rustdoc/formats/
cache.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
use std::mem;

use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, DefIdSet};
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::Symbol;
use tracing::debug;

use crate::clean::types::ExternalLocation;
use crate::clean::{self, ExternalCrate, ItemId, PrimitiveType};
use crate::core::DocContext;
use crate::fold::DocFolder;
use crate::formats::Impl;
use crate::formats::item_type::ItemType;
use crate::html::format::join_with_double_colon;
use crate::html::markdown::short_markdown_summary;
use crate::html::render::IndexItem;
use crate::html::render::search_index::get_function_type_for_search;
use crate::visit_lib::RustdocEffectiveVisibilities;

/// This cache is used to store information about the [`clean::Crate`] being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to `Send` so it may be stored in an `Arc` instance and shared among the various
/// rendering threads.
#[derive(Default)]
pub(crate) struct Cache {
    /// Maps a type ID to all known implementations for that type. This is only
    /// recognized for intra-crate [`clean::Type::Path`]s, and is used to print
    /// out extra documentation on the page of an enum/struct.
    ///
    /// The values of the map are a list of implementations and documentation
    /// found on that implementation.
    pub(crate) impls: DefIdMap<Vec<Impl>>,

    /// Maintains a mapping of local crate `DefId`s to the fully qualified name
    /// and "short type description" of that node. This is used when generating
    /// URLs when a type is being linked to. External paths are not located in
    /// this map because the `External` type itself has all the information
    /// necessary.
    pub(crate) paths: FxIndexMap<DefId, (Vec<Symbol>, ItemType)>,

    /// Similar to `paths`, but only holds external paths. This is only used for
    /// generating explicit hyperlinks to other crates.
    pub(crate) external_paths: FxHashMap<DefId, (Vec<Symbol>, ItemType)>,

    /// Maps local `DefId`s of exported types to fully qualified paths.
    /// Unlike 'paths', this mapping ignores any renames that occur
    /// due to 'use' statements.
    ///
    /// This map is used when writing out the `impl.trait` and `impl.type`
    /// javascript files. By using the exact path that the type
    /// is declared with, we ensure that each path will be identical
    /// to the path used if the corresponding type is inlined. By
    /// doing this, we can detect duplicate impls on a trait page, and only display
    /// the impl for the inlined type.
    pub(crate) exact_paths: DefIdMap<Vec<Symbol>>,

    /// This map contains information about all known traits of this crate.
    /// Implementations of a crate should inherit the documentation of the
    /// parent trait if no extra documentation is specified, and default methods
    /// should show up in documentation about trait implementations.
    pub(crate) traits: FxIndexMap<DefId, clean::Trait>,

    /// When rendering traits, it's often useful to be able to list all
    /// implementors of the trait, and this mapping is exactly, that: a mapping
    /// of trait ids to the list of known implementors of the trait
    pub(crate) implementors: FxIndexMap<DefId, Vec<Impl>>,

    /// Cache of where external crate documentation can be found.
    pub(crate) extern_locations: FxIndexMap<CrateNum, ExternalLocation>,

    /// Cache of where documentation for primitives can be found.
    pub(crate) primitive_locations: FxIndexMap<clean::PrimitiveType, DefId>,

    // Note that external items for which `doc(hidden)` applies to are shown as
    // non-reachable while local items aren't. This is because we're reusing
    // the effective visibilities from the privacy check pass.
    pub(crate) effective_visibilities: RustdocEffectiveVisibilities,

    /// The version of the crate being documented, if given from the `--crate-version` flag.
    pub(crate) crate_version: Option<String>,

    /// Whether to document private items.
    /// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions.
    pub(crate) document_private: bool,
    /// Whether to document hidden items.
    /// This is stored in `Cache` so it doesn't need to be passed through all rustdoc functions.
    pub(crate) document_hidden: bool,

    /// Crates marked with [`#[doc(masked)]`][doc_masked].
    ///
    /// [doc_masked]: https://doc.rust-lang.org/nightly/unstable-book/language-features/doc-masked.html
    pub(crate) masked_crates: FxHashSet<CrateNum>,

