rustc_metadata/rmeta/
encoder.rs

1use std::borrow::Borrow;
2use std::collections::hash_map::Entry;
3use std::fs::File;
4use std::io::{Read, Seek, Write};
5use std::path::{Path, PathBuf};
6use std::sync::Arc;
7
8use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
9use rustc_data_structures::memmap::{Mmap, MmapMut};
10use rustc_data_structures::sync::{join, par_for_each_in};
11use rustc_data_structures::temp_dir::MaybeTempDir;
12use rustc_data_structures::thousands::usize_with_underscores;
13use rustc_feature::Features;
14use rustc_hir as hir;
15use rustc_hir::attrs::{AttributeKind, EncodeCrossCrate};
16use rustc_hir::def_id::{CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE, LocalDefId, LocalDefIdSet};
17use rustc_hir::definitions::DefPathData;
18use rustc_hir::find_attr;
19use rustc_hir_pretty::id_to_string;
20use rustc_middle::dep_graph::WorkProductId;
21use rustc_middle::middle::dependency_format::Linkage;
22use rustc_middle::mir::interpret;
23use rustc_middle::query::Providers;
24use rustc_middle::traits::specialization_graph;
25use rustc_middle::ty::AssocContainer;
26use rustc_middle::ty::codec::TyEncoder;
27use rustc_middle::ty::fast_reject::{self, TreatParams};
28use rustc_middle::{bug, span_bug};
29use rustc_serialize::{Decodable, Decoder, Encodable, Encoder, opaque};
30use rustc_session::config::{CrateType, OptLevel, TargetModifier};
31use rustc_span::hygiene::HygieneEncodeContext;
32use rustc_span::{
33    ByteSymbol, ExternalSource, FileName, SourceFile, SpanData, SpanEncoder, StableSourceFileId,
34    Symbol, SyntaxContext, sym,
35};
36use tracing::{debug, instrument, trace};
37
38use crate::eii::EiiMapEncodedKeyValue;
39use crate::errors::{FailCreateFileEncoder, FailWriteFile};
40use crate::rmeta::*;
41
42pub(super) struct EncodeContext<'a, 'tcx> {
43    opaque: opaque::FileEncoder,
44    tcx: TyCtxt<'tcx>,
45    feat: &'tcx rustc_feature::Features,
46    tables: TableBuilders,
47
48    lazy_state: LazyState,
49    span_shorthands: FxHashMap<Span, usize>,
50    type_shorthands: FxHashMap<Ty<'tcx>, usize>,
51    predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>,
52
53    interpret_allocs: FxIndexSet<interpret::AllocId>,
54
55    // This is used to speed up Span encoding.
56    // The `usize` is an index into the `MonotonicVec`
57    // that stores the `SourceFile`
58    source_file_cache: (Arc<SourceFile>, usize),
59    // The indices (into the `SourceMap`'s `MonotonicVec`)
60    // of all of the `SourceFiles` that we need to serialize.
61    // When we serialize a `Span`, we insert the index of its
62    // `SourceFile` into the `FxIndexSet`.
63    // The order inside the `FxIndexSet` is used as on-disk
64    // order of `SourceFiles`, and encoded inside `Span`s.
65    required_source_files: Option<FxIndexSet<usize>>,
66    is_proc_macro: bool,
67    hygiene_ctxt: &'a HygieneEncodeContext,
68    // Used for both `Symbol`s and `ByteSymbol`s.
69    symbol_index_table: FxHashMap<u32, usize>,
70}
71
72/// If the current crate is a proc-macro, returns early with `LazyArray::default()`.
73/// This is useful for skipping the encoding of things that aren't needed
74/// for proc-macro crates.
75macro_rules! empty_proc_macro {
76    ($self:ident) => {
77        if $self.is_proc_macro {
78            return LazyArray::default();
79        }
80    };
81}
82
83macro_rules! encoder_methods {
84    ($($name:ident($ty:ty);)*) => {
85        $(fn $name(&mut self, value: $ty) {
86            self.opaque.$name(value)
87        })*
88    }
89}
90
91impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
92    encoder_methods! {
93        emit_usize(usize);
94        emit_u128(u128);
95        emit_u64(u64);
96        emit_u32(u32);
97        emit_u16(u16);
98        emit_u8(u8);
99
100        emit_isize(isize);
101        emit_i128(i128);
102        emit_i64(i64);
103        emit_i32(i32);
104        emit_i16(i16);
105
106        emit_raw_bytes(&[u8]);
107    }
108}
109
110impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyValue<T> {
111    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
112        e.emit_lazy_distance(self.position);
113    }
114}
115
116impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyArray<T> {
117    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
118        e.emit_usize(self.num_elems);
119        if self.num_elems > 0 {
120            e.emit_lazy_distance(self.position)
121        }
122    }
123}
124
125impl<'a, 'tcx, I, T> Encodable<EncodeContext<'a, 'tcx>> for LazyTable<I, T> {
126    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
127        e.emit_usize(self.width);
128        e.emit_usize(self.len);
129        e.emit_lazy_distance(self.position);
130    }
131}
132
133impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnIndex {
134    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
135        s.emit_u32(self.as_u32());
136    }
137}
138
139impl<'a, 'tcx> SpanEncoder for EncodeContext<'a, 'tcx> {
140    fn encode_crate_num(&mut self, crate_num: CrateNum) {
141        if crate_num != LOCAL_CRATE && self.is_proc_macro {
142            panic!("Attempted to encode non-local CrateNum {crate_num:?} for proc-macro crate");
143        }
144        self.emit_u32(crate_num.as_u32());
145    }
146
147    fn encode_def_index(&mut self, def_index: DefIndex) {
148        self.emit_u32(def_index.as_u32());
149    }
150
151    fn encode_def_id(&mut self, def_id: DefId) {
152        def_id.krate.encode(self);
153        def_id.index.encode(self);
154    }
155
156    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext) {
157        rustc_span::hygiene::raw_encode_syntax_context(syntax_context, self.hygiene_ctxt, self);
158    }
159
160    fn encode_expn_id(&mut self, expn_id: ExpnId) {
161        if expn_id.krate == LOCAL_CRATE {
162            // We will only write details for local expansions. Non-local expansions will fetch
163            // data from the corresponding crate's metadata.
164            // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external
165            // metadata from proc-macro crates.
166            self.hygiene_ctxt.schedule_expn_data_for_encoding(expn_id);
167        }
168        expn_id.krate.encode(self);
169        expn_id.local_id.encode(self);
170    }
171
172    fn encode_span(&mut self, span: Span) {
173        match self.span_shorthands.entry(span) {
174            Entry::Occupied(o) => {
175                // If an offset is smaller than the absolute position, we encode with the offset.
176                // This saves space since smaller numbers encode in less bits.
177                let last_location = *o.get();
178                // This cannot underflow. Metadata is written with increasing position(), so any
179                // previously saved offset must be smaller than the current position.
180                let offset = self.opaque.position() - last_location;
181                if offset < last_location {
182                    let needed = bytes_needed(offset);
183                    SpanTag::indirect(true, needed as u8).encode(self);
184                    self.opaque.write_with(|dest| {
185                        *dest = offset.to_le_bytes();
186                        needed
187                    });
188                } else {
189                    let needed = bytes_needed(last_location);
190                    SpanTag::indirect(false, needed as u8).encode(self);
191                    self.opaque.write_with(|dest| {
192                        *dest = last_location.to_le_bytes();
193                        needed
194                    });
195                }
196            }
197            Entry::Vacant(v) => {
198                let position = self.opaque.position();
199                v.insert(position);
200                // Data is encoded with a SpanTag prefix (see below).
201                span.data().encode(self);
202            }
203        }
204    }
205
206    fn encode_symbol(&mut self, sym: Symbol) {
207        self.encode_symbol_or_byte_symbol(sym.as_u32(), |this| this.emit_str(sym.as_str()));
208    }
209
210    fn encode_byte_symbol(&mut self, byte_sym: ByteSymbol) {
211        self.encode_symbol_or_byte_symbol(byte_sym.as_u32(), |this| {
212            this.emit_byte_str(byte_sym.as_byte_str())
213        });
214    }
215}
216
217fn bytes_needed(n: usize) -> usize {
218    (usize::BITS - n.leading_zeros()).div_ceil(u8::BITS) as usize
219}
220
221impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SpanData {
222    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
223        // Don't serialize any `SyntaxContext`s from a proc-macro crate,
224        // since we don't load proc-macro dependencies during serialization.
225        // This means that any hygiene information from macros used *within*
226        // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro
227        // definition) will be lost.
228        //
229        // This can show up in two ways:
230        //
231        // 1. Any hygiene information associated with identifier of
232        // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost.
233        // Since proc-macros can only be invoked from a different crate,
234        // real code should never need to care about this.
235        //
236        // 2. Using `Span::def_site` or `Span::mixed_site` will not
237        // include any hygiene information associated with the definition
238        // site. This means that a proc-macro cannot emit a `$crate`
239        // identifier which resolves to one of its dependencies,
240        // which also should never come up in practice.
241        //
242        // Additionally, this affects `Span::parent`, and any other
243        // span inspection APIs that would otherwise allow traversing
244        // the `SyntaxContexts` associated with a span.
245        //
246        // None of these user-visible effects should result in any
247        // cross-crate inconsistencies (getting one behavior in the same
248        // crate, and a different behavior in another crate) due to the
249        // limited surface that proc-macros can expose.
250        //
251        // IMPORTANT: If this is ever changed, be sure to update
252        // `rustc_span::hygiene::raw_encode_expn_id` to handle
253        // encoding `ExpnData` for proc-macro crates.
254        let ctxt = if s.is_proc_macro { SyntaxContext::root() } else { self.ctxt };
255
256        if self.is_dummy() {
257            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
258            tag.encode(s);
259            if tag.context().is_none() {
260                ctxt.encode(s);
261            }
262            return;
263        }
264
265        // The Span infrastructure should make sure that this invariant holds:
266        debug_assert!(self.lo <= self.hi);
267
268        if !s.source_file_cache.0.contains(self.lo) {
269            let source_map = s.tcx.sess.source_map();
270            let source_file_index = source_map.lookup_source_file_idx(self.lo);
271            s.source_file_cache =
272                (Arc::clone(&source_map.files()[source_file_index]), source_file_index);
273        }
274        let (ref source_file, source_file_index) = s.source_file_cache;
275        debug_assert!(source_file.contains(self.lo));
276
277        if !source_file.contains(self.hi) {
278            // Unfortunately, macro expansion still sometimes generates Spans
279            // that malformed in this way.
280            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
281            tag.encode(s);
282            if tag.context().is_none() {
283                ctxt.encode(s);
284            }
285            return;
286        }
287
288        // There are two possible cases here:
289        // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the
290        // crate we are writing metadata for. When the metadata for *this* crate gets
291        // deserialized, the deserializer will need to know which crate it originally came
292        // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should
293        // be deserialized after the rest of the span data, which tells the deserializer
294        // which crate contains the source map information.
295        // 2. This span comes from our own crate. No special handling is needed - we just
296        // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use
297        // our own source map information.
298        //
299        // If we're a proc-macro crate, we always treat this as a local `Span`.
300        // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata
301        // if we're a proc-macro crate.
302        // This allows us to avoid loading the dependencies of proc-macro crates: all of
303        // the information we need to decode `Span`s is stored in the proc-macro crate.
304        let (kind, metadata_index) = if source_file.is_imported() && !s.is_proc_macro {
305            // To simplify deserialization, we 'rebase' this span onto the crate it originally came
306            // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi'
307            // values are relative to the source map information for the 'foreign' crate whose
308            // CrateNum we write into the metadata. This allows `imported_source_files` to binary
309            // search through the 'foreign' crate's source map information, using the
310            // deserialized 'lo' and 'hi' values directly.
311            //
312            // All of this logic ensures that the final result of deserialization is a 'normal'
313            // Span that can be used without any additional trouble.
314            let metadata_index = {
315                // Introduce a new scope so that we drop the 'read()' temporary
316                match &*source_file.external_src.read() {
317                    ExternalSource::Foreign { metadata_index, .. } => *metadata_index,
318                    src => panic!("Unexpected external source {src:?}"),
319                }
320            };
321
322            (SpanKind::Foreign, metadata_index)
323        } else {
324            // Record the fact that we need to encode the data for this `SourceFile`
325            let source_files =
326                s.required_source_files.as_mut().expect("Already encoded SourceMap!");
327            let (metadata_index, _) = source_files.insert_full(source_file_index);
328            let metadata_index: u32 =
329                metadata_index.try_into().expect("cannot export more than U32_MAX files");
330
331            (SpanKind::Local, metadata_index)
332        };
333
334        // Encode the start position relative to the file start, so we profit more from the
335        // variable-length integer encoding.
