rustc_hir_typeck/
callee.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
use std::iter;

use rustc_ast::util::parser::ExprPrecedence;
use rustc_errors::{Applicability, Diag, ErrorGuaranteed, StashKey};
use rustc_hir::def::{self, CtorKind, Namespace, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::{self as hir, HirId, LangItem};
use rustc_hir_analysis::autoderef::Autoderef;
use rustc_infer::infer;
use rustc_infer::traits::{self, Obligation, ObligationCause, ObligationCauseCode};
use rustc_middle::ty::adjustment::{
    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
};
use rustc_middle::ty::{self, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt};
use rustc_middle::{bug, span_bug};
use rustc_span::def_id::LocalDefId;
use rustc_span::{Ident, Span, sym};
use rustc_trait_selection::error_reporting::traits::DefIdOrName;
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
use tracing::{debug, instrument};

use super::method::MethodCallee;
use super::method::probe::ProbeScope;
use super::{Expectation, FnCtxt, TupleArgumentsFlag};
use crate::errors;

/// Checks that it is legal to call methods of the trait corresponding
/// to `trait_id` (this only cares about the trait, not the specific
/// method that is called).
pub(crate) fn check_legal_trait_for_method_call(
    tcx: TyCtxt<'_>,
    span: Span,
    receiver: Option<Span>,
    expr_span: Span,
    trait_id: DefId,
    body_id: DefId,
) -> Result<(), ErrorGuaranteed> {
    if tcx.is_lang_item(trait_id, LangItem::Drop)
        && tcx.lang_items().fallback_surface_drop_fn() != Some(body_id)
    {
        let sugg = if let Some(receiver) = receiver.filter(|s| !s.is_empty()) {
            errors::ExplicitDestructorCallSugg::Snippet {
                lo: expr_span.shrink_to_lo(),
                hi: receiver.shrink_to_hi().to(expr_span.shrink_to_hi()),
            }
        } else {
            errors::ExplicitDestructorCallSugg::Empty(span)
        };
        return Err(tcx.dcx().emit_err(errors::ExplicitDestructorCall { span, sugg }));
    }
    tcx.ensure().coherent_trait(trait_id)
}

#[derive(Debug)]
enum CallStep<'tcx> {
    Builtin(Ty<'tcx>),
    DeferredClosure(LocalDefId, ty::FnSig<'tcx>),
    /// Call overloading when callee implements one of the Fn* traits.
    Overloaded(MethodCallee<'tcx>),
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub(crate) fn check_expr_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let original_callee_ty = match &callee_expr.kind {
            hir::ExprKind::Path(hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)) => self
                .check_expr_with_expectation_and_args(
                    callee_expr,
                    Expectation::NoExpectation,
                    Some((call_expr, arg_exprs)),
                ),
            _ => self.check_expr(callee_expr),
        };

        let expr_ty = self.structurally_resolve_type(call_expr.span, original_callee_ty);

        let mut autoderef = self.autoderef(callee_expr.span, expr_ty);
        let mut result = None;
        while result.is_none() && autoderef.next().is_some() {
            result = self.try_overloaded_call_step(call_expr, callee_expr, arg_exprs, &autoderef);
        }
        self.register_predicates(autoderef.into_obligations());

        let output = match result {
            None => {
                // this will report an error since original_callee_ty is not a fn
                self.confirm_builtin_call(
                    call_expr,
                    callee_expr,
                    original_callee_ty,
                    arg_exprs,
                    expected,
                )
            }

            Some(CallStep::Builtin(callee_ty)) => {
                self.confirm_builtin_call(call_expr, callee_expr, callee_ty, arg_exprs, expected)
            }

            Some(CallStep::DeferredClosure(def_id, fn_sig)) => {
                self.confirm_deferred_closure_call(call_expr, arg_exprs, expected, def_id, fn_sig)
            }

            Some(CallStep::Overloaded(method_callee)) => {
                self.confirm_overloaded_call(call_expr, arg_exprs, expected, method_callee)
            }
        };

        // we must check that return type of called functions is WF:
        self.register_wf_obligation(
            output.into(),
            call_expr.span,
            ObligationCauseCode::WellFormed(None),
        );

        output
    }

    #[instrument(level = "debug", skip(self, call_expr, callee_expr, arg_exprs, autoderef), ret)]
    fn try_overloaded_call_step(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        autoderef: &Autoderef<'a, 'tcx>,
    ) -> Option<CallStep<'tcx>> {
        let adjusted_ty =
            self.structurally_resolve_type(autoderef.span(), autoderef.final_ty(false));

