rustc_hir_typeck/callee.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
use std::iter;
use rustc_ast::util::parser::PREC_UNAMBIGUOUS;
use rustc_errors::{Applicability, Diag, ErrorGuaranteed, StashKey};
use rustc_hir::def::{self, CtorKind, Namespace, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::{self as hir, LangItem};
use rustc_hir_analysis::autoderef::Autoderef;
use rustc_infer::infer;
use rustc_infer::traits::{self, Obligation, ObligationCause, ObligationCauseCode};
use rustc_middle::ty::adjustment::{
Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
};
use rustc_middle::ty::{self, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt};
use rustc_middle::{bug, span_bug};
use rustc_span::Span;
use rustc_span::def_id::LocalDefId;
use rustc_span::symbol::{Ident, sym};
use rustc_trait_selection::error_reporting::traits::DefIdOrName;
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
use tracing::{debug, instrument};
use super::method::MethodCallee;
use super::method::probe::ProbeScope;
use super::{Expectation, FnCtxt, TupleArgumentsFlag};
use crate::errors;
/// Checks that it is legal to call methods of the trait corresponding
/// to `trait_id` (this only cares about the trait, not the specific
/// method that is called).
pub(crate) fn check_legal_trait_for_method_call(
tcx: TyCtxt<'_>,
span: Span,
receiver: Option<Span>,
expr_span: Span,
trait_id: DefId,
body_id: DefId,
) -> Result<(), ErrorGuaranteed> {
if tcx.is_lang_item(trait_id, LangItem::Drop)
&& tcx.lang_items().fallback_surface_drop_fn() != Some(body_id)
{
let sugg = if let Some(receiver) = receiver.filter(|s| !s.is_empty()) {
errors::ExplicitDestructorCallSugg::Snippet {
lo: expr_span.shrink_to_lo(),
hi: receiver.shrink_to_hi().to(expr_span.shrink_to_hi()),
}
} else {
errors::ExplicitDestructorCallSugg::Empty(span)
};
return Err(tcx.dcx().emit_err(errors::ExplicitDestructorCall { span, sugg }));
}
tcx.ensure().coherent_trait(trait_id)
}
#[derive(Debug)]
enum CallStep<'tcx> {
Builtin(Ty<'tcx>),
DeferredClosure(LocalDefId, ty::FnSig<'tcx>),
/// Call overloading when callee implements one of the Fn* traits.
Overloaded(MethodCallee<'tcx>),
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub(crate) fn check_expr_call(
&self,
call_expr: &'tcx hir::Expr<'tcx>,
callee_expr: &'tcx hir::Expr<'tcx>,
arg_exprs: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let original_callee_ty = match &callee_expr.kind {
hir::ExprKind::Path(hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)) => self
.check_expr_with_expectation_and_args(
callee_expr,
Expectation::NoExpectation,
Some((call_expr, arg_exprs)),
),
_ => self.check_expr(callee_expr),
};
let expr_ty = self.structurally_resolve_type(call_expr.span, original_callee_ty);
let mut autoderef = self.autoderef(callee_expr.span, expr_ty);
let mut result = None;
while result.is_none() && autoderef.next().is_some() {
result = self.try_overloaded_call_step(call_expr, callee_expr, arg_exprs, &autoderef);
}
self.register_predicates(autoderef.into_obligations());
let output = match result {
None => {
// this will report an error since original_callee_ty is not a fn
self.confirm_builtin_call(
call_expr,
callee_expr,
original_callee_ty,
arg_exprs,
expected,
)
}
Some(CallStep::Builtin(callee_ty)) => {
self.confirm_builtin_call(call_expr, callee_expr, callee_ty, arg_exprs, expected)
}
Some(CallStep::DeferredClosure(def_id, fn_sig)) => {
self.confirm_deferred_closure_call(call_expr, arg_exprs, expected, def_id, fn_sig)
}
Some(CallStep::Overloaded(method_callee)) => {
self.confirm_overloaded_call(call_expr, arg_exprs, expected, method_callee)
}
};
// we must check that return type of called functions is WF:
self.register_wf_obligation(
output.into(),
call_expr.span,
ObligationCauseCode::WellFormed(None),
);
output
}
#[instrument(level = "debug", skip(self, call_expr, callee_expr, arg_exprs, autoderef), ret)]
fn try_overloaded_call_step(
&self,
call_expr: &'tcx hir::Expr<'tcx>,
callee_expr: &'tcx hir::Expr<'tcx>,
arg_exprs: &'tcx [hir::Expr<'tcx>],
autoderef: &Autoderef<'a, 'tcx>,
) -> Option<CallStep<'tcx>> {
let adjusted_ty =
self.structurally_resolve_type(autoderef.span(), autoderef.final_ty(false));
// If the callee is a bare function or a closure, then we're all set.