336        let lo = self.lo - source_file.start_pos;
337
338        // Encode length which is usually less than span.hi and profits more
339        // from the variable-length integer encoding that we use.
340        let len = self.hi - self.lo;
341
342        let tag = SpanTag::new(kind, ctxt, len.0 as usize);
343        tag.encode(s);
344        if tag.context().is_none() {
345            ctxt.encode(s);
346        }
347        lo.encode(s);
348        if tag.length().is_none() {
349            len.encode(s);
350        }
351
352        // Encode the index of the `SourceFile` for the span, in order to make decoding faster.
353        metadata_index.encode(s);
354
355        if kind == SpanKind::Foreign {
356            // This needs to be two lines to avoid holding the `s.source_file_cache`
357            // while calling `cnum.encode(s)`
358            let cnum = s.source_file_cache.0.cnum;
359            cnum.encode(s);
360        }
361    }
362}
363
364impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for [u8] {
365    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
366        Encoder::emit_usize(e, self.len());
367        e.emit_raw_bytes(self);
368    }
369}
370
371impl<'a, 'tcx> TyEncoder<'tcx> for EncodeContext<'a, 'tcx> {
372    const CLEAR_CROSS_CRATE: bool = true;
373
374    fn position(&self) -> usize {
375        self.opaque.position()
376    }
377
378    fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
379        &mut self.type_shorthands
380    }
381
382    fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> {
383        &mut self.predicate_shorthands
384    }
385
386    fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) {
387        let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
388
389        index.encode(self);
390    }
391}
392
393// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy($value))`, which would
394// normally need extra variables to avoid errors about multiple mutable borrows.
395macro_rules! record {
396    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
397        {
398            let value = $value;
399            let lazy = $self.lazy(value);
400            $self.$tables.$table.set_some($def_id.index, lazy);
401        }
402    }};
403}
404
405// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy_array($value))`, which would
406// normally need extra variables to avoid errors about multiple mutable borrows.
407macro_rules! record_array {
408    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
409        {
410            let value = $value;
411            let lazy = $self.lazy_array(value);
412            $self.$tables.$table.set_some($def_id.index, lazy);
413        }
414    }};
415}
416
417macro_rules! record_defaulted_array {
418    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
419        {
420            let value = $value;
421            let lazy = $self.lazy_array(value);
422            $self.$tables.$table.set($def_id.index, lazy);
423        }
424    }};
425}
426
427impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
428    fn emit_lazy_distance(&mut self, position: NonZero<usize>) {
429        let pos = position.get();
430        let distance = match self.lazy_state {
431            LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
432            LazyState::NodeStart(start) => {
433                let start = start.get();
434                assert!(pos <= start);
435                start - pos
436            }
437            LazyState::Previous(last_pos) => {
438                assert!(
439                    last_pos <= position,
440                    "make sure that the calls to `lazy*` \
441                     are in the same order as the metadata fields",
442                );
443                position.get() - last_pos.get()
444            }
445        };
446        self.lazy_state = LazyState::Previous(NonZero::new(pos).unwrap());
447        self.emit_usize(distance);
448    }
449
450    fn lazy<T: ParameterizedOverTcx, B: Borrow<T::Value<'tcx>>>(&mut self, value: B) -> LazyValue<T>
451    where
452        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
453    {
454        let pos = NonZero::new(self.position()).unwrap();
455
456        assert_eq!(self.lazy_state, LazyState::NoNode);
457        self.lazy_state = LazyState::NodeStart(pos);
458        value.borrow().encode(self);
459        self.lazy_state = LazyState::NoNode;
460
461        assert!(pos.get() <= self.position());
462
463        LazyValue::from_position(pos)
464    }
465
466    fn lazy_array<T: ParameterizedOverTcx, I: IntoIterator<Item = B>, B: Borrow<T::Value<'tcx>>>(
467        &mut self,
468        values: I,
469    ) -> LazyArray<T>
470    where
471        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
472    {
473        let pos = NonZero::new(self.position()).unwrap();
474
475        assert_eq!(self.lazy_state, LazyState::NoNode);
476        self.lazy_state = LazyState::NodeStart(pos);
477        let len = values.into_iter().map(|value| value.borrow().encode(self)).count();
478        self.lazy_state = LazyState::NoNode;
479
480        assert!(pos.get() <= self.position());
481
482        LazyArray::from_position_and_num_elems(pos, len)
483    }
484
485    fn encode_symbol_or_byte_symbol(
486        &mut self,
487        index: u32,
488        emit_str_or_byte_str: impl Fn(&mut Self),
489    ) {
490        // if symbol/byte symbol is predefined, emit tag and symbol index
491        if Symbol::is_predefined(index) {
492            self.opaque.emit_u8(SYMBOL_PREDEFINED);
493            self.opaque.emit_u32(index);
494        } else {
495            // otherwise write it as string or as offset to it
496            match self.symbol_index_table.entry(index) {
497                Entry::Vacant(o) => {
498                    self.opaque.emit_u8(SYMBOL_STR);
499                    let pos = self.opaque.position();
500                    o.insert(pos);
501                    emit_str_or_byte_str(self);
502                }
503                Entry::Occupied(o) => {
504                    let x = *o.get();
505                    self.emit_u8(SYMBOL_OFFSET);
506                    self.emit_usize(x);
507                }
508            }
509        }
510    }
511
512    fn encode_def_path_table(&mut self) {
513        let table = self.tcx.def_path_table();
514        if self.is_proc_macro {
515            for def_index in std::iter::once(CRATE_DEF_INDEX)
516                .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index))
517            {
518                let def_key = self.lazy(table.def_key(def_index));
519                let def_path_hash = table.def_path_hash(def_index);
520                self.tables.def_keys.set_some(def_index, def_key);
521                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
522            }
523        } else {
524            for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() {
525                let def_key = self.lazy(def_key);
526                self.tables.def_keys.set_some(def_index, def_key);
527                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
528            }
529        }
530    }
531
532    fn encode_def_path_hash_map(&mut self) -> LazyValue<DefPathHashMapRef<'static>> {
533        self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map()))
534    }
535
536    fn encode_source_map(&mut self) -> LazyTable<u32, Option<LazyValue<rustc_span::SourceFile>>> {
537        let source_map = self.tcx.sess.source_map();
538        let all_source_files = source_map.files();
539
540        // By replacing the `Option` with `None`, we ensure that we can't
541        // accidentally serialize any more `Span`s after the source map encoding
542        // is done.
543        let required_source_files = self.required_source_files.take().unwrap();
544
545        let mut adapted = TableBuilder::default();
546
547        let local_crate_stable_id = self.tcx.stable_crate_id(LOCAL_CRATE);
548
549        // Only serialize `SourceFile`s that were used during the encoding of a `Span`.
550        //
551        // The order in which we encode source files is important here: the on-disk format for
552        // `Span` contains the index of the corresponding `SourceFile`.
553        for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() {
554            let source_file = &all_source_files[source_file_index];
555            // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate.
556            assert!(!source_file.is_imported() || self.is_proc_macro);
557
558            // At export time we expand all source file paths to absolute paths because
559            // downstream compilation sessions can have a different compiler working
560            // directory, so relative paths from this or any other upstream crate
561            // won't be valid anymore.
562            //
563            // At this point we also erase the actual on-disk path and only keep
564            // the remapped version -- as is necessary for reproducible builds.
565            let mut adapted_source_file = (**source_file).clone();
566
567            match source_file.name {
568                FileName::Real(ref original_file_name) => {
569                    let mut adapted_file_name = original_file_name.clone();
570                    adapted_file_name.update_for_crate_metadata();
571                    adapted_source_file.name = FileName::Real(adapted_file_name);
572                }
573                _ => {
574                    // expanded code, not from a file
575                }
576            };
577
578            // We're serializing this `SourceFile` into our crate metadata,
579            // so mark it as coming from this crate.
580            // This also ensures that we don't try to deserialize the
581            // `CrateNum` for a proc-macro dependency - since proc macro
582            // dependencies aren't loaded when we deserialize a proc-macro,
583            // trying to remap the `CrateNum` would fail.
584            if self.is_proc_macro {
585                adapted_source_file.cnum = LOCAL_CRATE;
586            }
587
588            // Update the `StableSourceFileId` to make sure it incorporates the
589            // id of the current crate. This way it will be unique within the
590            // crate graph during downstream compilation sessions.
591            adapted_source_file.stable_id = StableSourceFileId::from_filename_for_export(
592                &adapted_source_file.name,
593                local_crate_stable_id,
594            );
595
596            let on_disk_index: u32 =
597                on_disk_index.try_into().expect("cannot export more than U32_MAX files");
598            adapted.set_some(on_disk_index, self.lazy(adapted_source_file));
599        }
600
601        adapted.encode(&mut self.opaque)
602    }
603
604    fn encode_crate_root(&mut self) -> LazyValue<CrateRoot> {
605        let tcx = self.tcx;
606        let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32);
607
608        macro_rules! stat {
609            ($label:literal, $f:expr) => {{
610                let orig_pos = self.position();
611                let res = $f();
612                stats.push(($label, self.position() - orig_pos));
613                res
614            }};
615        }
616
617        // We have already encoded some things. Get their combined size from the current position.
618        stats.push(("preamble", self.position()));
619
620        let externally_implementable_items = stat!("externally-implementable-items", || self
621            .encode_externally_implementable_items());
622
623        let (crate_deps, dylib_dependency_formats) =
624            stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats()));
625
626        let lib_features = stat!("lib-features", || self.encode_lib_features());
627
628        let stability_implications =
629            stat!("stability-implications", || self.encode_stability_implications());
630
631        let (lang_items, lang_items_missing) = stat!("lang-items", || {
632            (self.encode_lang_items(), self.encode_lang_items_missing())
633        });
634
635        let stripped_cfg_items = stat!("stripped-cfg-items", || self.encode_stripped_cfg_items());
636
637        let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items());
638
639        let native_libraries = stat!("native-libs", || self.encode_native_libraries());
640
641        let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules());
642
643        _ = stat!("def-path-table", || self.encode_def_path_table());
644
645        // Encode the def IDs of traits, for rustdoc and diagnostics.
646        let traits = stat!("traits", || self.encode_traits());
647
648        // Encode the def IDs of impls, for coherence checking.
649        let impls = stat!("impls", || self.encode_impls());
650
651        let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls());
652
653        _ = stat!("mir", || self.encode_mir());
654
655        _ = stat!("def-ids", || self.encode_def_ids());
656
657        let interpret_alloc_index = stat!("interpret-alloc-index", || {
658            let mut interpret_alloc_index = Vec::new();
659            let mut n = 0;
660            trace!("beginning to encode alloc ids");
661            loop {
662                let new_n = self.interpret_allocs.len();
663                // if we have found new ids, serialize those, too
664                if n == new_n {
665                    // otherwise, abort
666                    break;
667                }
668                trace!("encoding {} further alloc ids", new_n - n);
669                for idx in n..new_n {
670                    let id = self.interpret_allocs[idx];
671                    let pos = self.position() as u64;
672                    interpret_alloc_index.push(pos);
673                    interpret::specialized_encode_alloc_id(self, tcx, id);
674                }
675                n = new_n;
676            }
677            self.lazy_array(interpret_alloc_index)
678        });
679
680        // Encode the proc macro data. This affects `tables`, so we need to do this before we
681        // encode the tables. This overwrites def_keys, so it must happen after
682        // encode_def_path_table.
683        let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros());
684
685        let tables = stat!("tables", || self.tables.encode(&mut self.opaque));
686
687        let debugger_visualizers =
688            stat!("debugger-visualizers", || self.encode_debugger_visualizers());
689
690        let exportable_items = stat!("exportable-items", || self.encode_exportable_items());
691
692        let stable_order_of_exportable_impls =
693            stat!("exportable-items", || self.encode_stable_order_of_exportable_impls());
694
695        // Encode exported symbols info. This is prefetched in `encode_metadata`.