        // If the callee is a bare function or a closure, then we're all set.
        match *adjusted_ty.kind() {
            ty::FnDef(..) | ty::FnPtr(..) => {
                let adjustments = self.adjust_steps(autoderef);
                self.apply_adjustments(callee_expr, adjustments);
                return Some(CallStep::Builtin(adjusted_ty));
            }

            // Check whether this is a call to a closure where we
            // haven't yet decided on whether the closure is fn vs
            // fnmut vs fnonce. If so, we have to defer further processing.
            ty::Closure(def_id, args) if self.closure_kind(adjusted_ty).is_none() => {
                let def_id = def_id.expect_local();
                let closure_sig = args.as_closure().sig();
                let closure_sig = self.instantiate_binder_with_fresh_vars(
                    call_expr.span,
                    infer::FnCall,
                    closure_sig,
                );
                let adjustments = self.adjust_steps(autoderef);
                self.record_deferred_call_resolution(def_id, DeferredCallResolution {
                    call_expr,
                    callee_expr,
                    closure_ty: adjusted_ty,
                    adjustments,
                    fn_sig: closure_sig,
                });
                return Some(CallStep::DeferredClosure(def_id, closure_sig));
            }

            // When calling a `CoroutineClosure` that is local to the body, we will
            // not know what its `closure_kind` is yet. Instead, just fill in the
            // signature with an infer var for the `tupled_upvars_ty` of the coroutine,
            // and record a deferred call resolution which will constrain that var
            // as part of `AsyncFn*` trait confirmation.
            ty::CoroutineClosure(def_id, args) if self.closure_kind(adjusted_ty).is_none() => {
                let def_id = def_id.expect_local();
                let closure_args = args.as_coroutine_closure();
                let coroutine_closure_sig = self.instantiate_binder_with_fresh_vars(
                    call_expr.span,
                    infer::FnCall,
                    closure_args.coroutine_closure_sig(),
                );
                let tupled_upvars_ty = self.next_ty_var(callee_expr.span);
                // We may actually receive a coroutine back whose kind is different
                // from the closure that this dispatched from. This is because when
                // we have no captures, we automatically implement `FnOnce`. This
                // impl forces the closure kind to `FnOnce` i.e. `u8`.
                let kind_ty = self.next_ty_var(callee_expr.span);
                let call_sig = self.tcx.mk_fn_sig(
                    [coroutine_closure_sig.tupled_inputs_ty],
                    coroutine_closure_sig.to_coroutine(
                        self.tcx,
                        closure_args.parent_args(),
                        kind_ty,
                        self.tcx.coroutine_for_closure(def_id),
                        tupled_upvars_ty,
                    ),
                    coroutine_closure_sig.c_variadic,
                    coroutine_closure_sig.safety,
                    coroutine_closure_sig.abi,
                );
                let adjustments = self.adjust_steps(autoderef);
                self.record_deferred_call_resolution(def_id, DeferredCallResolution {
                    call_expr,
                    callee_expr,
                    closure_ty: adjusted_ty,
                    adjustments,
                    fn_sig: call_sig,
                });
                return Some(CallStep::DeferredClosure(def_id, call_sig));
            }

            // Hack: we know that there are traits implementing Fn for &F
            // where F:Fn and so forth. In the particular case of types
            // like `f: &mut FnMut()`, if there is a call `f()`, we would
            // normally translate to `FnMut::call_mut(&mut f, ())`, but
            // that winds up potentially requiring the user to mark their
            // variable as `mut` which feels unnecessary and unexpected.
            //
            //     fn foo(f: &mut impl FnMut()) { f() }
            //            ^ without this hack `f` would have to be declared as mutable
            //
            // The simplest fix by far is to just ignore this case and deref again,
            // so we wind up with `FnMut::call_mut(&mut *f, ())`.
            ty::Ref(..) if autoderef.step_count() == 0 => {
                return None;
            }