match *adjusted_ty.kind() {
ty::FnDef(..) | ty::FnPtr(..) => {
let adjustments = self.adjust_steps(autoderef);
self.apply_adjustments(callee_expr, adjustments);
return Some(CallStep::Builtin(adjusted_ty));
}
// Check whether this is a call to a closure where we
// haven't yet decided on whether the closure is fn vs
// fnmut vs fnonce. If so, we have to defer further processing.
ty::Closure(def_id, args) if self.closure_kind(adjusted_ty).is_none() => {
let def_id = def_id.expect_local();
let closure_sig = args.as_closure().sig();
let closure_sig = self.instantiate_binder_with_fresh_vars(
call_expr.span,
infer::FnCall,
closure_sig,
);
let adjustments = self.adjust_steps(autoderef);
self.record_deferred_call_resolution(def_id, DeferredCallResolution {
call_expr,
callee_expr,
closure_ty: adjusted_ty,
adjustments,
fn_sig: closure_sig,
});
return Some(CallStep::DeferredClosure(def_id, closure_sig));
}
// When calling a `CoroutineClosure` that is local to the body, we will
// not know what its `closure_kind` is yet. Instead, just fill in the
// signature with an infer var for the `tupled_upvars_ty` of the coroutine,
// and record a deferred call resolution which will constrain that var
// as part of `AsyncFn*` trait confirmation.
ty::CoroutineClosure(def_id, args) if self.closure_kind(adjusted_ty).is_none() => {
let def_id = def_id.expect_local();
let closure_args = args.as_coroutine_closure();
let coroutine_closure_sig = self.instantiate_binder_with_fresh_vars(
call_expr.span,
infer::FnCall,
closure_args.coroutine_closure_sig(),
);
let tupled_upvars_ty = self.next_ty_var(callee_expr.span);
// We may actually receive a coroutine back whose kind is different
// from the closure that this dispatched from. This is because when
// we have no captures, we automatically implement `FnOnce`. This
// impl forces the closure kind to `FnOnce` i.e. `u8`.
let kind_ty = self.next_ty_var(callee_expr.span);
let call_sig = self.tcx.mk_fn_sig(
[coroutine_closure_sig.tupled_inputs_ty],
coroutine_closure_sig.to_coroutine(
self.tcx,
closure_args.parent_args(),
kind_ty,
self.tcx.coroutine_for_closure(def_id),
tupled_upvars_ty,
),
coroutine_closure_sig.c_variadic,
coroutine_closure_sig.safety,
coroutine_closure_sig.abi,
);
let adjustments = self.adjust_steps(autoderef);
self.record_deferred_call_resolution(def_id, DeferredCallResolution {
call_expr,
callee_expr,
closure_ty: adjusted_ty,
adjustments,
fn_sig: call_sig,
});
return Some(CallStep::DeferredClosure(def_id, call_sig));
}
// Hack: we know that there are traits implementing Fn for &F
// where F:Fn and so forth. In the particular case of types
// like `f: &mut FnMut()`, if there is a call `f()`, we would
// normally translate to `FnMut::call_mut(&mut f, ())`, but
// that winds up potentially requiring the user to mark their
// variable as `mut` which feels unnecessary and unexpected.
//
// fn foo(f: &mut impl FnMut()) { f() }
// ^ without this hack `f` would have to be declared as mutable
//
// The simplest fix by far is to just ignore this case and deref again,
// so we wind up with `FnMut::call_mut(&mut *f, ())`.
ty::Ref(..) if autoderef.step_count() == 0 => {
return None;
}
ty::Error(_) => {
return None;
}
_ => {}
}
// Now, we look for the implementation of a Fn trait on the object's type.