696        let (exported_non_generic_symbols, exported_generic_symbols) =
697            stat!("exported-symbols", || {
698                (
699                    self.encode_exported_symbols(tcx.exported_non_generic_symbols(LOCAL_CRATE)),
700                    self.encode_exported_symbols(tcx.exported_generic_symbols(LOCAL_CRATE)),
701                )
702            });
703
704        // Encode the hygiene data.
705        // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The
706        // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from
707        // the incremental cache. If this causes us to deserialize a `Span`, then we may load
708        // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode
709        // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used.
710        let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene());
711
712        let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map());
713
714        // Encode source_map. This needs to be done last, because encoding `Span`s tells us which
715        // `SourceFiles` we actually need to encode.
716        let source_map = stat!("source-map", || self.encode_source_map());
717        let target_modifiers = stat!("target-modifiers", || self.encode_target_modifiers());
718
719        let root = stat!("final", || {
720            let attrs = tcx.hir_krate_attrs();
721            self.lazy(CrateRoot {
722                header: CrateHeader {
723                    name: tcx.crate_name(LOCAL_CRATE),
724                    triple: tcx.sess.opts.target_triple.clone(),
725                    hash: tcx.crate_hash(LOCAL_CRATE),
726                    is_proc_macro_crate: proc_macro_data.is_some(),
727                    is_stub: false,
728                },
729                extra_filename: tcx.sess.opts.cg.extra_filename.clone(),
730                stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(),
731                required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE),
732                panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop,
733                edition: tcx.sess.edition(),
734                has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE),
735                has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE),
736                has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE),
737                has_default_lib_allocator: ast::attr::contains_name(
738                    attrs,
739                    sym::default_lib_allocator,
740                ),
741                externally_implementable_items,
742                proc_macro_data,
743                debugger_visualizers,
744                compiler_builtins: ast::attr::contains_name(attrs, sym::compiler_builtins),
745                needs_allocator: ast::attr::contains_name(attrs, sym::needs_allocator),
746                needs_panic_runtime: ast::attr::contains_name(attrs, sym::needs_panic_runtime),
747                no_builtins: ast::attr::contains_name(attrs, sym::no_builtins),
748                panic_runtime: ast::attr::contains_name(attrs, sym::panic_runtime),
749                profiler_runtime: ast::attr::contains_name(attrs, sym::profiler_runtime),
750                symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(),
751
752                crate_deps,
753                dylib_dependency_formats,
754                lib_features,
755                stability_implications,
756                lang_items,
757                diagnostic_items,
758                lang_items_missing,
759                stripped_cfg_items,
760                native_libraries,
761                foreign_modules,
762                source_map,
763                target_modifiers,
764                traits,
765                impls,
766                incoherent_impls,
767                exportable_items,
768                stable_order_of_exportable_impls,
769                exported_non_generic_symbols,
770                exported_generic_symbols,
771                interpret_alloc_index,
772                tables,
773                syntax_contexts,
774                expn_data,
775                expn_hashes,
776                def_path_hash_map,
777                specialization_enabled_in: tcx.specialization_enabled_in(LOCAL_CRATE),
778            })
779        });
780
781        let total_bytes = self.position();
782
783        let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum();
784        assert_eq!(total_bytes, computed_total_bytes);
785
786        if tcx.sess.opts.unstable_opts.meta_stats {
787            use std::fmt::Write;
788
789            self.opaque.flush();
790
791            // Rewind and re-read all the metadata to count the zero bytes we wrote.
792            let pos_before_rewind = self.opaque.file().stream_position().unwrap();
793            let mut zero_bytes = 0;
794            self.opaque.file().rewind().unwrap();
795            let file = std::io::BufReader::new(self.opaque.file());
796            for e in file.bytes() {
797                if e.unwrap() == 0 {
798                    zero_bytes += 1;
799                }
800            }
801            assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind);
802
803            stats.sort_by_key(|&(_, usize)| usize);
804            stats.reverse(); // bigger items first
805
806            let prefix = "meta-stats";
807            let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64;
808
809            let section_w = 23;
810            let size_w = 10;
811            let banner_w = 64;
812
813            // We write all the text into a string and print it with a single
814            // `eprint!`. This is an attempt to minimize interleaved text if multiple
815            // rustc processes are printing macro-stats at the same time (e.g. with
816            // `RUSTFLAGS='-Zmeta-stats' cargo build`). It still doesn't guarantee
817            // non-interleaving, though.
818            let mut s = String::new();
819            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
820            _ = writeln!(s, "{prefix} METADATA STATS: {}", tcx.crate_name(LOCAL_CRATE));
821            _ = writeln!(s, "{prefix} {:<section_w$}{:>size_w$}", "Section", "Size");
822            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
823            for (label, size) in stats {
824                _ = writeln!(
825                    s,
826                    "{prefix} {:<section_w$}{:>size_w$} ({:4.1}%)",
827                    label,
828                    usize_with_underscores(size),
829                    perc(size)
830                );
831            }
832            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
833            _ = writeln!(
834                s,
835                "{prefix} {:<section_w$}{:>size_w$} (of which {:.1}% are zero bytes)",
836                "Total",
837                usize_with_underscores(total_bytes),
838                perc(zero_bytes)
839            );
840            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
841            eprint!("{s}");
842        }
843
844        root
845    }
846}
847
848struct AnalyzeAttrState<'a> {
849    is_exported: bool,
850    is_doc_hidden: bool,
851    features: &'a Features,
852}
853
854/// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and
855/// useful in downstream crates. Local-only attributes are an obvious example, but some
856/// rustdoc-specific attributes can equally be of use while documenting the current crate only.
857///
858/// Removing these superfluous attributes speeds up compilation by making the metadata smaller.
859///
860/// Note: the `is_exported` parameter is used to cache whether the given `DefId` has a public
861/// visibility: this is a piece of data that can be computed once per defid, and not once per
862/// attribute. Some attributes would only be usable downstream if they are public.
863#[inline]
864fn analyze_attr(attr: &hir::Attribute, state: &mut AnalyzeAttrState<'_>) -> bool {
865    let mut should_encode = false;
866    if let hir::Attribute::Parsed(p) = attr
867        && p.encode_cross_crate() == EncodeCrossCrate::No
868    {
869        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
870    } else if let Some(name) = attr.name()
871        && !rustc_feature::encode_cross_crate(name)
872    {
873        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
874    } else if let hir::Attribute::Parsed(AttributeKind::DocComment { .. }) = attr {
875        // We keep all doc comments reachable to rustdoc because they might be "imported" into
876        // downstream crates if they use `#[doc(inline)]` to copy an item's documentation into
877        // their own.
878        if state.is_exported {
879            should_encode = true;
880        }
881    } else if let hir::Attribute::Parsed(AttributeKind::Doc(d)) = attr {
882        should_encode = true;
883        if d.hidden.is_some() {
884            state.is_doc_hidden = true;
885        }
886    } else if let &[sym::diagnostic, seg] = &*attr.path() {
887        should_encode = rustc_feature::is_stable_diagnostic_attribute(seg, state.features);
888    } else {
889        should_encode = true;
890    }
891    should_encode
892}
893
894fn should_encode_span(def_kind: DefKind) -> bool {
895    match def_kind {
896        DefKind::Mod
897        | DefKind::Struct
898        | DefKind::Union
899        | DefKind::Enum
900        | DefKind::Variant
901        | DefKind::Trait
902        | DefKind::TyAlias
903        | DefKind::ForeignTy
904        | DefKind::TraitAlias
905        | DefKind::AssocTy
906        | DefKind::TyParam
907        | DefKind::ConstParam
908        | DefKind::LifetimeParam
909        | DefKind::Fn
910        | DefKind::Const
911        | DefKind::Static { .. }
912        | DefKind::Ctor(..)
913        | DefKind::AssocFn
914        | DefKind::AssocConst
915        | DefKind::Macro(_)
916        | DefKind::ExternCrate
917        | DefKind::Use
918        | DefKind::AnonConst
919        | DefKind::InlineConst
920        | DefKind::OpaqueTy
921        | DefKind::Field
922        | DefKind::Impl { .. }
923        | DefKind::Closure
924        | DefKind::SyntheticCoroutineBody => true,
925        DefKind::ForeignMod | DefKind::GlobalAsm => false,
926    }
927}
928
929fn should_encode_attrs(def_kind: DefKind) -> bool {
930    match def_kind {
931        DefKind::Mod
932        | DefKind::Struct
933        | DefKind::Union
934        | DefKind::Enum
935        | DefKind::Variant
936        | DefKind::Trait
937        | DefKind::TyAlias
938        | DefKind::ForeignTy
939        | DefKind::TraitAlias
940        | DefKind::AssocTy
941        | DefKind::Fn
942        | DefKind::Const
943        | DefKind::Static { nested: false, .. }
944        | DefKind::AssocFn
945        | DefKind::AssocConst
946        | DefKind::Macro(_)
947        | DefKind::Field
948        | DefKind::Impl { .. } => true,
949        // Tools may want to be able to detect their tool lints on
950        // closures from upstream crates, too. This is used by
951        // https://github.com/model-checking/kani and is not a performance
952        // or maintenance issue for us.
953        DefKind::Closure => true,
954        DefKind::SyntheticCoroutineBody => false,
955        DefKind::TyParam
956        | DefKind::ConstParam
957        | DefKind::Ctor(..)
958        | DefKind::ExternCrate
959        | DefKind::Use
960        | DefKind::ForeignMod
961        | DefKind::AnonConst
962        | DefKind::InlineConst
963        | DefKind::OpaqueTy
964        | DefKind::LifetimeParam
965        | DefKind::Static { nested: true, .. }
966        | DefKind::GlobalAsm => false,
967    }
968}
969
970fn should_encode_expn_that_defined(def_kind: DefKind) -> bool {
971    match def_kind {
972        DefKind::Mod
973        | DefKind::Struct
974        | DefKind::Union
975        | DefKind::Enum
976        | DefKind::Variant
977        | DefKind::Trait
978        | DefKind::Impl { .. } => true,
979        DefKind::TyAlias
980        | DefKind::ForeignTy
981        | DefKind::TraitAlias
982        | DefKind::AssocTy
983        | DefKind::TyParam
984        | DefKind::Fn
985        | DefKind::Const
986        | DefKind::ConstParam
987        | DefKind::Static { .. }
988        | DefKind::Ctor(..)
989        | DefKind::AssocFn
990        | DefKind::AssocConst
991        | DefKind::Macro(_)
992        | DefKind::ExternCrate
993        | DefKind::Use
994        | DefKind::ForeignMod
995        | DefKind::AnonConst
996        | DefKind::InlineConst
997        | DefKind::OpaqueTy
998        | DefKind::Field
999        | DefKind::LifetimeParam
1000        | DefKind::GlobalAsm
1001        | DefKind::Closure
1002        | DefKind::SyntheticCoroutineBody => false,
1003    }
1004}
1005
1006fn should_encode_visibility(def_kind: DefKind) -> bool {
1007    match def_kind {
1008        DefKind::Mod
1009        | DefKind::Struct
1010        | DefKind::Union
1011        | DefKind::Enum
1012        | DefKind::Variant
1013        | DefKind::Trait
1014        | DefKind::TyAlias
1015        | DefKind::ForeignTy
1016        | DefKind::TraitAlias
1017        | DefKind::AssocTy
1018        | DefKind::Fn
1019        | DefKind::Const
1020        | DefKind::Static { nested: false, .. }
1021        | DefKind::Ctor(..)
1022        | DefKind::AssocFn
1023        | DefKind::AssocConst
1024        | DefKind::Macro(..)
1025        | DefKind::Field => true,
1026        DefKind::Use
1027        | DefKind::ForeignMod
1028        | DefKind::TyParam
1029        | DefKind::ConstParam
1030        | DefKind::LifetimeParam
1031        | DefKind::AnonConst
1032        | DefKind::InlineConst
1033        | DefKind::Static { nested: true, .. }
1034        | DefKind::OpaqueTy
1035        | DefKind::GlobalAsm
1036        | DefKind::Impl { .. }
1037        | DefKind::Closure
1038        | DefKind::ExternCrate
1039        | DefKind::SyntheticCoroutineBody => false,
1040    }
1041}
1042
1043fn should_encode_stability(def_kind: DefKind) -> bool {
1044    match def_kind {
1045        DefKind::Mod
1046        | DefKind::Ctor(..)