            ty::Error(_) => {
                return None;
            }

            _ => {}
        }

        // Now, we look for the implementation of a Fn trait on the object's type.
        // We first do it with the explicit instruction to look for an impl of
        // `Fn<Tuple>`, with the tuple `Tuple` having an arity corresponding
        // to the number of call parameters.
        // If that fails (or_else branch), we try again without specifying the
        // shape of the tuple (hence the None). This allows to detect an Fn trait
        // is implemented, and use this information for diagnostic.
        self.try_overloaded_call_traits(call_expr, adjusted_ty, Some(arg_exprs))
            .or_else(|| self.try_overloaded_call_traits(call_expr, adjusted_ty, None))
            .map(|(autoref, method)| {
                let mut adjustments = self.adjust_steps(autoderef);
                adjustments.extend(autoref);
                self.apply_adjustments(callee_expr, adjustments);
                CallStep::Overloaded(method)
            })
    }

    fn try_overloaded_call_traits(
        &self,
        call_expr: &hir::Expr<'_>,
        adjusted_ty: Ty<'tcx>,
        opt_arg_exprs: Option<&'tcx [hir::Expr<'tcx>]>,
    ) -> Option<(Option<Adjustment<'tcx>>, MethodCallee<'tcx>)> {
        // HACK(async_closures): For async closures, prefer `AsyncFn*`
        // over `Fn*`, since all async closures implement `FnOnce`, but
        // choosing that over `AsyncFn`/`AsyncFnMut` would be more restrictive.
        // For other callables, just prefer `Fn*` for perf reasons.
        //
        // The order of trait choices here is not that big of a deal,
        // since it just guides inference (and our choice of autoref).
        // Though in the future, I'd like typeck to choose:
        // `Fn > AsyncFn > FnMut > AsyncFnMut > FnOnce > AsyncFnOnce`
        // ...or *ideally*, we just have `LendingFn`/`LendingFnMut`, which
        // would naturally unify these two trait hierarchies in the most
        // general way.
        let call_trait_choices = if self.shallow_resolve(adjusted_ty).is_coroutine_closure() {
            [
                (self.tcx.lang_items().async_fn_trait(), sym::async_call, true),
                (self.tcx.lang_items().async_fn_mut_trait(), sym::async_call_mut, true),
                (self.tcx.lang_items().async_fn_once_trait(), sym::async_call_once, false),
                (self.tcx.lang_items().fn_trait(), sym::call, true),
                (self.tcx.lang_items().fn_mut_trait(), sym::call_mut, true),
                (self.tcx.lang_items().fn_once_trait(), sym::call_once, false),
            ]
        } else {
            [
                (self.tcx.lang_items().fn_trait(), sym::call, true),
                (self.tcx.lang_items().fn_mut_trait(), sym::call_mut, true),
                (self.tcx.lang_items().fn_once_trait(), sym::call_once, false),
                (self.tcx.lang_items().async_fn_trait(), sym::async_call, true),
                (self.tcx.lang_items().async_fn_mut_trait(), sym::async_call_mut, true),
                (self.tcx.lang_items().async_fn_once_trait(), sym::async_call_once, false),
            ]
        };

        // Try the options that are least restrictive on the caller first.
        for (opt_trait_def_id, method_name, borrow) in call_trait_choices {
            let Some(trait_def_id) = opt_trait_def_id else { continue };

            let opt_input_type = opt_arg_exprs.map(|arg_exprs| {
                Ty::new_tup_from_iter(self.tcx, arg_exprs.iter().map(|e| self.next_ty_var(e.span)))
            });

            if let Some(ok) = self.lookup_method_in_trait(
                self.misc(call_expr.span),
                Ident::with_dummy_span(method_name),
                trait_def_id,
                adjusted_ty,
                opt_input_type,
            ) {
                let method = self.register_infer_ok_obligations(ok);
                let mut autoref = None;
                if borrow {
                    // Check for &self vs &mut self in the method signature. Since this is either
                    // the Fn or FnMut trait, it should be one of those.
                    let ty::Ref(_, _, mutbl) = method.sig.inputs()[0].kind() else {
                        bug!("Expected `FnMut`/`Fn` to take receiver by-ref/by-mut")
                    };