    // Private fields only used when initially crawling a crate to build a cache
    stack: Vec<Symbol>,
    parent_stack: Vec<ParentStackItem>,
    stripped_mod: bool,

    pub(crate) search_index: Vec<IndexItem>,

    // In rare case where a structure is defined in one module but implemented
    // in another, if the implementing module is parsed before defining module,
    // then the fully qualified name of the structure isn't presented in `paths`
    // yet when its implementation methods are being indexed. Caches such methods
    // and their parent id here and indexes them at the end of crate parsing.
    pub(crate) orphan_impl_items: Vec<OrphanImplItem>,

    // Similarly to `orphan_impl_items`, sometimes trait impls are picked up
    // even though the trait itself is not exported. This can happen if a trait
    // was defined in function/expression scope, since the impl will be picked
    // up by `collect-trait-impls` but the trait won't be scraped out in the HIR
    // crawl. In order to prevent crashes when looking for notable traits or
    // when gathering trait documentation on a type, hold impls here while
    // folding and add them to the cache later on if we find the trait.
    orphan_trait_impls: Vec<(DefId, FxIndexSet<DefId>, Impl)>,

    /// All intra-doc links resolved so far.
    ///
    /// Links are indexed by the DefId of the item they document.
    pub(crate) intra_doc_links: FxHashMap<ItemId, FxIndexSet<clean::ItemLink>>,
    /// Cfg that have been hidden via #![doc(cfg_hide(...))]
    pub(crate) hidden_cfg: FxHashSet<clean::cfg::Cfg>,

    /// Contains the list of `DefId`s which have been inlined. It is used when generating files
    /// to check if a stripped item should get its file generated or not: if it's inside a
    /// `#[doc(hidden)]` item or a private one and not inlined, it shouldn't get a file.
    pub(crate) inlined_items: DefIdSet,
}

/// This struct is used to wrap the `cache` and `tcx` in order to run `DocFolder`.
struct CacheBuilder<'a, 'tcx> {
    cache: &'a mut Cache,
    /// This field is used to prevent duplicated impl blocks.
    impl_ids: DefIdMap<DefIdSet>,
    tcx: TyCtxt<'tcx>,
}

impl Cache {
    pub(crate) fn new(document_private: bool, document_hidden: bool) -> Self {
        Cache { document_private, document_hidden, ..Cache::default() }
    }

    /// Populates the `Cache` with more data. The returned `Crate` will be missing some data that was
    /// in `krate` due to the data being moved into the `Cache`.
    pub(crate) fn populate(cx: &mut DocContext<'_>, mut krate: clean::Crate) -> clean::Crate {
        let tcx = cx.tcx;

        // Crawl the crate to build various caches used for the output
        debug!(?cx.cache.crate_version);
        assert!(cx.external_traits.is_empty());
        cx.cache.traits = mem::take(&mut krate.external_traits);

        // Cache where all our extern crates are located
        // FIXME: this part is specific to HTML so it'd be nice to remove it from the common code
        for &crate_num in tcx.crates(()) {
            let e = ExternalCrate { crate_num };

            let name = e.name(tcx);
            let render_options = &cx.render_options;
            let extern_url = render_options.extern_html_root_urls.get(name.as_str()).map(|u| &**u);
            let extern_url_takes_precedence = render_options.extern_html_root_takes_precedence;
            let dst = &render_options.output;
            let location = e.location(extern_url, extern_url_takes_precedence, dst, tcx);
            cx.cache.extern_locations.insert(e.crate_num, location);
            cx.cache.external_paths.insert(e.def_id(), (vec![name], ItemType::Module));
        }