1047        | DefKind::Variant
1048        | DefKind::Field
1049        | DefKind::Struct
1050        | DefKind::AssocTy
1051        | DefKind::AssocFn
1052        | DefKind::AssocConst
1053        | DefKind::TyParam
1054        | DefKind::ConstParam
1055        | DefKind::Static { .. }
1056        | DefKind::Const
1057        | DefKind::Fn
1058        | DefKind::ForeignMod
1059        | DefKind::TyAlias
1060        | DefKind::OpaqueTy
1061        | DefKind::Enum
1062        | DefKind::Union
1063        | DefKind::Impl { .. }
1064        | DefKind::Trait
1065        | DefKind::TraitAlias
1066        | DefKind::Macro(..)
1067        | DefKind::ForeignTy => true,
1068        DefKind::Use
1069        | DefKind::LifetimeParam
1070        | DefKind::AnonConst
1071        | DefKind::InlineConst
1072        | DefKind::GlobalAsm
1073        | DefKind::Closure
1074        | DefKind::ExternCrate
1075        | DefKind::SyntheticCoroutineBody => false,
1076    }
1077}
1078
1079/// Whether we should encode MIR. Return a pair, resp. for CTFE and for LLVM.
1080///
1081/// Computing, optimizing and encoding the MIR is a relatively expensive operation.
1082/// We want to avoid this work when not required. Therefore:
1083/// - we only compute `mir_for_ctfe` on items with const-eval semantics;
1084/// - we skip `optimized_mir` for check runs.
1085/// - we only encode `optimized_mir` that could be generated in other crates, that is, a code that
1086///   is either generic or has inline hint, and is reachable from the other crates (contained
1087///   in reachable set).
1088///
1089/// Note: Reachable set describes definitions that might be generated or referenced from other
1090/// crates and it can be used to limit optimized MIR that needs to be encoded. On the other hand,
1091/// the reachable set doesn't have much to say about which definitions might be evaluated at compile
1092/// time in other crates, so it cannot be used to omit CTFE MIR. For example, `f` below is
1093/// unreachable and yet it can be evaluated in other crates:
1094///
1095/// ```
1096/// const fn f() -> usize { 0 }
1097/// pub struct S { pub a: [usize; f()] }
1098/// ```
1099fn should_encode_mir(
1100    tcx: TyCtxt<'_>,
1101    reachable_set: &LocalDefIdSet,
1102    def_id: LocalDefId,
1103) -> (bool, bool) {
1104    match tcx.def_kind(def_id) {
1105        // Constructors
1106        DefKind::Ctor(_, _) => {
1107            let mir_opt_base = tcx.sess.opts.output_types.should_codegen()
1108                || tcx.sess.opts.unstable_opts.always_encode_mir;
1109            (true, mir_opt_base)
1110        }
1111        // Constants
1112        DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Const => {
1113            (true, false)
1114        }
1115        // Coroutines require optimized MIR to compute layout.
1116        DefKind::Closure if tcx.is_coroutine(def_id.to_def_id()) => (false, true),
1117        DefKind::SyntheticCoroutineBody => (false, true),
1118        // Full-fledged functions + closures
1119        DefKind::AssocFn | DefKind::Fn | DefKind::Closure => {
1120            let generics = tcx.generics_of(def_id);
1121            let opt = tcx.sess.opts.unstable_opts.always_encode_mir
1122                || (tcx.sess.opts.output_types.should_codegen()
1123                    && reachable_set.contains(&def_id)
1124                    && (generics.requires_monomorphization(tcx)
1125                        || tcx.cross_crate_inlinable(def_id)));
1126            // The function has a `const` modifier or is in a `const trait`.
1127            let is_const_fn = tcx.is_const_fn(def_id.to_def_id());
1128            (is_const_fn, opt)
1129        }
1130        // The others don't have MIR.
1131        _ => (false, false),
1132    }
1133}
1134
1135fn should_encode_variances<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool {
1136    match def_kind {
1137        DefKind::Struct
1138        | DefKind::Union
1139        | DefKind::Enum
1140        | DefKind::OpaqueTy
1141        | DefKind::Fn
1142        | DefKind::Ctor(..)
1143        | DefKind::AssocFn => true,
1144        DefKind::AssocTy => {
1145            // Only encode variances for RPITITs (for traits)
1146            matches!(tcx.opt_rpitit_info(def_id), Some(ty::ImplTraitInTraitData::Trait { .. }))
1147        }
1148        DefKind::Mod
1149        | DefKind::Variant
1150        | DefKind::Field
1151        | DefKind::AssocConst
1152        | DefKind::TyParam
1153        | DefKind::ConstParam
1154        | DefKind::Static { .. }
1155        | DefKind::Const
1156        | DefKind::ForeignMod
1157        | DefKind::Impl { .. }
1158        | DefKind::Trait
1159        | DefKind::TraitAlias
1160        | DefKind::Macro(..)
1161        | DefKind::ForeignTy
1162        | DefKind::Use
1163        | DefKind::LifetimeParam
1164        | DefKind::AnonConst
1165        | DefKind::InlineConst
1166        | DefKind::GlobalAsm
1167        | DefKind::Closure
1168        | DefKind::ExternCrate
1169        | DefKind::SyntheticCoroutineBody => false,
1170        DefKind::TyAlias => tcx.type_alias_is_lazy(def_id),
1171    }
1172}
1173
1174fn should_encode_generics(def_kind: DefKind) -> bool {
1175    match def_kind {
1176        DefKind::Struct
1177        | DefKind::Union
1178        | DefKind::Enum
1179        | DefKind::Variant
1180        | DefKind::Trait
1181        | DefKind::TyAlias
1182        | DefKind::ForeignTy
1183        | DefKind::TraitAlias
1184        | DefKind::AssocTy
1185        | DefKind::Fn
1186        | DefKind::Const
1187        | DefKind::Static { .. }
1188        | DefKind::Ctor(..)
1189        | DefKind::AssocFn
1190        | DefKind::AssocConst
1191        | DefKind::AnonConst
1192        | DefKind::InlineConst
1193        | DefKind::OpaqueTy
1194        | DefKind::Impl { .. }
1195        | DefKind::Field
1196        | DefKind::TyParam
1197        | DefKind::Closure
1198        | DefKind::SyntheticCoroutineBody => true,
1199        DefKind::Mod
1200        | DefKind::ForeignMod
1201        | DefKind::ConstParam
1202        | DefKind::Macro(..)
1203        | DefKind::Use
1204        | DefKind::LifetimeParam
1205        | DefKind::GlobalAsm
1206        | DefKind::ExternCrate => false,
1207    }
1208}
1209
1210fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool {
1211    match def_kind {
1212        DefKind::Struct
1213        | DefKind::Union
1214        | DefKind::Enum
1215        | DefKind::Variant
1216        | DefKind::Ctor(..)
1217        | DefKind::Field
1218        | DefKind::Fn
1219        | DefKind::Const
1220        | DefKind::Static { nested: false, .. }
1221        | DefKind::TyAlias
1222        | DefKind::ForeignTy
1223        | DefKind::Impl { .. }
1224        | DefKind::AssocFn
1225        | DefKind::AssocConst
1226        | DefKind::Closure
1227        | DefKind::ConstParam
1228        | DefKind::AnonConst
1229        | DefKind::InlineConst
1230        | DefKind::SyntheticCoroutineBody => true,
1231
1232        DefKind::OpaqueTy => {
1233            let origin = tcx.local_opaque_ty_origin(def_id);
1234            if let hir::OpaqueTyOrigin::FnReturn { parent, .. }
1235            | hir::OpaqueTyOrigin::AsyncFn { parent, .. } = origin
1236                && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(parent)
1237                && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
1238            {
1239                false
1240            } else {
1241                true
1242            }
1243        }
1244
1245        DefKind::AssocTy => {
1246            let assoc_item = tcx.associated_item(def_id);
1247            match assoc_item.container {
1248                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1249                ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1250            }
1251        }
1252        DefKind::TyParam => {
1253            let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(def_id) else { bug!() };
1254            let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() };
1255            default.is_some()
1256        }
1257
1258        DefKind::Trait
1259        | DefKind::TraitAlias
1260        | DefKind::Mod
1261        | DefKind::ForeignMod
1262        | DefKind::Macro(..)
1263        | DefKind::Static { nested: true, .. }
1264        | DefKind::Use
1265        | DefKind::LifetimeParam
1266        | DefKind::GlobalAsm
1267        | DefKind::ExternCrate => false,
1268    }
1269}
1270
1271fn should_encode_fn_sig(def_kind: DefKind) -> bool {
1272    match def_kind {
1273        DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) => true,
1274
1275        DefKind::Struct
1276        | DefKind::Union
1277        | DefKind::Enum
1278        | DefKind::Variant
1279        | DefKind::Field
1280        | DefKind::Const
1281        | DefKind::Static { .. }
1282        | DefKind::Ctor(..)
1283        | DefKind::TyAlias
1284        | DefKind::OpaqueTy
1285        | DefKind::ForeignTy
1286        | DefKind::Impl { .. }
1287        | DefKind::AssocConst
1288        | DefKind::Closure
1289        | DefKind::ConstParam
1290        | DefKind::AnonConst
1291        | DefKind::InlineConst
1292        | DefKind::AssocTy
1293        | DefKind::TyParam
1294        | DefKind::Trait
1295        | DefKind::TraitAlias
1296        | DefKind::Mod
1297        | DefKind::ForeignMod
1298        | DefKind::Macro(..)
1299        | DefKind::Use
1300        | DefKind::LifetimeParam
1301        | DefKind::GlobalAsm
1302        | DefKind::ExternCrate
1303        | DefKind::SyntheticCoroutineBody => false,
1304    }
1305}
1306
1307fn should_encode_constness(def_kind: DefKind) -> bool {
1308    match def_kind {
1309        DefKind::Fn
1310        | DefKind::AssocFn
1311        | DefKind::Closure
1312        | DefKind::Ctor(_, CtorKind::Fn)
1313        | DefKind::Impl { of_trait: false } => true,
1314
1315        DefKind::Struct
1316        | DefKind::Union
1317        | DefKind::Enum
1318        | DefKind::Field
1319        | DefKind::Const
1320        | DefKind::AssocConst
1321        | DefKind::AnonConst
1322        | DefKind::Static { .. }
1323        | DefKind::TyAlias
1324        | DefKind::OpaqueTy
1325        | DefKind::Impl { .. }
1326        | DefKind::ForeignTy
1327        | DefKind::ConstParam
1328        | DefKind::InlineConst
1329        | DefKind::AssocTy
1330        | DefKind::TyParam
1331        | DefKind::Trait
1332        | DefKind::TraitAlias
1333        | DefKind::Mod
1334        | DefKind::ForeignMod
1335        | DefKind::Macro(..)
1336        | DefKind::Use
1337        | DefKind::LifetimeParam
1338        | DefKind::GlobalAsm
1339        | DefKind::ExternCrate
1340        | DefKind::Ctor(_, CtorKind::Const)
1341        | DefKind::Variant
1342        | DefKind::SyntheticCoroutineBody => false,
1343    }
1344}
1345
1346fn should_encode_const(def_kind: DefKind) -> bool {
1347    match def_kind {
1348        // FIXME(mgca): should we remove Const and AssocConst here?
1349        DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst => true,
1350
1351        DefKind::Struct
1352        | DefKind::Union
1353        | DefKind::Enum
1354        | DefKind::Variant
1355        | DefKind::Ctor(..)
1356        | DefKind::Field
1357        | DefKind::Fn
1358        | DefKind::Static { .. }
1359        | DefKind::TyAlias
1360        | DefKind::OpaqueTy
1361        | DefKind::ForeignTy
1362        | DefKind::Impl { .. }
1363        | DefKind::AssocFn
1364        | DefKind::Closure
1365        | DefKind::ConstParam
1366        | DefKind::AssocTy
1367        | DefKind::TyParam
1368        | DefKind::Trait
1369        | DefKind::TraitAlias
1370        | DefKind::Mod
1371        | DefKind::ForeignMod
1372        | DefKind::Macro(..)