                    // For initial two-phase borrow
                    // deployment, conservatively omit
                    // overloaded function call ops.
                    let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::No);

                    autoref = Some(Adjustment {
                        kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)),
                        target: method.sig.inputs()[0],
                    });
                }

                return Some((autoref, method));
            }
        }

        None
    }

    /// Give appropriate suggestion when encountering `||{/* not callable */}()`, where the
    /// likely intention is to call the closure, suggest `(||{})()`. (#55851)
    fn identify_bad_closure_def_and_call(
        &self,
        err: &mut Diag<'_>,
        hir_id: hir::HirId,
        callee_node: &hir::ExprKind<'_>,
        callee_span: Span,
    ) {
        let hir::ExprKind::Block(..) = callee_node else {
            // Only calls on blocks suggested here.
            return;
        };

        let hir = self.tcx.hir();
        let fn_decl_span = if let hir::Node::Expr(hir::Expr {
            kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }),
            ..
        }) = self.tcx.parent_hir_node(hir_id)
        {
            fn_decl_span
        } else if let Some((
            _,
            hir::Node::Expr(&hir::Expr {
                hir_id: parent_hir_id,
                kind:
                    hir::ExprKind::Closure(&hir::Closure {
                        kind:
                            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
                                hir::CoroutineDesugaring::Async,
                                hir::CoroutineSource::Closure,
                            )),
                        ..
                    }),
                ..
            }),
        )) = hir.parent_iter(hir_id).nth(3)
        {
            // Actually need to unwrap one more layer of HIR to get to
            // the _real_ closure...
            if let hir::Node::Expr(hir::Expr {
                kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }),
                ..
            }) = self.tcx.parent_hir_node(parent_hir_id)
            {
                fn_decl_span
            } else {
                return;
            }
        } else {
            return;
        };

        let start = fn_decl_span.shrink_to_lo();
        let end = callee_span.shrink_to_hi();
        err.multipart_suggestion(
            "if you meant to create this closure and immediately call it, surround the \
                closure with parentheses",
            vec![(start, "(".to_string()), (end, ")".to_string())],
            Applicability::MaybeIncorrect,
        );
    }

    /// Give appropriate suggestion when encountering `[("a", 0) ("b", 1)]`, where the
    /// likely intention is to create an array containing tuples.
    fn maybe_suggest_bad_array_definition(
        &self,
        err: &mut Diag<'_>,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
    ) -> bool {
        let parent_node = self.tcx.parent_hir_node(call_expr.hir_id);
        if let (
            hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Array(_), .. }),
            hir::ExprKind::Tup(exp),
            hir::ExprKind::Call(_, args),
        ) = (parent_node, &callee_expr.kind, &call_expr.kind)
            && args.len() == exp.len()
        {
            let start = callee_expr.span.shrink_to_hi();
            err.span_suggestion(
                start,
                "consider separating array elements with a comma",
                ",",
                Applicability::MaybeIncorrect,
            );
            return true;
        }
        false
    }

    fn confirm_builtin_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
        callee_ty: Ty<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let (fn_sig, def_id) = match *callee_ty.kind() {
            ty::FnDef(def_id, args) => {
                self.enforce_context_effects(Some(call_expr.hir_id), call_expr.span, def_id, args);
                let fn_sig = self.tcx.fn_sig(def_id).instantiate(self.tcx, args);

                // Unit testing: function items annotated with
                // `#[rustc_evaluate_where_clauses]` trigger special output
                // to let us test the trait evaluation system.
                // Untranslatable diagnostics are okay for rustc internals
                #[allow(rustc::untranslatable_diagnostic)]
                #[allow(rustc::diagnostic_outside_of_impl)]
                if self.tcx.has_attr(def_id, sym::rustc_evaluate_where_clauses) {
                    let predicates = self.tcx.predicates_of(def_id);
                    let predicates = predicates.instantiate(self.tcx, args);
                    for (predicate, predicate_span) in predicates {
                        let obligation = Obligation::new(
                            self.tcx,
                            ObligationCause::dummy_with_span(callee_expr.span),
                            self.param_env,
                            predicate,
                        );
                        let result = self.evaluate_obligation(&obligation);
                        self.dcx()
                            .struct_span_err(
                                callee_expr.span,
                                format!("evaluate({predicate:?}) = {result:?}"),
                            )
                            .with_span_label(predicate_span, "predicate")
                            .emit();
                    }
                }
                (fn_sig, Some(def_id))
            }
            // FIXME(const_trait_impl): these arms should error because we can't enforce them
            ty::FnPtr(sig_tys, hdr) => (sig_tys.with(hdr), None),
            _ => {
                for arg in arg_exprs {
                    self.check_expr(arg);
                }

                if let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = &callee_expr.kind
                    && let [segment] = path.segments
                {
                    self.dcx().try_steal_modify_and_emit_err(
                        segment.ident.span,
                        StashKey::CallIntoMethod,
                        |err| {
                            // Try suggesting `foo(a)` -> `a.foo()` if possible.
                            self.suggest_call_as_method(
                                err, segment, arg_exprs, call_expr, expected,
                            );
                        },
                    );
                }

                let err = self.report_invalid_callee(call_expr, callee_expr, callee_ty, arg_exprs);

                return Ty::new_error(self.tcx, err);
            }
        };

