1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
use crate::common::CodegenCx;
use crate::coverageinfo;
use crate::llvm;

use llvm::coverageinfo::CounterMappingRegion;
use rustc_codegen_ssa::coverageinfo::map::{Counter, CounterExpression};
use rustc_codegen_ssa::traits::{ConstMethods, CoverageInfoMethods};
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefIdSet;
use rustc_llvm::RustString;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::coverage::CodeRegion;
use rustc_middle::ty::TyCtxt;

use std::ffi::CString;

use tracing::debug;

/// Generates and exports the Coverage Map.
///
/// Rust Coverage Map generation supports LLVM Coverage Mapping Format versions
/// 5 (LLVM 12, only) and 6 (zero-based encoded as 4 and 5, respectively), as defined at
/// [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/13.0-2021-09-30/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format).
/// These versions are supported by the LLVM coverage tools (`llvm-profdata` and `llvm-cov`)
/// bundled with Rust's fork of LLVM.
///
/// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with
/// the same version. Clang's implementation of Coverage Map generation was referenced when
/// implementing this Rust version, and though the format documentation is very explicit and
/// detailed, some undocumented details in Clang's implementation (that may or may not be important)
/// were also replicated for Rust's Coverage Map.
pub fn finalize<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) {
    let tcx = cx.tcx;

    // Ensure the installed version of LLVM supports at least Coverage Map
    // Version 5 (encoded as a zero-based value: 4), which was introduced with
    // LLVM 12.
    let version = coverageinfo::mapping_version();
    if version < 4 {
        tcx.sess.fatal("rustc option `-Z instrument-coverage` requires LLVM 12 or higher.");
    }

    debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name());

    // In order to show that unused functions have coverage counts of zero (0), LLVM requires the
    // functions exist. Generate synthetic functions with a (required) single counter, and add the
    // MIR `Coverage` code regions to the `function_coverage_map`, before calling
    // `ctx.take_function_coverage_map()`.
    if cx.codegen_unit.is_code_coverage_dead_code_cgu() {
        add_unused_functions(cx);
    }

    let function_coverage_map = match cx.coverage_context() {
        Some(ctx) => ctx.take_function_coverage_map(),
        None => return,
    };

    if function_coverage_map.is_empty() {
        // This module has no functions with coverage instrumentation
        return;
    }

    let mut mapgen = CoverageMapGenerator::new(tcx, version);

    // Encode coverage mappings and generate function records
    let mut function_data = Vec::new();
    for (instance, function_coverage) in function_coverage_map {
        debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance);
        let mangled_function_name = tcx.symbol_name(instance).to_string();
        let source_hash = function_coverage.source_hash();
        let is_used = function_coverage.is_used();
        let (expressions, counter_regions) =
            function_coverage.get_expressions_and_counter_regions();

        let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| {
            mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer);
        });

        if coverage_mapping_buffer.is_empty() {
            if function_coverage.is_used() {
                bug!(
                    "A used function should have had coverage mapping data but did not: {}",
                    mangled_function_name
                );
            } else {
                debug!("unused function had no coverage mapping data: {}", mangled_function_name);
                continue;
            }
        }

        function_data.push((mangled_function_name, source_hash, is_used, coverage_mapping_buffer));
    }

    // Encode all filenames referenced by counters/expressions in this module
    let filenames_buffer = llvm::build_byte_buffer(|filenames_buffer| {
        coverageinfo::write_filenames_section_to_buffer(&mapgen.filenames, filenames_buffer);
    });

    let filenames_size = filenames_buffer.len();
    let filenames_val = cx.const_bytes(&filenames_buffer);
    let filenames_ref = coverageinfo::hash_bytes(filenames_buffer);

    // Generate the LLVM IR representation of the coverage map and store it in a well-known global
    let cov_data_val = mapgen.generate_coverage_map(cx, version, filenames_size, filenames_val);

    for (mangled_function_name, source_hash, is_used, coverage_mapping_buffer) in function_data {
        save_function_record(
            cx,
            mangled_function_name,
            source_hash,
            filenames_ref,
            coverage_mapping_buffer,
            is_used,
        );
    }