1373        | DefKind::Use
1374        | DefKind::LifetimeParam
1375        | DefKind::GlobalAsm
1376        | DefKind::ExternCrate
1377        | DefKind::SyntheticCoroutineBody => false,
1378    }
1379}
1380
1381fn should_encode_const_of_item<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool {
1382    matches!(def_kind, DefKind::Const | DefKind::AssocConst)
1383        && find_attr!(tcx.get_all_attrs(def_id), AttributeKind::TypeConst(_))
1384        // AssocConst ==> assoc item has value
1385        && (!matches!(def_kind, DefKind::AssocConst) || assoc_item_has_value(tcx, def_id))
1386}
1387
1388fn assoc_item_has_value<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> bool {
1389    let assoc_item = tcx.associated_item(def_id);
1390    match assoc_item.container {
1391        ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1392        ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1393    }
1394}
1395
1396impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
1397    fn encode_attrs(&mut self, def_id: LocalDefId) {
1398        let tcx = self.tcx;
1399        let mut state = AnalyzeAttrState {
1400            is_exported: tcx.effective_visibilities(()).is_exported(def_id),
1401            is_doc_hidden: false,
1402            features: &tcx.features(),
1403        };
1404        let attr_iter = tcx
1405            .hir_attrs(tcx.local_def_id_to_hir_id(def_id))
1406            .iter()
1407            .filter(|attr| analyze_attr(*attr, &mut state));
1408
1409        record_array!(self.tables.attributes[def_id.to_def_id()] <- attr_iter);
1410
1411        let mut attr_flags = AttrFlags::empty();
1412        if state.is_doc_hidden {
1413            attr_flags |= AttrFlags::IS_DOC_HIDDEN;
1414        }
1415        self.tables.attr_flags.set(def_id.local_def_index, attr_flags);
1416    }
1417
1418    fn encode_def_ids(&mut self) {
1419        self.encode_info_for_mod(CRATE_DEF_ID);
1420
1421        // Proc-macro crates only export proc-macro items, which are looked
1422        // up using `proc_macro_data`
1423        if self.is_proc_macro {
1424            return;
1425        }
1426
1427        let tcx = self.tcx;
1428
1429        for local_id in tcx.iter_local_def_id() {
1430            let def_id = local_id.to_def_id();
1431            let def_kind = tcx.def_kind(local_id);
1432            self.tables.def_kind.set_some(def_id.index, def_kind);
1433
1434            // The `DefCollector` will sometimes create unnecessary `DefId`s
1435            // for trivial const arguments which are directly lowered to
1436            // `ConstArgKind::Path`. We never actually access this `DefId`
1437            // anywhere so we don't need to encode it for other crates.
1438            if def_kind == DefKind::AnonConst
1439                && match tcx.hir_node_by_def_id(local_id) {
1440                    hir::Node::ConstArg(hir::ConstArg { kind, .. }) => match kind {
1441                        // Skip encoding defs for these as they should not have had a `DefId` created
1442                        hir::ConstArgKind::Error(..)
1443                        | hir::ConstArgKind::Path(..)
1444                        | hir::ConstArgKind::Infer(..) => true,
1445                        hir::ConstArgKind::Anon(..) => false,
1446                    },
1447                    _ => false,
1448                }
1449            {
1450                // MGCA doesn't have unnecessary DefIds
1451                if !tcx.features().min_generic_const_args() {
1452                    continue;
1453                }
1454            }
1455
1456            if def_kind == DefKind::Field
1457                && let hir::Node::Field(field) = tcx.hir_node_by_def_id(local_id)
1458                && let Some(anon) = field.default
1459            {
1460                record!(self.tables.default_fields[def_id] <- anon.def_id.to_def_id());
1461            }
1462
1463            if should_encode_span(def_kind) {
1464                let def_span = tcx.def_span(local_id);
1465                record!(self.tables.def_span[def_id] <- def_span);
1466            }
1467            if should_encode_attrs(def_kind) {
1468                self.encode_attrs(local_id);
1469            }
1470            if should_encode_expn_that_defined(def_kind) {
1471                record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id));
1472            }
1473            if should_encode_span(def_kind)
1474                && let Some(ident_span) = tcx.def_ident_span(def_id)
1475            {
1476                record!(self.tables.def_ident_span[def_id] <- ident_span);
1477            }
1478            if def_kind.has_codegen_attrs() {
1479                record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id));
1480            }
1481            if should_encode_visibility(def_kind) {
1482                let vis =
1483                    self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index);
1484                record!(self.tables.visibility[def_id] <- vis);
1485            }
1486            if should_encode_stability(def_kind) {
1487                self.encode_stability(def_id);
1488                self.encode_const_stability(def_id);
1489                self.encode_default_body_stability(def_id);
1490                self.encode_deprecation(def_id);
1491            }
1492            if should_encode_variances(tcx, def_id, def_kind) {
1493                let v = self.tcx.variances_of(def_id);
1494                record_array!(self.tables.variances_of[def_id] <- v);
1495            }
1496            if should_encode_fn_sig(def_kind) {
1497                record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1498            }
1499            if should_encode_generics(def_kind) {
1500                let g = tcx.generics_of(def_id);
1501                record!(self.tables.generics_of[def_id] <- g);
1502                record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id));
1503                let inferred_outlives = self.tcx.inferred_outlives_of(def_id);
1504                record_defaulted_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives);
1505
1506                for param in &g.own_params {
1507                    if let ty::GenericParamDefKind::Const { has_default: true, .. } = param.kind {
1508                        let default = self.tcx.const_param_default(param.def_id);
1509                        record!(self.tables.const_param_default[param.def_id] <- default);
1510                    }
1511                }
1512            }
1513            if tcx.is_conditionally_const(def_id) {
1514                record!(self.tables.const_conditions[def_id] <- self.tcx.const_conditions(def_id));
1515            }
1516            if should_encode_type(tcx, local_id, def_kind) {
1517                record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id));
1518            }
1519            if should_encode_constness(def_kind) {
1520                let constness = self.tcx.constness(def_id);
1521                self.tables.constness.set(def_id.index, constness);
1522            }
1523            if let DefKind::Fn | DefKind::AssocFn = def_kind {
1524                let asyncness = tcx.asyncness(def_id);
1525                self.tables.asyncness.set(def_id.index, asyncness);
1526                record_array!(self.tables.fn_arg_idents[def_id] <- tcx.fn_arg_idents(def_id));
1527            }
1528            if let Some(name) = tcx.intrinsic(def_id) {
1529                record!(self.tables.intrinsic[def_id] <- name);
1530            }
1531            if let DefKind::TyParam = def_kind {
1532                let default = self.tcx.object_lifetime_default(def_id);
1533                record!(self.tables.object_lifetime_default[def_id] <- default);
1534            }
1535            if let DefKind::Trait = def_kind {
1536                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1537                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1538                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1539                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1540                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1541                let module_children = self.tcx.module_children_local(local_id);
1542                record_array!(self.tables.module_children_non_reexports[def_id] <-
1543                    module_children.iter().map(|child| child.res.def_id().index));
1544                if self.tcx.is_const_trait(def_id) {
1545                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1546                        <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1547                }
1548            }
1549            if let DefKind::TraitAlias = def_kind {
1550                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1551                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1552                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1553                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1554                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1555            }
1556            if let DefKind::Trait | DefKind::Impl { .. } = def_kind {
1557                let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id);
1558                record_array!(self.tables.associated_item_or_field_def_ids[def_id] <-
1559                    associated_item_def_ids.iter().map(|&def_id| {
1560                        assert!(def_id.is_local());
1561                        def_id.index
1562                    })
1563                );
1564                for &def_id in associated_item_def_ids {
1565                    self.encode_info_for_assoc_item(def_id);
1566                }
1567            }
1568            if let DefKind::Closure | DefKind::SyntheticCoroutineBody = def_kind
1569                && let Some(coroutine_kind) = self.tcx.coroutine_kind(def_id)
1570            {
1571                self.tables.coroutine_kind.set(def_id.index, Some(coroutine_kind))
1572            }
1573            if def_kind == DefKind::Closure
1574                && tcx.type_of(def_id).skip_binder().is_coroutine_closure()
1575            {
1576                let coroutine_for_closure = self.tcx.coroutine_for_closure(def_id);
1577                self.tables
1578                    .coroutine_for_closure
1579                    .set_some(def_id.index, coroutine_for_closure.into());
1580
1581                // If this async closure has a by-move body, record it too.
1582                if tcx.needs_coroutine_by_move_body_def_id(coroutine_for_closure) {
1583                    self.tables.coroutine_by_move_body_def_id.set_some(
1584                        coroutine_for_closure.index,
1585                        self.tcx.coroutine_by_move_body_def_id(coroutine_for_closure).into(),
1586                    );
1587                }
1588            }
1589            if let DefKind::Static { .. } = def_kind {
1590                if !self.tcx.is_foreign_item(def_id) {
1591                    let data = self.tcx.eval_static_initializer(def_id).unwrap();
1592                    record!(self.tables.eval_static_initializer[def_id] <- data);
1593                }
1594            }
1595            if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind {
1596                self.encode_info_for_adt(local_id);
1597            }
1598            if let DefKind::Mod = def_kind {
1599                self.encode_info_for_mod(local_id);
1600            }
1601            if let DefKind::Macro(_) = def_kind {
1602                self.encode_info_for_macro(local_id);
1603            }
1604            if let DefKind::TyAlias = def_kind {
1605                self.tables
1606                    .type_alias_is_lazy
1607                    .set(def_id.index, self.tcx.type_alias_is_lazy(def_id));
1608            }
1609            if let DefKind::OpaqueTy = def_kind {
1610                self.encode_explicit_item_bounds(def_id);
1611                self.encode_explicit_item_self_bounds(def_id);
1612                record!(self.tables.opaque_ty_origin[def_id] <- self.tcx.opaque_ty_origin(def_id));
1613                self.encode_precise_capturing_args(def_id);
1614                if tcx.is_conditionally_const(def_id) {
1615                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1616                        <- tcx.explicit_implied_const_bounds(def_id).skip_binder());
1617                }
1618            }
1619            if let DefKind::AnonConst = def_kind {
1620                record!(self.tables.anon_const_kind[def_id] <- self.tcx.anon_const_kind(def_id));
1621            }
1622            if should_encode_const_of_item(self.tcx, def_id, def_kind) {
1623                record!(self.tables.const_of_item[def_id] <- self.tcx.const_of_item(def_id));
1624            }
1625            if tcx.impl_method_has_trait_impl_trait_tys(def_id)
1626                && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id)
1627            {
1628                record!(self.tables.trait_impl_trait_tys[def_id] <- table);
1629            }
1630            if let DefKind::Impl { .. } | DefKind::Trait = def_kind {
1631                let table = tcx.associated_types_for_impl_traits_in_trait_or_impl(def_id);
1632                record!(self.tables.associated_types_for_impl_traits_in_trait_or_impl[def_id] <- table);
1633            }
1634        }
1635
1636        for (def_id, impls) in &tcx.crate_inherent_impls(()).0.inherent_impls {
1637            record_defaulted_array!(self.tables.inherent_impls[def_id.to_def_id()] <- impls.iter().map(|def_id| {
1638                assert!(def_id.is_local());
1639                def_id.index
1640            }));
1641        }
1642
1643        for (def_id, res_map) in &tcx.resolutions(()).doc_link_resolutions {
1644            record!(self.tables.doc_link_resolutions[def_id.to_def_id()] <- res_map);
1645        }
1646
1647        for (def_id, traits) in &tcx.resolutions(()).doc_link_traits_in_scope {
1648            record_array!(self.tables.doc_link_traits_in_scope[def_id.to_def_id()] <- traits);
1649        }
1650    }
1651
1652    fn encode_externally_implementable_items(&mut self) -> LazyArray<EiiMapEncodedKeyValue> {
1653        empty_proc_macro!(self);
1654        let externally_implementable_items = self.tcx.externally_implementable_items(LOCAL_CRATE);
1655
1656        self.lazy_array(externally_implementable_items.iter().map(|(decl_did, (decl, impls))| {
1657            (*decl_did, (decl.clone(), impls.iter().map(|(impl_did, i)| (*impl_did, *i)).collect()))
1658        }))
1659    }
1660
1661    #[instrument(level = "trace", skip(self))]
1662    fn encode_info_for_adt(&mut self, local_def_id: LocalDefId) {
1663        let def_id = local_def_id.to_def_id();
1664        let tcx = self.tcx;
1665        let adt_def = tcx.adt_def(def_id);
1666        record!(self.tables.repr_options[def_id] <- adt_def.repr());
1667
1668        let params_in_repr = self.tcx.params_in_repr(def_id);
1669        record!(self.tables.params_in_repr[def_id] <- params_in_repr);
1670
1671        if adt_def.is_enum() {
1672            let module_children = tcx.module_children_local(local_def_id);
1673            record_array!(self.tables.module_children_non_reexports[def_id] <-
1674                module_children.iter().map(|child| child.res.def_id().index));
1675        } else {
1676            // For non-enum, there is only one variant, and its def_id is the adt's.
