.def) == DefKind::AnonConst
{
let infcx = self.0.infer_ctxt().build(TypingMode::non_body_analysis());
let c = evaluate_const(&infcx, c, ty::ParamEnv::empty());
// We should never wind up with any `infcx` local state when normalizing anon consts
// under min const generics.
assert!(!c.has_infer() && !c.has_placeholders());
return c;
}
c
}
}
// This whole normalization step is a hack to work around the fact that
// `normalize_param_env_or_error` is fundamentally broken from using an
// unnormalized param env with a trait solver that expects the param env
// to be normalized.
//
// When normalizing the param env we can end up evaluating obligations
// that have been normalized but can only be proven via a where clause
// which is still in its unnormalized form. example:
//
// Attempting to prove `T: Trait<<u8 as Identity>::Assoc>` in a param env
// with a `T: Trait<<u8 as Identity>::Assoc>` where clause will fail because
// we first normalize obligations before proving them so we end up proving
// `T: Trait<u8>`. Since lazy normalization is not implemented equating `u8`
// with `<u8 as Identity>::Assoc` fails outright so we incorrectly believe that
// we cannot prove `T: Trait<u8>`.
//
// The same thing is true for const generics- attempting to prove
// `T: Trait<ConstKind::Unevaluated(...)>` with the same thing as a where clauses
// will fail. After normalization we may be attempting to prove `T: Trait<4>` with
// the unnormalized where clause `T: Trait<ConstKind::Unevaluated(...)>`. In order
// for the obligation to hold `4` must be equal to `ConstKind::Unevaluated(...)`
// but as we do not have lazy norm implemented, equating the two consts fails outright.
//
// Ideally we would not normalize consts here at all but it is required for backwards
// compatibility. Eventually when lazy norm is implemented this can just be removed.
// We do not normalize types here as there is no backwards compatibility requirement
// for us to do so.
//
// FIXME(-Znext-solver): remove this hack since we have deferred projection equality
predicate.fold_with(&mut ConstNormalizer(tcx))
}),
)
.collect();
debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);
let elaborated_env = ty::ParamEnv::new(tcx.mk_clauses(&predicates), unnormalized_env.reveal());
if !elaborated_env.has_aliases() {
return elaborated_env;
}
// HACK: we are trying to normalize the param-env inside *itself*. The problem is that
// normalization expects its param-env to be already normalized, which means we have
// a circularity.
//
// The way we handle this is by normalizing the param-env inside an unnormalized version
// of the param-env, which means that if the param-env contains unnormalized projections,
// we'll have some normalization failures. This is unfortunate.
//
// Lazy normalization would basically handle this by treating just the
// normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
//
// Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
// types, so to make the situation less bad, we normalize all the predicates *but*
// the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
// then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
//
// This works fairly well because trait matching does not actually care about param-env
// TypeOutlives predicates - these are normally used by regionck.
let outlives_predicates: Vec<_> = predicates
.extract_if(|predicate| {
matches!(predicate.kind().skip_binder(), ty::ClauseKind::TypeOutlives(..))
})
.collect();
debug!(
"normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
predicates, outlives_predicates
);
let Ok(non_outlives_predicates) =
do_normalize_predicates(tcx, cause.clone(), elaborated_env, predicates)
else {
// An unnormalized env is better than nothing.
debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
return elaborated_env;
};
debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
// Not sure whether it is better to include the unnormalized TypeOutlives predicates
// here. I believe they should not matter, because we are ignoring TypeOutlives param-env
// predicates here anyway. Keeping them here anyway because it seems safer.
let outlives_env = non_outlives_predicates.iter().chain(&outlives_predicates).cloned();
let outlives_env =
ty::ParamEnv::new(tcx.mk_clauses_from_iter(outlives_env), unnormalized_env.reveal());
let Ok(outlives_predicates) =
do_normalize_predicates(tcx, cause, outlives_env, outlives_predicates)
else {
// An unnormalized env is better than nothing.
debug!("normalize_param_env_or_error: errored resolving outlives predicates");
return elaborated_env;
};
debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
let mut predicates = non_outlives_predicates;
predicates.extend(outlives_predicates);
debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
ty::ParamEnv::new(tcx.mk_clauses(&predicates), unnormalized_env.reveal())
}
#[derive(Debug)]
pub enum EvaluateConstErr {
/// The constant being evaluated was either a generic parameter or inference variable, *or*,
/// some unevaluated constant with either generic parameters or inference variables in its
/// generic arguments.