        // FIXME: avoid this clone (requires implementing Default manually)
        cx.cache.primitive_locations = PrimitiveType::primitive_locations(tcx).clone();
        for (prim, &def_id) in &cx.cache.primitive_locations {
            let crate_name = tcx.crate_name(def_id.krate);
            // Recall that we only allow primitive modules to be at the root-level of the crate.
            // If that restriction is ever lifted, this will have to include the relative paths instead.
            cx.cache
                .external_paths
                .insert(def_id, (vec![crate_name, prim.as_sym()], ItemType::Primitive));
        }

        let (krate, mut impl_ids) = {
            let mut cache_builder =
                CacheBuilder { tcx, cache: &mut cx.cache, impl_ids: Default::default() };
            krate = cache_builder.fold_crate(krate);
            (krate, cache_builder.impl_ids)
        };

        for (trait_did, dids, impl_) in cx.cache.orphan_trait_impls.drain(..) {
            if cx.cache.traits.contains_key(&trait_did) {
                for did in dids {
                    if impl_ids.entry(did).or_default().insert(impl_.def_id()) {
                        cx.cache.impls.entry(did).or_default().push(impl_.clone());
                    }
                }
            }
        }

        krate
    }
}

impl DocFolder for CacheBuilder<'_, '_> {
    fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
        if item.item_id.is_local() {
            debug!(
                "folding {} (stripped: {:?}) \"{:?}\", id {:?}",
                item.type_(),
                item.is_stripped(),
                item.name,
                item.item_id
            );
        }

        // If this is a stripped module,
        // we don't want it or its children in the search index.
        let orig_stripped_mod = match item.kind {
            clean::StrippedItem(box clean::ModuleItem(..)) => {
                mem::replace(&mut self.cache.stripped_mod, true)
            }
            _ => self.cache.stripped_mod,
        };

        #[inline]
        fn is_from_private_dep(tcx: TyCtxt<'_>, cache: &Cache, def_id: DefId) -> bool {
            let krate = def_id.krate;

            cache.masked_crates.contains(&krate) || tcx.is_private_dep(krate)
        }

        // If the impl is from a masked crate or references something from a
        // masked crate then remove it completely.
        if let clean::ImplItem(ref i) = item.kind
            && (self.cache.masked_crates.contains(&item.item_id.krate())
                || i.trait_
                    .as_ref()
                    .is_some_and(|t| is_from_private_dep(self.tcx, self.cache, t.def_id()))
                || i.for_
                    .def_id(self.cache)
                    .is_some_and(|d| is_from_private_dep(self.tcx, self.cache, d)))
        {
            return None;
        }

        // Propagate a trait method's documentation to all implementors of the
        // trait.
        if let clean::TraitItem(ref t) = item.kind {
            self.cache.traits.entry(item.item_id.expect_def_id()).or_insert_with(|| (**t).clone());
        } else if let clean::ImplItem(ref i) = item.kind
            && let Some(trait_) = &i.trait_
            && !i.kind.is_blanket()
        {
            // Collect all the implementors of traits.
            self.cache
                .implementors
                .entry(trait_.def_id())
                .or_default()
                .push(Impl { impl_item: item.clone() });
        }

        // Index this method for searching later on.
        let search_name = if !item.is_stripped() {
            item.name.or_else(|| {
                if let clean::ImportItem(ref i) = item.kind
                    && let clean::ImportKind::Simple(s) = i.kind
                {
                    Some(s)
                } else {
                    None
                }
            })
        } else {
            None
        };
        if let Some(name) = search_name {
            add_item_to_search_index(self.tcx, self.cache, &item, name)
        }

        // Keep track of the fully qualified path for this item.
        let pushed = match item.name {
            Some(n) if !n.is_empty() => {
                self.cache.stack.push(n);
                true
            }
            _ => false,
        };

        match item.kind {
            clean::StructItem(..)
            | clean::EnumItem(..)
            | clean::TypeAliasItem(..)
            | clean::TraitItem(..)
            | clean::TraitAliasItem(..)
            | clean::FunctionItem(..)
            | clean::ModuleItem(..)
            | clean::ForeignFunctionItem(..)
            | clean::ForeignStaticItem(..)
            | clean::ConstantItem(..)
            | clean::StaticItem(..)
            | clean::UnionItem(..)
            | clean::ForeignTypeItem
            | clean::MacroItem(..)
            | clean::ProcMacroItem(..)
            | clean::VariantItem(..) => {
                if !self.cache.stripped_mod {
                    // Re-exported items mean that the same id can show up twice
                    // in the rustdoc ast that we're looking at. We know,
                    // however, that a re-exported item doesn't show up in the
                    // `public_items` map, so we can skip inserting into the
                    // paths map if there was already an entry present and we're
                    // not a public item.
                    let item_def_id = item.item_id.expect_def_id();
                    if !self.cache.paths.contains_key(&item_def_id)
                        || self
                            .cache
                            .effective_visibilities
                            .is_directly_public(self.tcx, item_def_id)
                    {
                        self.cache
                            .paths
                            .insert(item_def_id, (self.cache.stack.clone(), item.type_()));
                    }
                }
            }
            clean::PrimitiveItem(..) => {
                self.cache
                    .paths
                    .insert(item.item_id.expect_def_id(), (self.cache.stack.clone(), item.type_()));
            }