    // Save the coverage data value to LLVM IR
    coverageinfo::save_cov_data_to_mod(cx, cov_data_val);
}

struct CoverageMapGenerator {
    filenames: FxIndexSet<CString>,
}

impl CoverageMapGenerator {
    fn new(tcx: TyCtxt<'_>, version: u32) -> Self {
        let mut filenames = FxIndexSet::default();
        if version >= 5 {
            // LLVM Coverage Mapping Format version 6 (zero-based encoded as 5)
            // requires setting the first filename to the compilation directory.
            // Since rustc generates coverage maps with relative paths, the
            // compilation directory can be combined with the the relative paths
            // to get absolute paths, if needed.
            let working_dir = tcx
                .sess
                .opts
                .working_dir
                .remapped_path_if_available()
                .to_string_lossy()
                .to_string();
            let c_filename =
                CString::new(working_dir).expect("null error converting filename to C string");
            filenames.insert(c_filename);
        }
        Self { filenames }
    }

    /// Using the `expressions` and `counter_regions` collected for the current function, generate
    /// the `mapping_regions` and `virtual_file_mapping`, and capture any new filenames. Then use
    /// LLVM APIs to encode the `virtual_file_mapping`, `expressions`, and `mapping_regions` into
    /// the given `coverage_mapping` byte buffer, compliant with the LLVM Coverage Mapping format.
    fn write_coverage_mapping<'a>(
        &mut self,
        expressions: Vec<CounterExpression>,
        counter_regions: impl Iterator<Item = (Counter, &'a CodeRegion)>,
        coverage_mapping_buffer: &RustString,
    ) {
        let mut counter_regions = counter_regions.collect::<Vec<_>>();
        if counter_regions.is_empty() {
            return;
        }

        let mut virtual_file_mapping = Vec::new();
        let mut mapping_regions = Vec::new();
        let mut current_file_name = None;
        let mut current_file_id = 0;

        // Convert the list of (Counter, CodeRegion) pairs to an array of `CounterMappingRegion`, sorted
        // by filename and position. Capture any new files to compute the `CounterMappingRegion`s
        // `file_id` (indexing files referenced by the current function), and construct the
        // function-specific `virtual_file_mapping` from `file_id` to its index in the module's
        // `filenames` array.
        counter_regions.sort_unstable_by_key(|(_counter, region)| *region);
        for (counter, region) in counter_regions {
            let CodeRegion { file_name, start_line, start_col, end_line, end_col } = *region;
            let same_file = current_file_name.as_ref().map_or(false, |p| *p == file_name);
            if !same_file {
                if current_file_name.is_some() {
                    current_file_id += 1;
                }
                current_file_name = Some(file_name);
                let c_filename = CString::new(file_name.to_string())
                    .expect("null error converting filename to C string");
                debug!("  file_id: {} = '{:?}'", current_file_id, c_filename);
                let (filenames_index, _) = self.filenames.insert_full(c_filename);
                virtual_file_mapping.push(filenames_index as u32);
            }
            debug!("Adding counter {:?} to map for {:?}", counter, region);
            mapping_regions.push(CounterMappingRegion::code_region(
                counter,
                current_file_id,
                start_line,
                start_col,
                end_line,
                end_col,
            ));
        }

        // Encode and append the current function's coverage mapping data
        coverageinfo::write_mapping_to_buffer(
            virtual_file_mapping,
            expressions,
            mapping_regions,
            coverage_mapping_buffer,
        );
    }

    /// Construct coverage map header and the array of function records, and combine them into the
    /// coverage map. Save the coverage map data into the LLVM IR as a static global using a
    /// specific, well-known section and name.
    fn generate_coverage_map<'ll>(
        self,
        cx: &CodegenCx<'ll, '_>,
        version: u32,
        filenames_size: usize,
        filenames_val: &'ll llvm::Value,
    ) -> &'ll llvm::Value {
        debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version);