// We first do it with the explicit instruction to look for an impl of
// `Fn<Tuple>`, with the tuple `Tuple` having an arity corresponding
// to the number of call parameters.
// If that fails (or_else branch), we try again without specifying the
// shape of the tuple (hence the None). This allows to detect an Fn trait
// is implemented, and use this information for diagnostic.
self.try_overloaded_call_traits(call_expr, adjusted_ty, Some(arg_exprs))
.or_else(|| self.try_overloaded_call_traits(call_expr, adjusted_ty, None))
.map(|(autoref, method)| {
let mut adjustments = self.adjust_steps(autoderef);
adjustments.extend(autoref);
self.apply_adjustments(callee_expr, adjustments);
CallStep::Overloaded(method)
})
}
fn try_overloaded_call_traits(
&self,
call_expr: &hir::Expr<'_>,
adjusted_ty: Ty<'tcx>,
opt_arg_exprs: Option<&'tcx [hir::Expr<'tcx>]>,
) -> Option<(Option<Adjustment<'tcx>>, MethodCallee<'tcx>)> {
// HACK(async_closures): For async closures, prefer `AsyncFn*`
// over `Fn*`, since all async closures implement `FnOnce`, but
// choosing that over `AsyncFn`/`AsyncFnMut` would be more restrictive.
// For other callables, just prefer `Fn*` for perf reasons.
//
// The order of trait choices here is not that big of a deal,
// since it just guides inference (and our choice of autoref).
// Though in the future, I'd like typeck to choose:
// `Fn > AsyncFn > FnMut > AsyncFnMut > FnOnce > AsyncFnOnce`
// ...or *ideally*, we just have `LendingFn`/`LendingFnMut`, which
// would naturally unify these two trait hierarchies in the most
// general way.
let call_trait_choices = if self.shallow_resolve(adjusted_ty).is_coroutine_closure() {
[
(self.tcx.lang_items().async_fn_trait(), sym::async_call, true),
(self.tcx.lang_items().async_fn_mut_trait(), sym::async_call_mut, true),
(self.tcx.lang_items().async_fn_once_trait(), sym::async_call_once, false),
(self.tcx.lang_items().fn_trait(), sym::call, true),
(self.tcx.lang_items().fn_mut_trait(), sym::call_mut, true),
(self.tcx.lang_items().fn_once_trait(), sym::call_once, false),
]
} else {
[
(self.tcx.lang_items().fn_trait(), sym::call, true),
(self.tcx.lang_items().fn_mut_trait(), sym::call_mut, true),
(self.tcx.lang_items().fn_once_trait(), sym::call_once, false),
(self.tcx.lang_items().async_fn_trait(), sym::async_call, true),
(self.tcx.lang_items().async_fn_mut_trait(), sym::async_call_mut, true),
(self.tcx.lang_items().async_fn_once_trait(), sym::async_call_once, false),
]
};
// Try the options that are least restrictive on the caller first.
for (opt_trait_def_id, method_name, borrow) in call_trait_choices {
let Some(trait_def_id) = opt_trait_def_id else { continue };
let opt_input_type = opt_arg_exprs.map(|arg_exprs| {
Ty::new_tup_from_iter(self.tcx, arg_exprs.iter().map(|e| self.next_ty_var(e.span)))
});
if let Some(ok) = self.lookup_method_in_trait(
self.misc(call_expr.span),
Ident::with_dummy_span(method_name),
trait_def_id,
adjusted_ty,
opt_input_type,
) {
let method = self.register_infer_ok_obligations(ok);
let mut autoref = None;
if borrow {
// Check for &self vs &mut self in the method signature. Since this is either
// the Fn or FnMut trait, it should be one of those.
let ty::Ref(_, _, mutbl) = method.sig.inputs()[0].kind() else {
bug!("Expected `FnMut`/`Fn` to take receiver by-ref/by-mut")
};
// For initial two-phase borrow
// deployment, conservatively omit
// overloaded function call ops.