            clean::ExternCrateItem { .. }
            | clean::ImportItem(..)
            | clean::ImplItem(..)
            | clean::RequiredMethodItem(..)
            | clean::MethodItem(..)
            | clean::StructFieldItem(..)
            | clean::RequiredAssocConstItem(..)
            | clean::ProvidedAssocConstItem(..)
            | clean::ImplAssocConstItem(..)
            | clean::RequiredAssocTypeItem(..)
            | clean::AssocTypeItem(..)
            | clean::StrippedItem(..)
            | clean::KeywordItem => {
                // FIXME: Do these need handling?
                // The person writing this comment doesn't know.
                // So would rather leave them to an expert,
                // as at least the list is better than `_ => {}`.
            }
        }

        // Maintain the parent stack.
        let (item, parent_pushed) = match item.kind {
            clean::TraitItem(..)
            | clean::EnumItem(..)
            | clean::ForeignTypeItem
            | clean::StructItem(..)
            | clean::UnionItem(..)
            | clean::VariantItem(..)
            | clean::TypeAliasItem(..)
            | clean::ImplItem(..) => {
                self.cache.parent_stack.push(ParentStackItem::new(&item));
                (self.fold_item_recur(item), true)
            }
            _ => (self.fold_item_recur(item), false),
        };

        // Once we've recursively found all the generics, hoard off all the
        // implementations elsewhere.
        let ret = if let clean::Item {
            inner: box clean::ItemInner { kind: clean::ImplItem(ref i), .. },
            ..
        } = item
        {
            // Figure out the id of this impl. This may map to a
            // primitive rather than always to a struct/enum.
            // Note: matching twice to restrict the lifetime of the `i` borrow.
            let mut dids = FxIndexSet::default();
            match i.for_ {
                clean::Type::Path { ref path }
                | clean::BorrowedRef { type_: box clean::Type::Path { ref path }, .. } => {
                    dids.insert(path.def_id());
                    if let Some(generics) = path.generics()
                        && let ty::Adt(adt, _) =
                            self.tcx.type_of(path.def_id()).instantiate_identity().kind()
                        && adt.is_fundamental()
                    {
                        for ty in generics {
                            dids.extend(ty.def_id(self.cache));
                        }
                    }
                }
                clean::DynTrait(ref bounds, _)
                | clean::BorrowedRef { type_: box clean::DynTrait(ref bounds, _), .. } => {
                    dids.insert(bounds[0].trait_.def_id());
                }
                ref t => {
                    let did = t
                        .primitive_type()
                        .and_then(|t| self.cache.primitive_locations.get(&t).cloned());

                    dids.extend(did);
                }
            }

            if let Some(generics) = i.trait_.as_ref().and_then(|t| t.generics()) {
                for bound in generics {
                    dids.extend(bound.def_id(self.cache));
                }
            }
            let impl_item = Impl { impl_item: item };
            let impl_did = impl_item.def_id();
            let trait_did = impl_item.trait_did();
            if trait_did.map_or(true, |d| self.cache.traits.contains_key(&d)) {
                for did in dids {
                    if self.impl_ids.entry(did).or_default().insert(impl_did) {
                        self.cache.impls.entry(did).or_default().push(impl_item.clone());
                    }
                }
            } else {
                let trait_did = trait_did.expect("no trait did");
                self.cache.orphan_trait_impls.push((trait_did, dids, impl_item));
            }
            None
        } else {
            Some(item)
        };