HasGenericsOrInfers,
/// The type this constant evalauted to is not valid for use in const generics. This should
/// always result in an error when checking the constant is correctly typed for the parameter
/// it is an argument to, so a bug is delayed when encountering this.
InvalidConstParamTy(ErrorGuaranteed),
/// CTFE failed to evaluate the constant in some unrecoverable way (e.g. encountered a `panic!`).
/// This is also used when the constant was already tainted by error.
EvaluationFailure(ErrorGuaranteed),
}
// FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine
// FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own
// normalization scheme
/// Evaluates a type system constant returning a `ConstKind::Error` in cases where CTFE failed and
/// returning the passed in constant if it was not fully concrete (i.e. depended on generic parameters
/// or inference variables)
///
/// You should not call this function unless you are implementing normalization itself. Prefer to use
/// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`.
pub fn evaluate_const<'tcx>(
infcx: &InferCtxt<'tcx>,
ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> ty::Const<'tcx> {
match try_evaluate_const(infcx, ct, param_env) {
Ok(ct) => ct,
Err(EvaluateConstErr::EvaluationFailure(e) | EvaluateConstErr::InvalidConstParamTy(e)) => {
ty::Const::new_error(infcx.tcx, e)
}
Err(EvaluateConstErr::HasGenericsOrInfers) => ct,
}
}
// FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine
// FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own
// normalization scheme
/// Evaluates a type system constant making sure to not allow constants that depend on generic parameters
/// or inference variables to succeed in evaluating.
///
/// You should not call this function unless you are implementing normalization itself. Prefer to use
/// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`.
#[instrument(level = "debug", skip(infcx), ret)]
pub fn try_evaluate_const<'tcx>(
infcx: &InferCtxt<'tcx>,
ct: ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Result<ty::Const<'tcx>, EvaluateConstErr> {
let tcx = infcx.tcx;
let ct = infcx.resolve_vars_if_possible(ct);
debug!(?ct);
match ct.kind() {
ty::ConstKind::Value(..) => Ok(ct),
ty::ConstKind::Error(e) => Err(EvaluateConstErr::EvaluationFailure(e)),
ty::ConstKind::Param(_)
| ty::ConstKind::Infer(_)
| ty::ConstKind::Bound(_, _)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Expr(_) => Err(EvaluateConstErr::HasGenericsOrInfers),
ty::ConstKind::Unevaluated(uv) => {
// Postpone evaluation of constants that depend on generic parameters or inference variables.
let (args, param_env) = if tcx.features().generic_const_exprs()
&& uv.has_non_region_infer()
{
// `feature(generic_const_exprs)` causes anon consts to inherit all parent generics. This can cause
// inference variables and generic parameters to show up in `ty::Const` even though the anon const
// does not actually make use of them. We handle this case specially and attempt to evaluate anyway.
match tcx.thir_abstract_const(uv.def) {
Ok(Some(ct)) => {
let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, uv.args));
if let Err(e) = ct.error_reported() {
return Err(EvaluateConstErr::EvaluationFailure(e));
} else if ct.has_non_region_infer() || ct.has_non_region_param() {
// If the anon const *does* actually use generic parameters or inference variables from
// the generic arguments provided for it, then we should *not* attempt to evaluate it.
return Err(EvaluateConstErr::HasGenericsOrInfers);
} else {
(replace_param_and_infer_args_with_placeholder(tcx, uv.args), param_env)
}
}
Err(_) | Ok(None) => {
let args = GenericArgs::identity_for_item(tcx, uv.def);
let param_env = tcx.param_env(uv.def);
(args, param_env)
}
}
} else {
// FIXME: We don't check anything on stable as the only way we can wind up with
// an unevaluated constant containing generic parameters is through array repeat
// expression counts which have a future compat lint for usage of generic parameters
// instead of a hard error.