let mutbl = AutoBorrowMutability::new(*mutbl, AllowTwoPhase::No);
autoref = Some(Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)),
target: method.sig.inputs()[0],
});
}
return Some((autoref, method));
}
}
None
}
/// Give appropriate suggestion when encountering `||{/* not callable */}()`, where the
/// likely intention is to call the closure, suggest `(||{})()`. (#55851)
fn identify_bad_closure_def_and_call(
&self,
err: &mut Diag<'_>,
hir_id: hir::HirId,
callee_node: &hir::ExprKind<'_>,
callee_span: Span,
) {
let hir::ExprKind::Block(..) = callee_node else {
// Only calls on blocks suggested here.
return;
};
let hir = self.tcx.hir();
let fn_decl_span = if let hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }),
..
}) = self.tcx.parent_hir_node(hir_id)
{
fn_decl_span
} else if let Some((
_,
hir::Node::Expr(&hir::Expr {
hir_id: parent_hir_id,
kind:
hir::ExprKind::Closure(&hir::Closure {
kind:
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Async,
hir::CoroutineSource::Closure,
)),
..
}),
..
}),
)) = hir.parent_iter(hir_id).nth(3)
{
// Actually need to unwrap one more layer of HIR to get to
// the _real_ closure...
if let hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }),
..
}) = self.tcx.parent_hir_node(parent_hir_id)
{
fn_decl_span
} else {
return;
}
} else {
return;
};
let start = fn_decl_span.shrink_to_lo();
let end = callee_span.shrink_to_hi();
err.multipart_suggestion(
"if you meant to create this closure and immediately call it, surround the \
closure with parentheses",
vec![(start, "(".to_string()), (end, ")".to_string())],
Applicability::MaybeIncorrect,
);
}
/// Give appropriate suggestion when encountering `[("a", 0) ("b", 1)]`, where the
/// likely intention is to create an array containing tuples.
fn maybe_suggest_bad_array_definition(
&self,
err: &mut Diag<'_>,
call_expr: &'tcx hir::Expr<'tcx>,
callee_expr: &'tcx hir::Expr<'tcx>,
) -> bool {
let parent_node = self.tcx.parent_hir_node(call_expr.hir_id);
if let (
hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Array(_), .. }),
hir::ExprKind::Tup(exp),
hir::ExprKind::Call(_, args),
) = (parent_node, &callee_expr.kind, &call_expr.kind)
&& args.len() == exp.len()
{
let start = callee_expr.span.shrink_to_hi();
err.span_suggestion(
start,
"consider separating array elements with a comma",
",",
Applicability::MaybeIncorrect,
);
return true;
}
false
}
fn confirm_builtin_call(
&self,
call_expr: &'tcx hir::Expr<'tcx>,
callee_expr: &'tcx hir::Expr<'tcx>,
callee_ty: Ty<'tcx>,
arg_exprs: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let (fn_sig, def_id) = match *callee_ty.kind() {
ty::FnDef(def_id, args) => {
self.enforce_context_effects(call_expr.span, def_id, args);
let fn_sig = self.tcx.fn_sig(def_id).instantiate(self.tcx, args);
// Unit testing: function items annotated with
// `#[rustc_evaluate_where_clauses]` trigger special output
// to let us test the trait evaluation system.
// Untranslatable diagnostics are okay for rustc internals
#[allow(rustc::untranslatable_diagnostic)]
#[allow(rustc::diagnostic_outside_of_impl)]
if self.tcx.has_attr(def_id, sym::rustc_evaluate_where_clauses) {
let predicates = self.tcx.predicates_of(def_id);
let predicates = predicates.instantiate(self.tcx, args);
for (predicate, predicate_span) in predicates {
let obligation = Obligation::new(
self.tcx,
ObligationCause::dummy_with_span(callee_expr.span),
self.param_env,
predicate,
);
let result = self.evaluate_obligation(&obligation);
self.dcx()
.struct_span_err(
callee_expr.span,
format!("evaluate({predicate:?}) = {result:?}"),
)
.with_span_label(predicate_span, "predicate")
.emit();
}
}
(fn_sig, Some(def_id))
}
// FIXME(const_trait_impl): these arms should error because we can't enforce them
ty::FnPtr(sig_tys, hdr) => (sig_tys.with(hdr), None),
_ => {
for arg in arg_exprs {
self.check_expr(arg);
}
if let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = &callee_expr.kind
&& let [segment] = path.segments
{
self.dcx().try_steal_modify_and_emit_err(
segment.ident.span,
StashKey::CallIntoMethod,
|err| {
// Try suggesting `foo(a)` -> `a.foo()` if possible.