        if pushed {
            self.cache.stack.pop().expect("stack already empty");
        }
        if parent_pushed {
            self.cache.parent_stack.pop().expect("parent stack already empty");
        }
        self.cache.stripped_mod = orig_stripped_mod;
        ret
    }
}

fn add_item_to_search_index(tcx: TyCtxt<'_>, cache: &mut Cache, item: &clean::Item, name: Symbol) {
    // Item has a name, so it must also have a DefId (can't be an impl, let alone a blanket or auto impl).
    let item_def_id = item.item_id.as_def_id().unwrap();
    let (parent_did, parent_path) = match item.kind {
        clean::StrippedItem(..) => return,
        clean::ProvidedAssocConstItem(..)
        | clean::ImplAssocConstItem(..)
        | clean::AssocTypeItem(..)
            if cache.parent_stack.last().is_some_and(|parent| parent.is_trait_impl()) =>
        {
            // skip associated items in trait impls
            return;
        }
        clean::RequiredMethodItem(..)
        | clean::RequiredAssocConstItem(..)
        | clean::RequiredAssocTypeItem(..)
        | clean::StructFieldItem(..)
        | clean::VariantItem(..) => {
            // Don't index if containing module is stripped (i.e., private),
            // or if item is tuple struct/variant field (name is a number -> not useful for search).
            if cache.stripped_mod
                || item.type_() == ItemType::StructField
                    && name.as_str().chars().all(|c| c.is_ascii_digit())
            {
                return;
            }
            let parent_did =
                cache.parent_stack.last().expect("parent_stack is empty").item_id().expect_def_id();
            let parent_path = &cache.stack[..cache.stack.len() - 1];
            (Some(parent_did), parent_path)
        }
        clean::MethodItem(..)
        | clean::ProvidedAssocConstItem(..)
        | clean::ImplAssocConstItem(..)
        | clean::AssocTypeItem(..) => {
            let last = cache.parent_stack.last().expect("parent_stack is empty 2");
            let parent_did = match last {
                // impl Trait for &T { fn method(self); }
                //
                // When generating a function index with the above shape, we want it
                // associated with `T`, not with the primitive reference type. It should
                // show up as `T::method`, rather than `reference::method`, in the search
                // results page.
                ParentStackItem::Impl { for_: clean::Type::BorrowedRef { type_, .. }, .. } => {
                    type_.def_id(cache)
                }
                ParentStackItem::Impl { for_, .. } => for_.def_id(cache),
                ParentStackItem::Type(item_id) => item_id.as_def_id(),
            };
            let Some(parent_did) = parent_did else { return };
            // The current stack reflects the CacheBuilder's recursive
            // walk over HIR. For associated items, this is the module
            // where the `impl` block is defined. That's an implementation
            // detail that we don't want to affect the search engine.
            //
            // In particular, you can arrange things like this:
            //
            //     #![crate_name="me"]
            //     mod private_mod {
            //         impl Clone for MyThing { fn clone(&self) -> MyThing { MyThing } }
            //     }
            //     pub struct MyThing;
            //
            // When that happens, we need to:
            // - ignore the `cache.stripped_mod` flag, since the Clone impl is actually
            //   part of the public API even though it's defined in a private module
            // - present the method as `me::MyThing::clone`, its publicly-visible path
            // - deal with the fact that the recursive walk hasn't actually reached `MyThing`
            //   until it's already past `private_mod`, since that's first, and doesn't know
            //   yet if `MyThing` will actually be public or not (it could be re-exported)
            //
            // We accomplish the last two points by recording children of "orphan impls"
            // in a field of the cache whose elements are added to the search index later,
            // after cache building is complete (see `handle_orphan_impl_child`).
            match cache.paths.get(&parent_did) {
                Some((fqp, _)) => (Some(parent_did), &fqp[..fqp.len() - 1]),
                None => {
                    handle_orphan_impl_child(cache, item, parent_did);
                    return;
                }
            }
        }
        _ => {
            // Don't index if item is crate root, which is inserted later on when serializing the index.
            // Don't index if containing module is stripped (i.e., private),
            if item_def_id.is_crate_root() || cache.stripped_mod {
                return;
            }
            (None, &*cache.stack)
        }
    };