1677            debug_assert_eq!(adt_def.variants().len(), 1);
1678            debug_assert_eq!(adt_def.non_enum_variant().def_id, def_id);
1679            // Therefore, the loop over variants will encode its fields as the adt's children.
1680        }
1681
1682        for (idx, variant) in adt_def.variants().iter_enumerated() {
1683            let data = VariantData {
1684                discr: variant.discr,
1685                idx,
1686                ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)),
1687                is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1688            };
1689            record!(self.tables.variant_data[variant.def_id] <- data);
1690
1691            record_array!(self.tables.associated_item_or_field_def_ids[variant.def_id] <- variant.fields.iter().map(|f| {
1692                assert!(f.did.is_local());
1693                f.did.index
1694            }));
1695
1696            for field in &variant.fields {
1697                self.tables.safety.set(field.did.index, field.safety);
1698            }
1699
1700            if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor {
1701                let fn_sig = tcx.fn_sig(ctor_def_id);
1702                // FIXME only encode signature for ctor_def_id
1703                record!(self.tables.fn_sig[variant.def_id] <- fn_sig);
1704            }
1705        }
1706
1707        if let Some(destructor) = tcx.adt_destructor(local_def_id) {
1708            record!(self.tables.adt_destructor[def_id] <- destructor);
1709        }
1710
1711        if let Some(destructor) = tcx.adt_async_destructor(local_def_id) {
1712            record!(self.tables.adt_async_destructor[def_id] <- destructor);
1713        }
1714    }
1715
1716    #[instrument(level = "debug", skip(self))]
1717    fn encode_info_for_mod(&mut self, local_def_id: LocalDefId) {
1718        let tcx = self.tcx;
1719        let def_id = local_def_id.to_def_id();
1720
1721        // If we are encoding a proc-macro crates, `encode_info_for_mod` will
1722        // only ever get called for the crate root. We still want to encode
1723        // the crate root for consistency with other crates (some of the resolver
1724        // code uses it). However, we skip encoding anything relating to child
1725        // items - we encode information about proc-macros later on.
1726        if self.is_proc_macro {
1727            // Encode this here because we don't do it in encode_def_ids.
1728            record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id));
1729        } else {
1730            let module_children = tcx.module_children_local(local_def_id);
1731
1732            record_array!(self.tables.module_children_non_reexports[def_id] <-
1733                module_children.iter().filter(|child| child.reexport_chain.is_empty())
1734                    .map(|child| child.res.def_id().index));
1735
1736            record_defaulted_array!(self.tables.module_children_reexports[def_id] <-
1737                module_children.iter().filter(|child| !child.reexport_chain.is_empty()));
1738
1739            let ambig_module_children = tcx
1740                .resolutions(())
1741                .ambig_module_children
1742                .get(&local_def_id)
1743                .map_or_default(|v| &v[..]);
1744            record_defaulted_array!(self.tables.ambig_module_children[def_id] <-
1745                ambig_module_children);
1746        }
1747    }
1748
1749    fn encode_explicit_item_bounds(&mut self, def_id: DefId) {
1750        debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id);
1751        let bounds = self.tcx.explicit_item_bounds(def_id).skip_binder();
1752        record_defaulted_array!(self.tables.explicit_item_bounds[def_id] <- bounds);
1753    }
1754
1755    fn encode_explicit_item_self_bounds(&mut self, def_id: DefId) {
1756        debug!("EncodeContext::encode_explicit_item_self_bounds({:?})", def_id);
1757        let bounds = self.tcx.explicit_item_self_bounds(def_id).skip_binder();
1758        record_defaulted_array!(self.tables.explicit_item_self_bounds[def_id] <- bounds);
1759    }
1760
1761    #[instrument(level = "debug", skip(self))]
1762    fn encode_info_for_assoc_item(&mut self, def_id: DefId) {
1763        let tcx = self.tcx;
1764        let item = tcx.associated_item(def_id);
1765
1766        if matches!(item.container, AssocContainer::Trait | AssocContainer::TraitImpl(_)) {
1767            self.tables.defaultness.set(def_id.index, item.defaultness(tcx));
1768        }
1769
1770        record!(self.tables.assoc_container[def_id] <- item.container);
1771
1772        if let AssocContainer::Trait = item.container
1773            && item.is_type()
1774        {
1775            self.encode_explicit_item_bounds(def_id);
1776            self.encode_explicit_item_self_bounds(def_id);
1777            if tcx.is_conditionally_const(def_id) {
1778                record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1779                    <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1780            }
1781        }
1782        if let ty::AssocKind::Type { data: ty::AssocTypeData::Rpitit(rpitit_info) } = item.kind {
1783            record!(self.tables.opt_rpitit_info[def_id] <- rpitit_info);
1784            if matches!(rpitit_info, ty::ImplTraitInTraitData::Trait { .. }) {
1785                record_array!(
1786                    self.tables.assumed_wf_types_for_rpitit[def_id]
1787                        <- self.tcx.assumed_wf_types_for_rpitit(def_id)
1788                );
1789                self.encode_precise_capturing_args(def_id);
1790            }
1791        }
1792    }
1793
1794    fn encode_precise_capturing_args(&mut self, def_id: DefId) {
1795        let Some(precise_capturing_args) = self.tcx.rendered_precise_capturing_args(def_id) else {
1796            return;
1797        };
1798
1799        record_array!(self.tables.rendered_precise_capturing_args[def_id] <- precise_capturing_args);
1800    }
1801
1802    fn encode_mir(&mut self) {
1803        if self.is_proc_macro {
1804            return;
1805        }
1806
1807        let tcx = self.tcx;
1808        let reachable_set = tcx.reachable_set(());
1809
1810        let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| {
1811            let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
1812            if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None }
1813        });
1814        for (def_id, encode_const, encode_opt) in keys_and_jobs {
1815            debug_assert!(encode_const || encode_opt);
1816
1817            debug!("EntryBuilder::encode_mir({:?})", def_id);
1818            if encode_opt {
1819                record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id));
1820                self.tables
1821                    .cross_crate_inlinable
1822                    .set(def_id.to_def_id().index, self.tcx.cross_crate_inlinable(def_id));
1823                record!(self.tables.closure_saved_names_of_captured_variables[def_id.to_def_id()]
1824                    <- tcx.closure_saved_names_of_captured_variables(def_id));
1825
1826                if self.tcx.is_coroutine(def_id.to_def_id())
1827                    && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1828                {
1829                    record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1830                }
1831            }
1832            let mut is_trivial = false;
1833            if encode_const {
1834                if let Some((val, ty)) = tcx.trivial_const(def_id) {
1835                    is_trivial = true;
1836                    record!(self.tables.trivial_const[def_id.to_def_id()] <- (val, ty));
1837                } else {
1838                    is_trivial = false;
1839                    record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id));
1840                }
1841
1842                // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir`
1843                let abstract_const = tcx.thir_abstract_const(def_id);
1844                if let Ok(Some(abstract_const)) = abstract_const {
1845                    record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const);
1846                }
1847
1848                if should_encode_const(tcx.def_kind(def_id)) {
1849                    let qualifs = tcx.mir_const_qualif(def_id);
1850                    record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs);
1851                    let body = tcx.hir_maybe_body_owned_by(def_id);
1852                    if let Some(body) = body {
1853                        let const_data = rendered_const(self.tcx, &body, def_id);
1854                        record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data);
1855                    }
1856                }
1857            }
1858            if !is_trivial {
1859                record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id));
1860            }
1861
1862            if self.tcx.is_coroutine(def_id.to_def_id())
1863                && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1864            {
1865                record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1866            }
1867        }
1868
1869        // Encode all the deduced parameter attributes for everything that has MIR, even for items
1870        // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to
1871        // save the query traffic.
1872        if tcx.sess.opts.output_types.should_codegen()
1873            && tcx.sess.opts.optimize != OptLevel::No
1874            && tcx.sess.opts.incremental.is_none()
1875        {
1876            for &local_def_id in tcx.mir_keys(()) {
1877                if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) {
1878                    record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <-
1879                        self.tcx.deduced_param_attrs(local_def_id.to_def_id()));
1880                }
1881            }
1882        }
1883    }
1884
1885    #[instrument(level = "debug", skip(self))]
1886    fn encode_stability(&mut self, def_id: DefId) {
1887        // The query lookup can take a measurable amount of time in crates with many items. Check if
1888        // the stability attributes are even enabled before using their queries.
1889        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1890            if let Some(stab) = self.tcx.lookup_stability(def_id) {
1891                record!(self.tables.lookup_stability[def_id] <- stab)
1892            }
1893        }
1894    }
1895
1896    #[instrument(level = "debug", skip(self))]
1897    fn encode_const_stability(&mut self, def_id: DefId) {
1898        // The query lookup can take a measurable amount of time in crates with many items. Check if
1899        // the stability attributes are even enabled before using their queries.
1900        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1901            if let Some(stab) = self.tcx.lookup_const_stability(def_id) {
1902                record!(self.tables.lookup_const_stability[def_id] <- stab)
1903            }
1904        }
1905    }
1906
1907    #[instrument(level = "debug", skip(self))]
1908    fn encode_default_body_stability(&mut self, def_id: DefId) {
1909        // The query lookup can take a measurable amount of time in crates with many items. Check if
1910        // the stability attributes are even enabled before using their queries.
1911        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1912            if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) {
1913                record!(self.tables.lookup_default_body_stability[def_id] <- stab)
1914            }
1915        }
1916    }
1917
1918    #[instrument(level = "debug", skip(self))]
1919    fn encode_deprecation(&mut self, def_id: DefId) {
1920        if let Some(depr) = self.tcx.lookup_deprecation(def_id) {
1921            record!(self.tables.lookup_deprecation_entry[def_id] <- depr);
1922        }
1923    }
1924
1925    #[instrument(level = "debug", skip(self))]
1926    fn encode_info_for_macro(&mut self, def_id: LocalDefId) {
1927        let tcx = self.tcx;
1928
1929        let (_, macro_def, _) = tcx.hir_expect_item(def_id).expect_macro();
1930        self.tables.is_macro_rules.set(def_id.local_def_index, macro_def.macro_rules);
1931        record!(self.tables.macro_definition[def_id.to_def_id()] <- &*macro_def.body);
1932    }
1933
1934    fn encode_native_libraries(&mut self) -> LazyArray<NativeLib> {
1935        empty_proc_macro!(self);
1936        let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
1937        self.lazy_array(used_libraries.iter())
1938    }
1939
1940    fn encode_foreign_modules(&mut self) -> LazyArray<ForeignModule> {
1941        empty_proc_macro!(self);
1942        let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE);
1943        self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned())
1944    }
1945
1946    fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) {
1947        let mut syntax_contexts: TableBuilder<_, _> = Default::default();
1948        let mut expn_data_table: TableBuilder<_, _> = Default::default();
1949        let mut expn_hash_table: TableBuilder<_, _> = Default::default();
1950
1951        self.hygiene_ctxt.encode(
1952            &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table),
1953            |(this, syntax_contexts, _, _), index, ctxt_data| {
1954                syntax_contexts.set_some(index, this.lazy(ctxt_data));
1955            },
1956            |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| {
1957                if let Some(index) = index.as_local() {
1958                    expn_data_table.set_some(index.as_raw(), this.lazy(expn_data));
1959                    expn_hash_table.set_some(index.as_raw(), this.lazy(hash));
1960                }
1961            },
1962        );
1963
1964        (
1965            syntax_contexts.encode(&mut self.opaque),
1966            expn_data_table.encode(&mut self.opaque),
1967            expn_hash_table.encode(&mut self.opaque),
1968        )
1969    }
1970
1971    fn encode_proc_macros(&mut self) -> Option<ProcMacroData> {
1972        let is_proc_macro = self.tcx.crate_types().contains(&CrateType::ProcMacro);
1973        if is_proc_macro {
1974            let tcx = self.tcx;
1975            let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index;
1976            let stability = tcx.lookup_stability(CRATE_DEF_ID);
1977            let macros =
1978                self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index));
1979            for (i, span) in self.tcx.sess.psess.proc_macro_quoted_spans() {
1980                let span = self.lazy(span);
1981                self.tables.proc_macro_quoted_spans.set_some(i, span);
1982            }
1983
1984            self.tables.def_kind.set_some(LOCAL_CRATE.as_def_id().index, DefKind::Mod);
1985            record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id()));
1986            self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local());
1987            let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index);
1988            record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis);
1989            if let Some(stability) = stability {
1990                record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability);
1991            }
1992            self.encode_deprecation(LOCAL_CRATE.as_def_id());
1993            if let Some(res_map) = tcx.resolutions(()).doc_link_resolutions.get(&CRATE_DEF_ID) {
1994                record!(self.tables.doc_link_resolutions[LOCAL_CRATE.as_def_id()] <- res_map);
1995            }
1996            if let Some(traits) = tcx.resolutions(()).doc_link_traits_in_scope.get(&CRATE_DEF_ID) {
1997                record_array!(self.tables.doc_link_traits_in_scope[LOCAL_CRATE.as_def_id()] <- traits);
1998            }
1999
2000            // Normally, this information is encoded when we walk the items
2001            // defined in this crate. However, we skip doing that for proc-macro crates,
2002            // so we manually encode just the information that we need
2003            for &proc_macro in &tcx.resolutions(()).proc_macros {
2004                let id = proc_macro;
2005                let proc_macro = tcx.local_def_id_to_hir_id(proc_macro);
2006                let mut name = tcx.hir_name(proc_macro);
2007                let span = tcx.hir_span(proc_macro);
2008                // Proc-macros may have attributes like `#[allow_internal_unstable]`,
2009                // so downstream crates need access to them.