        // Replace any late-bound regions that appear in the function
        // signature with region variables. We also have to
        // renormalize the associated types at this point, since they
        // previously appeared within a `Binder<>` and hence would not
        // have been normalized before.
        let fn_sig = self.instantiate_binder_with_fresh_vars(call_expr.span, infer::FnCall, fn_sig);
        let fn_sig = self.normalize(call_expr.span, fn_sig);

        self.check_argument_types(
            call_expr.span,
            call_expr,
            fn_sig.inputs(),
            fn_sig.output(),
            expected,
            arg_exprs,
            fn_sig.c_variadic,
            TupleArgumentsFlag::DontTupleArguments,
            def_id,
        );

        if fn_sig.abi == rustc_abi::ExternAbi::RustCall {
            let sp = arg_exprs.last().map_or(call_expr.span, |expr| expr.span);
            if let Some(ty) = fn_sig.inputs().last().copied() {
                self.register_bound(
                    ty,
                    self.tcx.require_lang_item(hir::LangItem::Tuple, Some(sp)),
                    traits::ObligationCause::new(sp, self.body_id, ObligationCauseCode::RustCall),
                );
                self.require_type_is_sized(ty, sp, ObligationCauseCode::RustCall);
            } else {
                self.dcx().emit_err(errors::RustCallIncorrectArgs { span: sp });
            }
        }

        if let Some(def_id) = def_id
            && self.tcx.def_kind(def_id) == hir::def::DefKind::Fn
            && self.tcx.is_intrinsic(def_id, sym::const_eval_select)
        {
            let fn_sig = self.resolve_vars_if_possible(fn_sig);
            for idx in 0..=1 {
                let arg_ty = fn_sig.inputs()[idx + 1];
                let span = arg_exprs.get(idx + 1).map_or(call_expr.span, |arg| arg.span);
                // Check that second and third argument of `const_eval_select` must be `FnDef`, and additionally that
                // the second argument must be `const fn`. The first argument must be a tuple, but this is already expressed
                // in the function signature (`F: FnOnce<ARG>`), so I did not bother to add another check here.
                //
                // This check is here because there is currently no way to express a trait bound for `FnDef` types only.
                if let ty::FnDef(def_id, _args) = *arg_ty.kind() {
                    if idx == 0 && !self.tcx.is_const_fn(def_id) {
                        self.dcx().emit_err(errors::ConstSelectMustBeConst { span });
                    }
                } else {
                    self.dcx().emit_err(errors::ConstSelectMustBeFn { span, ty: arg_ty });
                }
            }
        }

        fn_sig.output()
    }

    /// Attempts to reinterpret `method(rcvr, args...)` as `rcvr.method(args...)`
    /// and suggesting the fix if the method probe is successful.
    fn suggest_call_as_method(
        &self,
        diag: &mut Diag<'_>,
        segment: &'tcx hir::PathSegment<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        call_expr: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
    ) {
        if let [callee_expr, rest @ ..] = arg_exprs {
            let Some(callee_ty) = self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr)
            else {
                return;
            };

            // First, do a probe with `IsSuggestion(true)` to avoid emitting
            // any strange errors. If it's successful, then we'll do a true
            // method lookup.
            let Ok(pick) = self.lookup_probe_for_diagnostic(
                segment.ident,
                callee_ty,
                call_expr,
                // We didn't record the in scope traits during late resolution
                // so we need to probe AllTraits unfortunately
                ProbeScope::AllTraits,
                expected.only_has_type(self),
            ) else {
                return;
            };

            let pick = self.confirm_method_for_diagnostic(
                call_expr.span,
                callee_expr,
                call_expr,
                callee_ty,
                &pick,
                segment,
            );
            if pick.illegal_sized_bound.is_some() {
                return;
            }