        // Create the coverage data header (Note, fields 0 and 2 are now always zero,
        // as of `llvm::coverage::CovMapVersion::Version4`.)
        let zero_was_n_records_val = cx.const_u32(0);
        let filenames_size_val = cx.const_u32(filenames_size as u32);
        let zero_was_coverage_size_val = cx.const_u32(0);
        let version_val = cx.const_u32(version);
        let cov_data_header_val = cx.const_struct(
            &[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val],
            /*packed=*/ false,
        );

        // Create the complete LLVM coverage data value to add to the LLVM IR
        cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false)
    }
}

/// Construct a function record and combine it with the function's coverage mapping data.
/// Save the function record into the LLVM IR as a static global using a
/// specific, well-known section and name.
fn save_function_record(
    cx: &CodegenCx<'_, '_>,
    mangled_function_name: String,
    source_hash: u64,
    filenames_ref: u64,
    coverage_mapping_buffer: Vec<u8>,
    is_used: bool,
) {
    // Concatenate the encoded coverage mappings
    let coverage_mapping_size = coverage_mapping_buffer.len();
    let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer);

    let func_name_hash = coverageinfo::hash_str(&mangled_function_name);
    let func_name_hash_val = cx.const_u64(func_name_hash);
    let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32);
    let source_hash_val = cx.const_u64(source_hash);
    let filenames_ref_val = cx.const_u64(filenames_ref);
    let func_record_val = cx.const_struct(
        &[
            func_name_hash_val,
            coverage_mapping_size_val,
            source_hash_val,
            filenames_ref_val,
            coverage_mapping_val,
        ],
        /*packed=*/ true,
    );

    coverageinfo::save_func_record_to_mod(cx, func_name_hash, func_record_val, is_used);
}

/// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for
/// the functions that went through codegen; such as public functions and "used" functions
/// (functions referenced by other "used" or public items). Any other functions considered unused,
/// or "Unreachable", were still parsed and processed through the MIR stage, but were not
/// codegenned. (Note that `-Clink-dead-code` can force some unused code to be codegenned, but
/// that flag is known to cause other errors, when combined with `-Z instrument-coverage`; and
/// `-Clink-dead-code` will not generate code for unused generic functions.)
///
/// We can find the unused functions (including generic functions) by the set difference of all MIR
/// `DefId`s (`tcx` query `mir_keys`) minus the codegenned `DefId`s (`tcx` query
/// `codegened_and_inlined_items`).
///
/// These unused functions are then codegen'd in one of the CGUs which is marked as the
/// "code coverage dead code cgu" during the partitioning process. This prevents us from generating
/// code regions for the same function more than once which can lead to linker errors regarding
/// duplicate symbols.
fn add_unused_functions<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) {
    assert!(cx.codegen_unit.is_code_coverage_dead_code_cgu());

    let tcx = cx.tcx;

    let ignore_unused_generics = tcx.sess.instrument_coverage_except_unused_generics();

    let eligible_def_ids: DefIdSet = tcx
        .mir_keys(())
        .iter()
        .filter_map(|local_def_id| {
            let def_id = local_def_id.to_def_id();
            let kind = tcx.def_kind(def_id);
            // `mir_keys` will give us `DefId`s for all kinds of things, not
            // just "functions", like consts, statics, etc. Filter those out.
            // If `ignore_unused_generics` was specified, filter out any
            // generic functions from consideration as well.
            if !matches!(
                kind,
                DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Generator
            ) {
                return None;
            } else if ignore_unused_generics
                && tcx.generics_of(def_id).requires_monomorphization(tcx)
            {
                return None;
            }
            Some(local_def_id.to_def_id())
        })
        .collect();

    let codegenned_def_ids = tcx.codegened_and_inlined_items(());

    for &non_codegenned_def_id in eligible_def_ids.difference(codegenned_def_ids) {
        let codegen_fn_attrs = tcx.codegen_fn_attrs(non_codegenned_def_id);

        // If a function is marked `#[no_coverage]`, then skip generating a
        // dead code stub for it.
        if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NO_COVERAGE) {
            debug!("skipping unused fn marked #[no_coverage]: {:?}", non_codegenned_def_id);
            continue;
        }

        debug!("generating unused fn: {:?}", non_codegenned_def_id);
        cx.define_unused_fn(non_codegenned_def_id);
    }
}