2010                let attrs = tcx.hir_attrs(proc_macro);
2011                let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) {
2012                    MacroKind::Bang
2013                } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) {
2014                    MacroKind::Attr
2015                } else if let Some(trait_name) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, ..} => trait_name)
2016                {
2017                    name = *trait_name;
2018                    MacroKind::Derive
2019                } else {
2020                    bug!("Unknown proc-macro type for item {:?}", id);
2021                };
2022
2023                let mut def_key = self.tcx.hir_def_key(id);
2024                def_key.disambiguated_data.data = DefPathData::MacroNs(name);
2025
2026                let def_id = id.to_def_id();
2027                self.tables.def_kind.set_some(def_id.index, DefKind::Macro(macro_kind.into()));
2028                self.tables.proc_macro.set_some(def_id.index, macro_kind);
2029                self.encode_attrs(id);
2030                record!(self.tables.def_keys[def_id] <- def_key);
2031                record!(self.tables.def_ident_span[def_id] <- span);
2032                record!(self.tables.def_span[def_id] <- span);
2033                record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
2034                if let Some(stability) = stability {
2035                    record!(self.tables.lookup_stability[def_id] <- stability);
2036                }
2037            }
2038
2039            Some(ProcMacroData { proc_macro_decls_static, stability, macros })
2040        } else {
2041            None
2042        }
2043    }
2044
2045    fn encode_debugger_visualizers(&mut self) -> LazyArray<DebuggerVisualizerFile> {
2046        empty_proc_macro!(self);
2047        self.lazy_array(
2048            self.tcx
2049                .debugger_visualizers(LOCAL_CRATE)
2050                .iter()
2051                // Erase the path since it may contain privacy sensitive data
2052                // that we don't want to end up in crate metadata.
2053                // The path is only needed for the local crate because of
2054                // `--emit dep-info`.
2055                .map(DebuggerVisualizerFile::path_erased),
2056        )
2057    }
2058
2059    fn encode_crate_deps(&mut self) -> LazyArray<CrateDep> {
2060        empty_proc_macro!(self);
2061
2062        let deps = self
2063            .tcx
2064            .crates(())
2065            .iter()
2066            .map(|&cnum| {
2067                let dep = CrateDep {
2068                    name: self.tcx.crate_name(cnum),
2069                    hash: self.tcx.crate_hash(cnum),
2070                    host_hash: self.tcx.crate_host_hash(cnum),
2071                    kind: self.tcx.dep_kind(cnum),
2072                    extra_filename: self.tcx.extra_filename(cnum).clone(),
2073                    is_private: self.tcx.is_private_dep(cnum),
2074                };
2075                (cnum, dep)
2076            })
2077            .collect::<Vec<_>>();
2078
2079        {
2080            // Sanity-check the crate numbers
2081            let mut expected_cnum = 1;
2082            for &(n, _) in &deps {
2083                assert_eq!(n, CrateNum::new(expected_cnum));
2084                expected_cnum += 1;
2085            }
2086        }
2087
2088        // We're just going to write a list of crate 'name-hash-version's, with
2089        // the assumption that they are numbered 1 to n.
2090        // FIXME (#2166): This is not nearly enough to support correct versioning
2091        // but is enough to get transitive crate dependencies working.
2092        self.lazy_array(deps.iter().map(|(_, dep)| dep))
2093    }
2094
2095    fn encode_target_modifiers(&mut self) -> LazyArray<TargetModifier> {
2096        empty_proc_macro!(self);
2097        let tcx = self.tcx;
2098        self.lazy_array(tcx.sess.opts.gather_target_modifiers())
2099    }
2100
2101    fn encode_lib_features(&mut self) -> LazyArray<(Symbol, FeatureStability)> {
2102        empty_proc_macro!(self);
2103        let tcx = self.tcx;
2104        let lib_features = tcx.lib_features(LOCAL_CRATE);
2105        self.lazy_array(lib_features.to_sorted_vec())
2106    }
2107
2108    fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> {
2109        empty_proc_macro!(self);
2110        let tcx = self.tcx;
2111        let implications = tcx.stability_implications(LOCAL_CRATE);
2112        let sorted = implications.to_sorted_stable_ord();
2113        self.lazy_array(sorted.into_iter().map(|(k, v)| (*k, *v)))
2114    }
2115
2116    fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> {
2117        empty_proc_macro!(self);
2118        let tcx = self.tcx;
2119        let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id;
2120        self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index)))
2121    }
2122
2123    fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> {
2124        empty_proc_macro!(self);
2125        let lang_items = self.tcx.lang_items().iter();
2126        self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| {
2127            def_id.as_local().map(|id| (id.local_def_index, lang_item))
2128        }))
2129    }
2130
2131    fn encode_lang_items_missing(&mut self) -> LazyArray<LangItem> {
2132        empty_proc_macro!(self);
2133        let tcx = self.tcx;
2134        self.lazy_array(&tcx.lang_items().missing)
2135    }
2136
2137    fn encode_stripped_cfg_items(&mut self) -> LazyArray<StrippedCfgItem<DefIndex>> {
2138        self.lazy_array(
2139            self.tcx
2140                .stripped_cfg_items(LOCAL_CRATE)
2141                .into_iter()
2142                .map(|item| item.clone().map_mod_id(|def_id| def_id.index)),
2143        )
2144    }
2145
2146    fn encode_traits(&mut self) -> LazyArray<DefIndex> {
2147        empty_proc_macro!(self);
2148        self.lazy_array(self.tcx.traits(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2149    }
2150
2151    /// Encodes an index, mapping each trait to its (local) implementations.
2152    #[instrument(level = "debug", skip(self))]
2153    fn encode_impls(&mut self) -> LazyArray<TraitImpls> {
2154        empty_proc_macro!(self);
2155        let tcx = self.tcx;
2156        let mut trait_impls: FxIndexMap<DefId, Vec<(DefIndex, Option<SimplifiedType>)>> =
2157            FxIndexMap::default();
2158
2159        for id in tcx.hir_free_items() {
2160            let DefKind::Impl { of_trait } = tcx.def_kind(id.owner_id) else {
2161                continue;
2162            };
2163            let def_id = id.owner_id.to_def_id();
2164
2165            if of_trait {
2166                let header = tcx.impl_trait_header(def_id);
2167                record!(self.tables.impl_trait_header[def_id] <- header);
2168
2169                self.tables.defaultness.set(def_id.index, tcx.defaultness(def_id));
2170
2171                let trait_ref = header.trait_ref.instantiate_identity();
2172                let simplified_self_ty = fast_reject::simplify_type(
2173                    self.tcx,
2174                    trait_ref.self_ty(),
2175                    TreatParams::InstantiateWithInfer,
2176                );
2177                trait_impls
2178                    .entry(trait_ref.def_id)
2179                    .or_default()
2180                    .push((id.owner_id.def_id.local_def_index, simplified_self_ty));
2181
2182                let trait_def = tcx.trait_def(trait_ref.def_id);
2183                if let Ok(mut an) = trait_def.ancestors(tcx, def_id)
2184                    && let Some(specialization_graph::Node::Impl(parent)) = an.nth(1)
2185                {
2186                    self.tables.impl_parent.set_some(def_id.index, parent.into());
2187                }
2188
2189                // if this is an impl of `CoerceUnsized`, create its
2190                // "unsized info", else just store None
2191                if tcx.is_lang_item(trait_ref.def_id, LangItem::CoerceUnsized) {
2192                    let coerce_unsized_info = tcx.coerce_unsized_info(def_id).unwrap();
2193                    record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info);
2194                }
2195            }
2196        }
2197
2198        let trait_impls: Vec<_> = trait_impls
2199            .into_iter()
2200            .map(|(trait_def_id, impls)| TraitImpls {
2201                trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
2202                impls: self.lazy_array(&impls),
2203            })
2204            .collect();
2205
2206        self.lazy_array(&trait_impls)
2207    }
2208
2209    #[instrument(level = "debug", skip(self))]
2210    fn encode_incoherent_impls(&mut self) -> LazyArray<IncoherentImpls> {
2211        empty_proc_macro!(self);
2212        let tcx = self.tcx;
2213
2214        let all_impls: Vec<_> = tcx
2215            .crate_inherent_impls(())
2216            .0
2217            .incoherent_impls
2218            .iter()
2219            .map(|(&simp, impls)| IncoherentImpls {
2220                self_ty: self.lazy(simp),
2221                impls: self.lazy_array(impls.iter().map(|def_id| def_id.local_def_index)),
2222            })
2223            .collect();
2224
2225        self.lazy_array(&all_impls)
2226    }
2227
2228    fn encode_exportable_items(&mut self) -> LazyArray<DefIndex> {
2229        empty_proc_macro!(self);
2230        self.lazy_array(self.tcx.exportable_items(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2231    }
2232
2233    fn encode_stable_order_of_exportable_impls(&mut self) -> LazyArray<(DefIndex, usize)> {
2234        empty_proc_macro!(self);
2235        let stable_order_of_exportable_impls =
2236            self.tcx.stable_order_of_exportable_impls(LOCAL_CRATE);
2237        self.lazy_array(
2238            stable_order_of_exportable_impls.iter().map(|(def_id, idx)| (def_id.index, *idx)),
2239        )
2240    }
2241
2242    // Encodes all symbols exported from this crate into the metadata.
2243    //
2244    // This pass is seeded off the reachability list calculated in the
2245    // middle::reachable module but filters out items that either don't have a
2246    // symbol associated with them (they weren't translated) or if they're an FFI
2247    // definition (as that's not defined in this crate).
2248    fn encode_exported_symbols(
2249        &mut self,
2250        exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)],
2251    ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> {
2252        empty_proc_macro!(self);
2253
2254        self.lazy_array(exported_symbols.iter().cloned())
2255    }
2256
2257    fn encode_dylib_dependency_formats(&mut self) -> LazyArray<Option<LinkagePreference>> {
2258        empty_proc_macro!(self);
2259        let formats = self.tcx.dependency_formats(());
2260        if let Some(arr) = formats.get(&CrateType::Dylib) {
2261            return self.lazy_array(arr.iter().skip(1 /* skip LOCAL_CRATE */).map(
2262                |slot| match *slot {
2263                    Linkage::NotLinked | Linkage::IncludedFromDylib => None,
2264
2265                    Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
2266                    Linkage::Static => Some(LinkagePreference::RequireStatic),
2267                },
2268            ));
2269        }
2270        LazyArray::default()
2271    }
2272}
2273
2274/// Used to prefetch queries which will be needed later by metadata encoding.
2275/// Only a subset of the queries are actually prefetched to keep this code smaller.
2276fn prefetch_mir(tcx: TyCtxt<'_>) {
2277    if !tcx.sess.opts.output_types.should_codegen() {
2278        // We won't emit MIR, so don't prefetch it.