            let Some(callee_expr_span) = callee_expr.span.find_ancestor_inside(call_expr.span)
            else {
                return;
            };
            let up_to_rcvr_span = segment.ident.span.until(callee_expr_span);
            let rest_span = callee_expr_span.shrink_to_hi().to(call_expr.span.shrink_to_hi());
            let rest_snippet = if let Some(first) = rest.first() {
                self.tcx
                    .sess
                    .source_map()
                    .span_to_snippet(first.span.to(call_expr.span.shrink_to_hi()))
            } else {
                Ok(")".to_string())
            };

            if let Ok(rest_snippet) = rest_snippet {
                let sugg = if callee_expr.precedence() >= ExprPrecedence::Unambiguous {
                    vec![
                        (up_to_rcvr_span, "".to_string()),
                        (rest_span, format!(".{}({rest_snippet}", segment.ident)),
                    ]
                } else {
                    vec![
                        (up_to_rcvr_span, "(".to_string()),
                        (rest_span, format!(").{}({rest_snippet}", segment.ident)),
                    ]
                };
                let self_ty = self.resolve_vars_if_possible(pick.callee.sig.inputs()[0]);
                diag.multipart_suggestion(
                    format!(
                        "use the `.` operator to call the method `{}{}` on `{self_ty}`",
                        self.tcx
                            .associated_item(pick.callee.def_id)
                            .trait_container(self.tcx)
                            .map_or_else(
                                || String::new(),
                                |trait_def_id| self.tcx.def_path_str(trait_def_id) + "::"
                            ),
                        segment.ident
                    ),
                    sugg,
                    Applicability::MaybeIncorrect,
                );
            }
        }
    }

    fn report_invalid_callee(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        callee_expr: &'tcx hir::Expr<'tcx>,
        callee_ty: Ty<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
    ) -> ErrorGuaranteed {
        // Callee probe fails when APIT references errors, so suppress those
        // errors here.
        if let Some((_, _, args)) = self.extract_callable_info(callee_ty)
            && let Err(err) = args.error_reported()
        {
            return err;
        }

        let mut unit_variant = None;
        if let hir::ExprKind::Path(qpath) = &callee_expr.kind
            && let Res::Def(def::DefKind::Ctor(kind, CtorKind::Const), _)
                = self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
            // Only suggest removing parens if there are no arguments
            && arg_exprs.is_empty()
            && call_expr.span.contains(callee_expr.span)
        {
            let descr = match kind {
                def::CtorOf::Struct => "struct",
                def::CtorOf::Variant => "enum variant",
            };
            let removal_span = callee_expr.span.shrink_to_hi().to(call_expr.span.shrink_to_hi());
            unit_variant =
                Some((removal_span, descr, rustc_hir_pretty::qpath_to_string(&self.tcx, qpath)));
        }

        let callee_ty = self.resolve_vars_if_possible(callee_ty);
        let mut err = self.dcx().create_err(errors::InvalidCallee {
            span: callee_expr.span,
            ty: match &unit_variant {
                Some((_, kind, path)) => format!("{kind} `{path}`"),
                None => format!("`{callee_ty}`"),
            },
        });
        if callee_ty.references_error() {
            err.downgrade_to_delayed_bug();
        }

        self.identify_bad_closure_def_and_call(
            &mut err,
            call_expr.hir_id,
            &callee_expr.kind,
            callee_expr.span,
        );

        if let Some((removal_span, kind, path)) = &unit_variant {
            err.span_suggestion_verbose(
                *removal_span,
                format!(
                    "`{path}` is a unit {kind}, and does not take parentheses to be constructed",
                ),
                "",
                Applicability::MachineApplicable,
            );
        }

        if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = callee_expr.kind
            && let Res::Local(_) = path.res
            && let [segment] = &path.segments
        {
            for id in self.tcx.hir().items() {
                if let Some(node) = self.tcx.hir().get_if_local(id.owner_id.into())
                    && let hir::Node::Item(item) = node
                    && let hir::ItemKind::Fn(..) = item.kind
                    && item.ident.name == segment.ident.name
                {
                    err.span_label(
                        self.tcx.def_span(id.owner_id),
                        "this function of the same name is available here, but it's shadowed by \
                         the local binding",
                    );
                }
            }
        }

        let mut inner_callee_path = None;
        let def = match callee_expr.kind {
            hir::ExprKind::Path(ref qpath) => {
                self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
            }
            hir::ExprKind::Call(inner_callee, _) => {
                if let hir::ExprKind::Path(ref inner_qpath) = inner_callee.kind {
                    inner_callee_path = Some(inner_qpath);
                    self.typeck_results.borrow().qpath_res(inner_qpath, inner_callee.hir_id)
                } else {
                    Res::Err
                }
            }
            _ => Res::Err,
        };