    debug_assert!(!item.is_stripped());

    let desc = short_markdown_summary(&item.doc_value(), &item.link_names(cache));
    // For searching purposes, a re-export is a duplicate if:
    //
    // - It's either an inline, or a true re-export
    // - It's got the same name
    // - Both of them have the same exact path
    let defid = match &item.kind {
        clean::ItemKind::ImportItem(import) => import.source.did.unwrap_or(item_def_id),
        _ => item_def_id,
    };
    let path = join_with_double_colon(parent_path);
    let impl_id = if let Some(ParentStackItem::Impl { item_id, .. }) = cache.parent_stack.last() {
        item_id.as_def_id()
    } else {
        None
    };
    let search_type = get_function_type_for_search(
        item,
        tcx,
        clean_impl_generics(cache.parent_stack.last()).as_ref(),
        parent_did,
        cache,
    );
    let aliases = item.attrs.get_doc_aliases();
    let deprecation = item.deprecation(tcx);
    let index_item = IndexItem {
        ty: item.type_(),
        defid: Some(defid),
        name,
        path,
        desc,
        parent: parent_did,
        parent_idx: None,
        exact_path: None,
        impl_id,
        search_type,
        aliases,
        deprecation,
    };
    cache.search_index.push(index_item);
}

/// We have a parent, but we don't know where they're
/// defined yet. Wait for later to index this item.
/// See [`Cache::orphan_impl_items`].
fn handle_orphan_impl_child(cache: &mut Cache, item: &clean::Item, parent_did: DefId) {
    let impl_generics = clean_impl_generics(cache.parent_stack.last());
    let impl_id = if let Some(ParentStackItem::Impl { item_id, .. }) = cache.parent_stack.last() {
        item_id.as_def_id()
    } else {
        None
    };
    let orphan_item =
        OrphanImplItem { parent: parent_did, item: item.clone(), impl_generics, impl_id };
    cache.orphan_impl_items.push(orphan_item);
}

pub(crate) struct OrphanImplItem {
    pub(crate) parent: DefId,
    pub(crate) impl_id: Option<DefId>,
    pub(crate) item: clean::Item,
    pub(crate) impl_generics: Option<(clean::Type, clean::Generics)>,
}

/// Information about trait and type parents is tracked while traversing the item tree to build
/// the cache.
///
/// We don't just store `Item` in there, because `Item` contains the list of children being
/// traversed and it would be wasteful to clone all that. We also need the item id, so just
/// storing `ItemKind` won't work, either.
enum ParentStackItem {
    Impl {
        for_: clean::Type,
        trait_: Option<clean::Path>,
        generics: clean::Generics,
        kind: clean::ImplKind,
        item_id: ItemId,
    },
    Type(ItemId),
}

impl ParentStackItem {
    fn new(item: &clean::Item) -> Self {
        match &item.kind {
            clean::ItemKind::ImplItem(box clean::Impl { for_, trait_, generics, kind, .. }) => {
                ParentStackItem::Impl {
                    for_: for_.clone(),
                    trait_: trait_.clone(),
                    generics: generics.clone(),
                    kind: kind.clone(),
                    item_id: item.item_id,
                }
            }
            _ => ParentStackItem::Type(item.item_id),
        }
    }
    fn is_trait_impl(&self) -> bool {
        matches!(self, ParentStackItem::Impl { trait_: Some(..), .. })
    }
    fn item_id(&self) -> ItemId {
        match self {
            ParentStackItem::Impl { item_id, .. } => *item_id,
            ParentStackItem::Type(item_id) => *item_id,
        }
    }
}

fn clean_impl_generics(item: Option<&ParentStackItem>) -> Option<(clean::Type, clean::Generics)> {
    if let Some(ParentStackItem::Impl { for_, generics, kind: clean::ImplKind::Normal, .. }) = item
    {
        Some((for_.clone(), generics.clone()))
    } else {
        None
    }
}