self.suggest_call_as_method(
err, segment, arg_exprs, call_expr, expected,
);
},
);
}
let err = self.report_invalid_callee(call_expr, callee_expr, callee_ty, arg_exprs);
return Ty::new_error(self.tcx, err);
}
};
// Replace any late-bound regions that appear in the function
// signature with region variables. We also have to
// renormalize the associated types at this point, since they
// previously appeared within a `Binder<>` and hence would not
// have been normalized before.
let fn_sig = self.instantiate_binder_with_fresh_vars(call_expr.span, infer::FnCall, fn_sig);
let fn_sig = self.normalize(call_expr.span, fn_sig);
self.check_argument_types(
call_expr.span,
call_expr,
fn_sig.inputs(),
fn_sig.output(),
expected,
arg_exprs,
fn_sig.c_variadic,
TupleArgumentsFlag::DontTupleArguments,
def_id,
);
if fn_sig.abi == rustc_abi::ExternAbi::RustCall {
let sp = arg_exprs.last().map_or(call_expr.span, |expr| expr.span);
if let Some(ty) = fn_sig.inputs().last().copied() {
self.register_bound(
ty,
self.tcx.require_lang_item(hir::LangItem::Tuple, Some(sp)),
traits::ObligationCause::new(sp, self.body_id, ObligationCauseCode::RustCall),
);
self.require_type_is_sized(ty, sp, ObligationCauseCode::RustCall);
} else {
self.dcx().emit_err(errors::RustCallIncorrectArgs { span: sp });
}
}
if let Some(def_id) = def_id
&& self.tcx.def_kind(def_id) == hir::def::DefKind::Fn
&& self.tcx.is_intrinsic(def_id, sym::const_eval_select)
{
let fn_sig = self.resolve_vars_if_possible(fn_sig);
for idx in 0..=1 {
let arg_ty = fn_sig.inputs()[idx + 1];
let span = arg_exprs.get(idx + 1).map_or(call_expr.span, |arg| arg.span);
// Check that second and third argument of `const_eval_select` must be `FnDef`, and additionally that
// the second argument must be `const fn`. The first argument must be a tuple, but this is already expressed
// in the function signature (`F: FnOnce<ARG>`), so I did not bother to add another check here.
//
// This check is here because there is currently no way to express a trait bound for `FnDef` types only.
if let ty::FnDef(def_id, _args) = *arg_ty.kind() {
if idx == 0 && !self.tcx.is_const_fn(def_id) {
self.dcx().emit_err(errors::ConstSelectMustBeConst { span });
}
} else {
self.dcx().emit_err(errors::ConstSelectMustBeFn { span, ty: arg_ty });
}
}
}
fn_sig.output()
}
/// Attempts to reinterpret `method(rcvr, args...)` as `rcvr.method(args...)`
/// and suggesting the fix if the method probe is successful.
fn suggest_call_as_method(
&self,
diag: &mut Diag<'_>,
segment: &'tcx hir::PathSegment<'tcx>,
arg_exprs: &'tcx [hir::Expr<'tcx>],
call_expr: &'tcx hir::Expr<'tcx>,
expected: Expectation<'tcx>,
) {
if let [callee_expr, rest @ ..] = arg_exprs {
let Some(callee_ty) = self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr)
else {
return;
};
// First, do a probe with `IsSuggestion(true)` to avoid emitting
// any strange errors. If it's successful, then we'll do a true
// method lookup.