//
// This codepath is however also reachable by `generic_const_exprs` and some other
// feature gates which allow constants in the type system to use generic parameters.
// In theory we should be checking for generic parameters here and returning an error
// in such cases.
(uv.args, param_env)
};
let uv = ty::UnevaluatedConst::new(uv.def, args);
// It's not *technically* correct to be revealing opaque types here as we could still be
// before borrowchecking. However, CTFE itself uses `Reveal::All` unconditionally even during
// typeck and not doing so has a lot of (undesirable) fallout (#101478, #119821). As a result we
// always use a revealed env when resolving the instance to evaluate.
//
// FIXME: `const_eval_resolve_for_typeck` should probably just set the env to `Reveal::All`
// instead of having this logic here
let env = tcx.erase_regions(param_env).with_reveal_all_normalized(tcx);
let erased_uv = tcx.erase_regions(uv);
use rustc_middle::mir::interpret::ErrorHandled;
match tcx.const_eval_resolve_for_typeck(env, erased_uv, DUMMY_SP) {
Ok(Ok(val)) => Ok(ty::Const::new_value(
tcx,
val,
tcx.type_of(uv.def).instantiate(tcx, uv.args),
)),
Ok(Err(_)) => {
let e = tcx.dcx().delayed_bug(
"Type system constant with non valtree'able type evaluated but no error emitted",
);
Err(EvaluateConstErr::InvalidConstParamTy(e))
}
Err(ErrorHandled::Reported(info, _)) => {
Err(EvaluateConstErr::EvaluationFailure(info.into()))
}
Err(ErrorHandled::TooGeneric(_)) => Err(EvaluateConstErr::HasGenericsOrInfers),
}
}
}
}
/// Replaces args that reference param or infer variables with suitable
/// placeholders. This function is meant to remove these param and infer
/// args when they're not actually needed to evaluate a constant.
fn replace_param_and_infer_args_with_placeholder<'tcx>(
tcx: TyCtxt<'tcx>,
args: GenericArgsRef<'tcx>,
) -> GenericArgsRef<'tcx> {
struct ReplaceParamAndInferWithPlaceholder<'tcx> {
tcx: TyCtxt<'tcx>,
idx: u32,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Infer(_) = t.kind() {
let idx = {
let idx = self.idx;
self.idx += 1;
idx
};
Ty::new_placeholder(self.tcx, ty::PlaceholderType {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundTy {
var: ty::BoundVar::from_u32(idx),
kind: ty::BoundTyKind::Anon,
},
})
} else {
t.super_fold_with(self)
}
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
if let ty::ConstKind::Infer(_) = c.kind() {
ty::Const::new_placeholder(self.tcx, ty::PlaceholderConst {
universe: ty::UniverseIndex::ROOT,
bound: ty::BoundVar::from_u32({
let idx = self.idx;
self.idx += 1;
idx
}),
})
} else {
c.super_fold_with(self)
}
}
}
args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 })
}
/// Normalizes the predicates and checks whether they hold in an empty environment. If this
/// returns true, then either normalize encountered an error or one of the predicates did not
/// hold. Used when creating vtables to check for unsatisfiable methods. This should not be
/// used during analysis.