        if !self.maybe_suggest_bad_array_definition(&mut err, call_expr, callee_expr) {
            // If the call spans more than one line and the callee kind is
            // itself another `ExprCall`, that's a clue that we might just be
            // missing a semicolon (#51055, #106515).
            let call_is_multiline = self
                .tcx
                .sess
                .source_map()
                .is_multiline(call_expr.span.with_lo(callee_expr.span.hi()))
                && call_expr.span.eq_ctxt(callee_expr.span);
            if call_is_multiline {
                err.span_suggestion(
                    callee_expr.span.shrink_to_hi(),
                    "consider using a semicolon here to finish the statement",
                    ";",
                    Applicability::MaybeIncorrect,
                );
            }
            if let Some((maybe_def, output_ty, _)) = self.extract_callable_info(callee_ty)
                && !self.type_is_sized_modulo_regions(self.param_env, output_ty)
            {
                let descr = match maybe_def {
                    DefIdOrName::DefId(def_id) => self.tcx.def_descr(def_id),
                    DefIdOrName::Name(name) => name,
                };
                err.span_label(
                    callee_expr.span,
                    format!("this {descr} returns an unsized value `{output_ty}`, so it cannot be called")
                );
                if let DefIdOrName::DefId(def_id) = maybe_def
                    && let Some(def_span) = self.tcx.hir().span_if_local(def_id)
                {
                    err.span_label(def_span, "the callable type is defined here");
                }
            } else {
                err.span_label(call_expr.span, "call expression requires function");
            }
        }

        if let Some(span) = self.tcx.hir().res_span(def) {
            let callee_ty = callee_ty.to_string();
            let label = match (unit_variant, inner_callee_path) {
                (Some((_, kind, path)), _) => Some(format!("{kind} `{path}` defined here")),
                (_, Some(hir::QPath::Resolved(_, path))) => self
                    .tcx
                    .sess
                    .source_map()
                    .span_to_snippet(path.span)
                    .ok()
                    .map(|p| format!("`{p}` defined here returns `{callee_ty}`")),
                _ => {
                    match def {
                        // Emit a different diagnostic for local variables, as they are not
                        // type definitions themselves, but rather variables *of* that type.
                        Res::Local(hir_id) => Some(format!(
                            "`{}` has type `{}`",
                            self.tcx.hir().name(hir_id),
                            callee_ty
                        )),
                        Res::Def(kind, def_id) if kind.ns() == Some(Namespace::ValueNS) => {
                            Some(format!("`{}` defined here", self.tcx.def_path_str(def_id),))
                        }
                        _ => Some(format!("`{callee_ty}` defined here")),
                    }
                }
            };
            if let Some(label) = label {
                err.span_label(span, label);
            }
        }
        err.emit()
    }

    fn confirm_deferred_closure_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
        closure_def_id: LocalDefId,
        fn_sig: ty::FnSig<'tcx>,
    ) -> Ty<'tcx> {
        // `fn_sig` is the *signature* of the closure being called. We
        // don't know the full details yet (`Fn` vs `FnMut` etc), but we
        // do know the types expected for each argument and the return
        // type.
        self.check_argument_types(
            call_expr.span,
            call_expr,
            fn_sig.inputs(),
            fn_sig.output(),
            expected,
            arg_exprs,
            fn_sig.c_variadic,
            TupleArgumentsFlag::TupleArguments,
            Some(closure_def_id.to_def_id()),
        );

        fn_sig.output()
    }

    #[tracing::instrument(level = "debug", skip(self, span))]
    pub(super) fn enforce_context_effects(
        &self,
        call_hir_id: Option<HirId>,
        span: Span,
        callee_did: DefId,
        callee_args: GenericArgsRef<'tcx>,
    ) {
        // FIXME(const_trait_impl): We should be enforcing these effects unconditionally.
        // This can be done as soon as we convert the standard library back to
        // using const traits, since if we were to enforce these conditions now,
        // we'd fail on basically every builtin trait call (i.e. `1 + 2`).
        if !self.tcx.features().const_trait_impl() {
            return;
        }