let Ok(pick) = self.lookup_probe_for_diagnostic(
segment.ident,
callee_ty,
call_expr,
// We didn't record the in scope traits during late resolution
// so we need to probe AllTraits unfortunately
ProbeScope::AllTraits,
expected.only_has_type(self),
) else {
return;
};
let pick = self.confirm_method_for_diagnostic(
call_expr.span,
callee_expr,
call_expr,
callee_ty,
&pick,
segment,
);
if pick.illegal_sized_bound.is_some() {
return;
}
let Some(callee_expr_span) = callee_expr.span.find_ancestor_inside(call_expr.span)
else {
return;
};
let up_to_rcvr_span = segment.ident.span.until(callee_expr_span);
let rest_span = callee_expr_span.shrink_to_hi().to(call_expr.span.shrink_to_hi());
let rest_snippet = if let Some(first) = rest.first() {
self.tcx
.sess
.source_map()
.span_to_snippet(first.span.to(call_expr.span.shrink_to_hi()))
} else {
Ok(")".to_string())
};
if let Ok(rest_snippet) = rest_snippet {
let sugg = if callee_expr.precedence().order() >= PREC_UNAMBIGUOUS {
vec![
(up_to_rcvr_span, "".to_string()),
(rest_span, format!(".{}({rest_snippet}", segment.ident)),
]
} else {
vec![
(up_to_rcvr_span, "(".to_string()),
(rest_span, format!(").{}({rest_snippet}", segment.ident)),
]
};
let self_ty = self.resolve_vars_if_possible(pick.callee.sig.inputs()[0]);
diag.multipart_suggestion(
format!(
"use the `.` operator to call the method `{}{}` on `{self_ty}`",
self.tcx
.associated_item(pick.callee.def_id)
.trait_container(self.tcx)
.map_or_else(
|| String::new(),
|trait_def_id| self.tcx.def_path_str(trait_def_id) + "::"
),
segment.ident
),
sugg,
Applicability::MaybeIncorrect,
);
}
}
}
fn report_invalid_callee(
&self,
call_expr: &'tcx hir::Expr<'tcx>,
callee_expr: &'tcx hir::Expr<'tcx>,
callee_ty: Ty<'tcx>,
arg_exprs: &'tcx [hir::Expr<'tcx>],
) -> ErrorGuaranteed {
// Callee probe fails when APIT references errors, so suppress those
// errors here.
if let Some((_, _, args)) = self.extract_callable_info(callee_ty)
&& let Err(err) = args.error_reported()
{
return err;
}
let mut unit_variant = None;
if let hir::ExprKind::Path(qpath) = &callee_expr.kind
&& let Res::Def(def::DefKind::Ctor(kind, CtorKind::Const), _)
= self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
// Only suggest removing parens if there are no arguments
&& arg_exprs.is_empty()
&& call_expr.span.contains(callee_expr.span)
{
let descr = match kind {
def::CtorOf::Struct => "struct",
def::CtorOf::Variant => "enum variant",
};
let removal_span = callee_expr.span.shrink_to_hi().to(call_expr.span.shrink_to_hi());
unit_variant =
Some((removal_span, descr, rustc_hir_pretty::qpath_to_string(&self.tcx, qpath)));
}
let callee_ty = self.resolve_vars_if_possible(callee_ty);
let mut err = self.dcx().create_err(errors::InvalidCallee {
span: callee_expr.span,
ty: match &unit_variant {
Some((_, kind, path)) => format!("{kind} `{path}`"),
None => format!("`{callee_ty}`"),
},
});
if callee_ty.references_error() {
err.downgrade_to_delayed_bug();
}
self.identify_bad_closure_def_and_call(
&mut err,
call_expr.hir_id,
&callee_expr.kind,
callee_expr.span,
);
if let Some((removal_span, kind, path)) = &unit_variant {
err.span_suggestion_verbose(
*removal_span,
format!(
"`{path}` is a unit {kind}, and does not take parentheses to be constructed",
),
"",
Applicability::MachineApplicable,
);
}
if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = callee_expr.kind
&& let Res::Local(_) = path.res
&& let [segment] = &path.segments
{
for id in self.tcx.hir().items() {
if let Some(node) = self.tcx.hir().get_if_local(id.owner_id.into())
&& let hir::Node::Item(item) = node
&& let hir::ItemKind::Fn(..) = item.kind
&& item.ident.name == segment.ident.name
{
err.span_label(
self.tcx.def_span(id.owner_id),
"this function of the same name is available here, but it's shadowed by \
the local binding",
);
}
}
}
let mut inner_callee_path = None;
let def = match callee_expr.kind {
hir::ExprKind::Path(ref qpath) => {
self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
}
hir::ExprKind::Call(inner_callee, _) => {
if let hir::ExprKind::Path(ref inner_qpath) = inner_callee.kind {
inner_callee_path = Some(inner_qpath);
self.typeck_results.borrow().qpath_res(inner_qpath, inner_callee.hir_id)
} else {
Res::Err
}
}
_ => Res::Err,
};
if !self.maybe_suggest_bad_array_definition(&mut err, call_expr, callee_expr) {
// If the call spans more than one line and the callee kind is
// itself another `ExprCall`, that's a clue that we might just be
// missing a semicolon (#51055, #106515).