pub fn impossible_predicates<'tcx>(tcx: TyCtxt<'tcx>, predicates: Vec<ty::Clause<'tcx>>) -> bool {
debug!("impossible_predicates(predicates={:?})", predicates);
let infcx = tcx.infer_ctxt().build(TypingMode::PostAnalysis);
let param_env = ty::ParamEnv::reveal_all();
let ocx = ObligationCtxt::new(&infcx);
let predicates = ocx.normalize(&ObligationCause::dummy(), param_env, predicates);
for predicate in predicates {
let obligation = Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate);
ocx.register_obligation(obligation);
}
let errors = ocx.select_all_or_error();
let result = !errors.is_empty();
debug!("impossible_predicates = {:?}", result);
result
}
fn instantiate_and_check_impossible_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
key: (DefId, GenericArgsRef<'tcx>),
) -> bool {
debug!("instantiate_and_check_impossible_predicates(key={:?})", key);
let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
// Specifically check trait fulfillment to avoid an error when trying to resolve
// associated items.
if let Some(trait_def_id) = tcx.trait_of_item(key.0) {
let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1);
predicates.push(trait_ref.upcast(tcx));
}
predicates.retain(|predicate| !predicate.has_param());
let result = impossible_predicates(tcx, predicates);
debug!("instantiate_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
result
}
/// Checks whether a trait's associated item is impossible to reference on a given impl.
///
/// This only considers predicates that reference the impl's generics, and not
/// those that reference the method's generics.
fn is_impossible_associated_item(
tcx: TyCtxt<'_>,
(impl_def_id, trait_item_def_id): (DefId, DefId),
) -> bool {
struct ReferencesOnlyParentGenerics<'tcx> {
tcx: TyCtxt<'tcx>,
generics: &'tcx ty::Generics,
trait_item_def_id: DefId,
}
impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for ReferencesOnlyParentGenerics<'tcx> {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
// If this is a parameter from the trait item's own generics, then bail
if let ty::Param(param) = *t.kind()
&& let param_def_id = self.generics.type_param(param, self.tcx).def_id
&& self.tcx.parent(param_def_id) == self.trait_item_def_id
{
return ControlFlow::Break(());
}
t.super_visit_with(self)
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> Self::Result {
if let ty::ReEarlyParam(param) = r.kind()
&& let param_def_id = self.generics.region_param(param, self.tcx).def_id
&& self.tcx.parent(param_def_id) == self.trait_item_def_id
{
return ControlFlow::Break(());
}
ControlFlow::Continue(())
}
fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result {
if let ty::ConstKind::Param(param) = ct.kind()
&& let param_def_id = self.generics.const_param(param, self.tcx).def_id
&& self.tcx.parent(param_def_id) == self.trait_item_def_id
{
return ControlFlow::Break(());
}
ct.super_visit_with(self)
}
}
let generics = tcx.generics_of(trait_item_def_id);
let predicates = tcx.predicates_of(trait_item_def_id);
// Be conservative in cases where we have `W<T: ?Sized>` and a method like `Self: Sized`,
// since that method *may* have some substitutions where the predicates hold.
//
// This replicates the logic we use in coherence.
let infcx = tcx
.infer_ctxt()
.ignoring_regions()
.with_next_trait_solver(true)
.build(TypingMode::Coherence);
let param_env = ty::ParamEnv::empty();
let fresh_args = infcx.fresh_args_for_item(tcx.def_span(impl_def_id), impl_def_id);
let impl_trait_ref = tcx
.impl_trait_ref(impl_def_id)
.expect("expected impl to correspond to trait")
.instantiate(tcx, fresh_args);
let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id };
let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| {
pred.visit_with(&mut visitor).is_continue().then(|| {
Obligation::new(
tcx,
ObligationCause::dummy_with_span(*span),
param_env,
ty::EarlyBinder::bind(*pred).instantiate(tcx, impl_trait_ref.args),
)
})
});
let ocx = ObligationCtxt::new(&infcx);
ocx.register_obligations(predicates_for_trait);
!ocx.select_where_possible().is_empty()
}
pub fn provide(providers: &mut Providers) {
dyn_compatibility::provide(providers);
vtable::provide(providers);
*providers = Providers {
specialization_graph_of: specialize::specialization_graph_provider,
specializes: specialize::specializes,
specialization_enabled_in: specialize::specialization_enabled_in,
instantiate_and_check_impossible_predicates,
is_impossible_associated_item,
..*providers
};
}