        // If we have `rustc_do_not_const_check`, do not check `~const` bounds.
        if self.tcx.has_attr(self.body_id, sym::rustc_do_not_const_check) {
            return;
        }

        let host = match self.tcx.hir().body_const_context(self.body_id) {
            Some(hir::ConstContext::Const { .. } | hir::ConstContext::Static(_)) => {
                ty::BoundConstness::Const
            }
            Some(hir::ConstContext::ConstFn) => ty::BoundConstness::Maybe,
            None => return,
        };

        // FIXME(const_trait_impl): Should this be `is_const_fn_raw`? It depends on if we move
        // const stability checking here too, I guess.
        if self.tcx.is_conditionally_const(callee_did) {
            let q = self.tcx.const_conditions(callee_did);
            // FIXME(const_trait_impl): Use this span with a better cause code.
            for (idx, (cond, pred_span)) in
                q.instantiate(self.tcx, callee_args).into_iter().enumerate()
            {
                let cause = self.cause(
                    span,
                    if let Some(hir_id) = call_hir_id {
                        ObligationCauseCode::HostEffectInExpr(callee_did, pred_span, hir_id, idx)
                    } else {
                        ObligationCauseCode::WhereClause(callee_did, pred_span)
                    },
                );
                self.register_predicate(Obligation::new(
                    self.tcx,
                    cause,
                    self.param_env,
                    cond.to_host_effect_clause(self.tcx, host),
                ));
            }
        } else {
            // FIXME(const_trait_impl): This should eventually be caught here.
            // For now, though, we defer some const checking to MIR.
        }
    }

    fn confirm_overloaded_call(
        &self,
        call_expr: &'tcx hir::Expr<'tcx>,
        arg_exprs: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
        method_callee: MethodCallee<'tcx>,
    ) -> Ty<'tcx> {
        let output_type = self.check_method_argument_types(
            call_expr.span,
            call_expr,
            Ok(method_callee),
            arg_exprs,
            TupleArgumentsFlag::TupleArguments,
            expected,
        );

        self.write_method_call_and_enforce_effects(call_expr.hir_id, call_expr.span, method_callee);
        output_type
    }
}

#[derive(Debug)]
pub(crate) struct DeferredCallResolution<'tcx> {
    call_expr: &'tcx hir::Expr<'tcx>,
    callee_expr: &'tcx hir::Expr<'tcx>,
    closure_ty: Ty<'tcx>,
    adjustments: Vec<Adjustment<'tcx>>,
    fn_sig: ty::FnSig<'tcx>,
}

impl<'a, 'tcx> DeferredCallResolution<'tcx> {
    pub(crate) fn resolve(self, fcx: &FnCtxt<'a, 'tcx>) {
        debug!("DeferredCallResolution::resolve() {:?}", self);

        // we should not be invoked until the closure kind has been
        // determined by upvar inference
        assert!(fcx.closure_kind(self.closure_ty).is_some());

        // We may now know enough to figure out fn vs fnmut etc.
        match fcx.try_overloaded_call_traits(self.call_expr, self.closure_ty, None) {
            Some((autoref, method_callee)) => {
                // One problem is that when we get here, we are going
                // to have a newly instantiated function signature
                // from the call trait. This has to be reconciled with
                // the older function signature we had before. In
                // principle we *should* be able to fn_sigs(), but we
                // can't because of the annoying need for a TypeTrace.
                // (This always bites me, should find a way to
                // refactor it.)
                let method_sig = method_callee.sig;

                debug!("attempt_resolution: method_callee={:?}", method_callee);

                for (method_arg_ty, self_arg_ty) in
                    iter::zip(method_sig.inputs().iter().skip(1), self.fn_sig.inputs())
                {
                    fcx.demand_eqtype(self.call_expr.span, *self_arg_ty, *method_arg_ty);
                }

                fcx.demand_eqtype(self.call_expr.span, method_sig.output(), self.fn_sig.output());

                let mut adjustments = self.adjustments;
                adjustments.extend(autoref);
                fcx.apply_adjustments(self.callee_expr, adjustments);

                fcx.write_method_call_and_enforce_effects(
                    self.call_expr.hir_id,
                    self.call_expr.span,
                    method_callee,
                );
            }
            None => {
                span_bug!(
                    self.call_expr.span,
                    "Expected to find a suitable `Fn`/`FnMut`/`FnOnce` implementation for `{}`",
                    self.closure_ty
                )
            }
        }
    }
}