let call_is_multiline = self
.tcx
.sess
.source_map()
.is_multiline(call_expr.span.with_lo(callee_expr.span.hi()))
&& call_expr.span.eq_ctxt(callee_expr.span);
if call_is_multiline {
err.span_suggestion(
callee_expr.span.shrink_to_hi(),
"consider using a semicolon here to finish the statement",
";",
Applicability::MaybeIncorrect,
);
}
if let Some((maybe_def, output_ty, _)) = self.extract_callable_info(callee_ty)
&& !self.type_is_sized_modulo_regions(self.param_env, output_ty)
{
let descr = match maybe_def {
DefIdOrName::DefId(def_id) => self.tcx.def_descr(def_id),
DefIdOrName::Name(name) => name,
};
err.span_label(
callee_expr.span,
format!("this {descr} returns an unsized value `{output_ty}`, so it cannot be called")
);
if let DefIdOrName::DefId(def_id) = maybe_def
&& let Some(def_span) = self.tcx.hir().span_if_local(def_id)
{
err.span_label(def_span, "the callable type is defined here");
}
} else {
err.span_label(call_expr.span, "call expression requires function");
}
}
if let Some(span) = self.tcx.hir().res_span(def) {
let callee_ty = callee_ty.to_string();
let label = match (unit_variant, inner_callee_path) {
(Some((_, kind, path)), _) => Some(format!("{kind} `{path}` defined here")),
(_, Some(hir::QPath::Resolved(_, path))) => self
.tcx
.sess
.source_map()
.span_to_snippet(path.span)
.ok()
.map(|p| format!("`{p}` defined here returns `{callee_ty}`")),
_ => {
match def {
// Emit a different diagnostic for local variables, as they are not
// type definitions themselves, but rather variables *of* that type.
Res::Local(hir_id) => Some(format!(
"`{}` has type `{}`",
self.tcx.hir().name(hir_id),
callee_ty
)),
Res::Def(kind, def_id) if kind.ns() == Some(Namespace::ValueNS) => {
Some(format!("`{}` defined here", self.tcx.def_path_str(def_id),))
}
_ => Some(format!("`{callee_ty}` defined here")),
}
}
};
if let Some(label) = label {
err.span_label(span, label);
}
}
err.emit()
}
fn confirm_deferred_closure_call(
&self,
call_expr: &'tcx hir::Expr<'tcx>,
arg_exprs: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
closure_def_id: LocalDefId,
fn_sig: ty::FnSig<'tcx>,
) -> Ty<'tcx> {
// `fn_sig` is the *signature* of the closure being called. We
// don't know the full details yet (`Fn` vs `FnMut` etc), but we
// do know the types expected for each argument and the return
// type.
self.check_argument_types(
call_expr.span,
call_expr,
fn_sig.inputs(),
fn_sig.output(),
expected,
arg_exprs,
fn_sig.c_variadic,
TupleArgumentsFlag::TupleArguments,
Some(closure_def_id.to_def_id()),
);
fn_sig.output()
}
#[tracing::instrument(level = "debug", skip(self, span))]
pub(super) fn enforce_context_effects(
&self,
span: Span,
callee_did: DefId,
callee_args: GenericArgsRef<'tcx>,
) {
// FIXME(const_trait_impl): We should be enforcing these effects unconditionally.
// This can be done as soon as we convert the standard library back to
// using const traits, since if we were to enforce these conditions now,
// we'd fail on basically every builtin trait call (i.e. `1 + 2`).
if !self.tcx.features().const_trait_impl() {
return;
}
// If we have `rustc_do_not_const_check`, do not check `~const` bounds.
if self.tcx.has_attr(self.body_id, sym::rustc_do_not_const_check) {
return;
}
let host = match self.tcx.hir().body_const_context(self.body_id) {
Some(hir::ConstContext::Const { .. } | hir::ConstContext::Static(_)) => {
ty::BoundConstness::Const
}
Some(hir::ConstContext::ConstFn) => ty::BoundConstness::Maybe,
None => return,
};
// FIXME(const_trait_impl): Should this be `is_const_fn_raw`? It depends on if we move
// const stability checking here too, I guess.
if self.tcx.is_conditionally_const(callee_did) {
let q = self.tcx.const_conditions(callee_did);
// FIXME(const_trait_impl): Use this span with a better cause code.
for (cond, _) in q.instantiate(self.tcx, callee_args) {
self.register_predicate(Obligation::new(
self.tcx,
self.misc(span),
self.param_env,
cond.to_host_effect_clause(self.tcx, host),
));
}
} else {
// FIXME(const_trait_impl): This should eventually be caught here.
// For now, though, we defer some const checking to MIR.
}
}
fn confirm_overloaded_call(
&self,
call_expr: &'tcx hir::Expr<'tcx>,
arg_exprs: &'tcx [hir::Expr<'tcx>],
expected: Expectation<'tcx>,
method_callee: MethodCallee<'tcx>,
) -> Ty<'tcx> {
let output_type = self.check_method_argument_types(
call_expr.span,
call_expr,
Ok(method_callee),
arg_exprs,
TupleArgumentsFlag::TupleArguments,
expected,
);
self.write_method_call_and_enforce_effects(call_expr.hir_id, call_expr.span, method_callee);
output_type
}
}
#[derive(Debug)]
pub(crate) struct DeferredCallResolution<'tcx> {
call_expr: &'tcx hir::Expr<'tcx>,
callee_expr: &'tcx hir::Expr<'tcx>,
closure_ty: Ty<'tcx>,
adjustments: Vec<Adjustment<'tcx>>,
fn_sig: ty::FnSig<'tcx>,
}
impl<'a, 'tcx> DeferredCallResolution<'tcx> {
pub(crate) fn resolve(self, fcx: &FnCtxt<'a, 'tcx>) {
debug!("DeferredCallResolution::resolve() {:?}", self);
// we should not be invoked until the closure kind has been
// determined by upvar inference
assert!(fcx.closure_kind(self.closure_ty).is_some());
// We may now know enough to figure out fn vs fnmut etc.
match fcx.try_overloaded_call_traits(self.call_expr, self.closure_ty, None) {
Some((autoref, method_callee)) => {
// One problem is that when we get here, we are going
// to have a newly instantiated function signature
// from the call trait. This has to be reconciled with
// the older function signature we had before. In
// principle we *should* be able to fn_sigs(), but we
// can't because of the annoying need for a TypeTrace.
// (This always bites me, should find a way to
// refactor it.)
let method_sig = method_callee.sig;
debug!("attempt_resolution: method_callee={:?}", method_callee);
for (method_arg_ty, self_arg_ty) in
iter::zip(method_sig.inputs().iter().skip(1), self.fn_sig.inputs())
{
fcx.demand_eqtype(self.call_expr.span, *self_arg_ty, *method_arg_ty);
}
fcx.demand_eqtype(self.call_expr.span, method_sig.output(), self.fn_sig.output());
let mut adjustments = self.adjustments;
adjustments.extend(autoref);
fcx.apply_adjustments(self.callee_expr, adjustments);
fcx.write_method_call_and_enforce_effects(
self.call_expr.hir_id,
self.call_expr.span,
method_callee,
);
}
None => {
span_bug!(
self.call_expr.span,
"Expected to find a suitable `Fn`/`FnMut`/`FnOnce` implementation for `{}`",
self.closure_ty
)
}
}
}
}