2279        return;
2280    }
2281
2282    let reachable_set = tcx.reachable_set(());
2283    par_for_each_in(tcx.mir_keys(()), |&&def_id| {
2284        if tcx.is_trivial_const(def_id) {
2285            return;
2286        }
2287        let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
2288
2289        if encode_const {
2290            tcx.ensure_done().mir_for_ctfe(def_id);
2291        }
2292        if encode_opt {
2293            tcx.ensure_done().optimized_mir(def_id);
2294        }
2295        if encode_opt || encode_const {
2296            tcx.ensure_done().promoted_mir(def_id);
2297        }
2298    })
2299}
2300
2301// NOTE(eddyb) The following comment was preserved for posterity, even
2302// though it's no longer relevant as EBML (which uses nested & tagged
2303// "documents") was replaced with a scheme that can't go out of bounds.
2304//
2305// And here we run into yet another obscure archive bug: in which metadata
2306// loaded from archives may have trailing garbage bytes. Awhile back one of
2307// our tests was failing sporadically on the macOS 64-bit builders (both nopt
2308// and opt) by having ebml generate an out-of-bounds panic when looking at
2309// metadata.
2310//
2311// Upon investigation it turned out that the metadata file inside of an rlib
2312// (and ar archive) was being corrupted. Some compilations would generate a
2313// metadata file which would end in a few extra bytes, while other
2314// compilations would not have these extra bytes appended to the end. These
2315// extra bytes were interpreted by ebml as an extra tag, so they ended up
2316// being interpreted causing the out-of-bounds.
2317//
2318// The root cause of why these extra bytes were appearing was never
2319// discovered, and in the meantime the solution we're employing is to insert
2320// the length of the metadata to the start of the metadata. Later on this
2321// will allow us to slice the metadata to the precise length that we just
2322// generated regardless of trailing bytes that end up in it.
2323
2324pub struct EncodedMetadata {
2325    // The declaration order matters because `full_metadata` should be dropped
2326    // before `_temp_dir`.
2327    full_metadata: Option<Mmap>,
2328    // This is an optional stub metadata containing only the crate header.
2329    // The header should be very small, so we load it directly into memory.
2330    stub_metadata: Option<Vec<u8>>,
2331    // The path containing the metadata, to record as work product.
2332    path: Option<Box<Path>>,
2333    // We need to carry MaybeTempDir to avoid deleting the temporary
2334    // directory while accessing the Mmap.
2335    _temp_dir: Option<MaybeTempDir>,
2336}
2337
2338impl EncodedMetadata {
2339    #[inline]
2340    pub fn from_path(
2341        path: PathBuf,
2342        stub_path: Option<PathBuf>,
2343        temp_dir: Option<MaybeTempDir>,
2344    ) -> std::io::Result<Self> {
2345        let file = std::fs::File::open(&path)?;
2346        let file_metadata = file.metadata()?;
2347        if file_metadata.len() == 0 {
2348            return Ok(Self {
2349                full_metadata: None,
2350                stub_metadata: None,
2351                path: None,
2352                _temp_dir: None,
2353            });
2354        }
2355        let full_mmap = unsafe { Some(Mmap::map(file)?) };
2356
2357        let stub =
2358            if let Some(stub_path) = stub_path { Some(std::fs::read(stub_path)?) } else { None };
2359
2360        Ok(Self {
2361            full_metadata: full_mmap,
2362            stub_metadata: stub,
2363            path: Some(path.into()),
2364            _temp_dir: temp_dir,
2365        })
2366    }
2367
2368    #[inline]
2369    pub fn full(&self) -> &[u8] {
2370        &self.full_metadata.as_deref().unwrap_or_default()
2371    }
2372
2373    #[inline]
2374    pub fn stub_or_full(&self) -> &[u8] {
2375        self.stub_metadata.as_deref().unwrap_or(self.full())
2376    }
2377
2378    #[inline]
2379    pub fn path(&self) -> Option<&Path> {
2380        self.path.as_deref()
2381    }
2382}
2383
2384impl<S: Encoder> Encodable<S> for EncodedMetadata {
2385    fn encode(&self, s: &mut S) {
2386        self.stub_metadata.encode(s);
2387
2388        let slice = self.full();
2389        slice.encode(s)
2390    }
2391}
2392
2393impl<D: Decoder> Decodable<D> for EncodedMetadata {
2394    fn decode(d: &mut D) -> Self {
2395        let stub = <Option<Vec<u8>>>::decode(d);
2396
2397        let len = d.read_usize();
2398        let full_metadata = if len > 0 {
2399            let mut mmap = MmapMut::map_anon(len).unwrap();
2400            mmap.copy_from_slice(d.read_raw_bytes(len));
2401            Some(mmap.make_read_only().unwrap())
2402        } else {
2403            None
2404        };
2405
2406        Self { full_metadata, stub_metadata: stub, path: None, _temp_dir: None }
2407    }
2408}
2409
2410#[instrument(level = "trace", skip(tcx))]
2411pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path, ref_path: Option<&Path>) {
2412    // Since encoding metadata is not in a query, and nothing is cached,
2413    // there's no need to do dep-graph tracking for any of it.
2414    tcx.dep_graph.assert_ignored();
2415
2416    // Generate the metadata stub manually, as that is a small file compared to full metadata.
2417    if let Some(ref_path) = ref_path {
2418        let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata_stub");
2419
2420        with_encode_metadata_header(tcx, ref_path, |ecx| {
2421            let header: LazyValue<CrateHeader> = ecx.lazy(CrateHeader {
2422                name: tcx.crate_name(LOCAL_CRATE),
2423                triple: tcx.sess.opts.target_triple.clone(),
2424                hash: tcx.crate_hash(LOCAL_CRATE),
2425                is_proc_macro_crate: false,
2426                is_stub: true,
2427            });
2428            header.position.get()
2429        })
2430    }
2431
2432    let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata");
2433
2434    let dep_node = tcx.metadata_dep_node();
2435
2436    // If the metadata dep-node is green, try to reuse the saved work product.
2437    if tcx.dep_graph.is_fully_enabled()
2438        && let work_product_id = WorkProductId::from_cgu_name("metadata")
2439        && let Some(work_product) = tcx.dep_graph.previous_work_product(&work_product_id)
2440        && tcx.try_mark_green(&dep_node)
2441    {
2442        let saved_path = &work_product.saved_files["rmeta"];
2443        let incr_comp_session_dir = tcx.sess.incr_comp_session_dir_opt().unwrap();
2444        let source_file = rustc_incremental::in_incr_comp_dir(&incr_comp_session_dir, saved_path);
2445        debug!("copying preexisting metadata from {source_file:?} to {path:?}");
2446        match rustc_fs_util::link_or_copy(&source_file, path) {
2447            Ok(_) => {}
2448            Err(err) => tcx.dcx().emit_fatal(FailCreateFileEncoder { err }),
2449        };
2450        return;
2451    };
2452
2453    if tcx.sess.threads() != 1 {
2454        // Prefetch some queries used by metadata encoding.
2455        // This is not necessary for correctness, but is only done for performance reasons.
2456        // It can be removed if it turns out to cause trouble or be detrimental to performance.
2457        join(
2458            || prefetch_mir(tcx),
2459            || {
2460                let _ = tcx.exported_non_generic_symbols(LOCAL_CRATE);
2461                let _ = tcx.exported_generic_symbols(LOCAL_CRATE);
2462            },
2463        );
2464    }
2465
2466    // Perform metadata encoding inside a task, so the dep-graph can check if any encoded
2467    // information changes, and maybe reuse the work product.
2468    tcx.dep_graph.with_task(
2469        dep_node,
2470        tcx,
2471        path,
2472        |tcx, path| {
2473            with_encode_metadata_header(tcx, path, |ecx| {
2474                // Encode all the entries and extra information in the crate,
2475                // culminating in the `CrateRoot` which points to all of it.
2476                let root = ecx.encode_crate_root();
2477
2478                // Flush buffer to ensure backing file has the correct size.
2479                ecx.opaque.flush();
2480                // Record metadata size for self-profiling
2481                tcx.prof.artifact_size(
2482                    "crate_metadata",
2483                    "crate_metadata",
2484                    ecx.opaque.file().metadata().unwrap().len(),
2485                );
2486
2487                root.position.get()
2488            })
2489        },
2490        None,
2491    );
2492}
2493
2494fn with_encode_metadata_header(
2495    tcx: TyCtxt<'_>,
2496    path: &Path,
2497    f: impl FnOnce(&mut EncodeContext<'_, '_>) -> usize,
2498) {
2499    let mut encoder = opaque::FileEncoder::new(path)
2500        .unwrap_or_else(|err| tcx.dcx().emit_fatal(FailCreateFileEncoder { err }));
2501    encoder.emit_raw_bytes(METADATA_HEADER);
2502
2503    // Will be filled with the root position after encoding everything.
2504    encoder.emit_raw_bytes(&0u64.to_le_bytes());
2505
2506    let source_map_files = tcx.sess.source_map().files();
2507    let source_file_cache = (Arc::clone(&source_map_files[0]), 0);
2508    let required_source_files = Some(FxIndexSet::default());
2509    drop(source_map_files);
2510
2511    let hygiene_ctxt = HygieneEncodeContext::default();
2512
2513    let mut ecx = EncodeContext {
2514        opaque: encoder,
2515        tcx,
2516        feat: tcx.features(),
2517        tables: Default::default(),
2518        lazy_state: LazyState::NoNode,
2519        span_shorthands: Default::default(),
2520        type_shorthands: Default::default(),
2521        predicate_shorthands: Default::default(),
2522        source_file_cache,
2523        interpret_allocs: Default::default(),
2524        required_source_files,
2525        is_proc_macro: tcx.crate_types().contains(&CrateType::ProcMacro),
2526        hygiene_ctxt: &hygiene_ctxt,
2527        symbol_index_table: Default::default(),
2528    };
2529
2530    // Encode the rustc version string in a predictable location.
2531    rustc_version(tcx.sess.cfg_version).encode(&mut ecx);
2532
2533    let root_position = f(&mut ecx);
2534
2535    // Make sure we report any errors from writing to the file.
2536    // If we forget this, compilation can succeed with an incomplete rmeta file,
2537    // causing an ICE when the rmeta file is read by another compilation.
2538    if let Err((path, err)) = ecx.opaque.finish() {
2539        tcx.dcx().emit_fatal(FailWriteFile { path: &path, err });
2540    }
2541
2542    let file = ecx.opaque.file();
2543    if let Err(err) = encode_root_position(file, root_position) {
2544        tcx.dcx().emit_fatal(FailWriteFile { path: ecx.opaque.path(), err });
2545    }
2546}
2547
2548fn encode_root_position(mut file: &File, pos: usize) -> Result<(), std::io::Error> {
2549    // We will return to this position after writing the root position.
2550    let pos_before_seek = file.stream_position().unwrap();
2551
2552    // Encode the root position.
2553    let header = METADATA_HEADER.len();
2554    file.seek(std::io::SeekFrom::Start(header as u64))?;
2555    file.write_all(&pos.to_le_bytes())?;
2556
2557    // Return to the position where we are before writing the root position.
2558    file.seek(std::io::SeekFrom::Start(pos_before_seek))?;
2559    Ok(())
2560}
2561
2562pub(crate) fn provide(providers: &mut Providers) {
2563    *providers = Providers {
2564        doc_link_resolutions: |tcx, def_id| {
2565            tcx.resolutions(())
2566                .doc_link_resolutions
2567                .get(&def_id)
2568                .unwrap_or_else(|| span_bug!(tcx.def_span(def_id), "no resolutions for a doc link"))
2569        },
2570        doc_link_traits_in_scope: |tcx, def_id| {
2571            tcx.resolutions(()).doc_link_traits_in_scope.get(&def_id).unwrap_or_else(|| {
2572                span_bug!(tcx.def_span(def_id), "no traits in scope for a doc link")
2573            })
2574        },
2575
2576        ..*providers
2577    }
2578}
2579
2580/// Build a textual representation of an unevaluated constant expression.
2581///
2582/// If the const expression is too complex, an underscore `_` is returned.
2583/// For const arguments, it's `{ _ }` to be precise.
2584/// This means that the output is not necessarily valid Rust code.
2585///
2586/// Currently, only
2587///
2588/// * literals (optionally with a leading `-`)
2589/// * unit `()`
2590/// * blocks (`{ … }`) around simple expressions and
2591/// * paths without arguments
2592///
2593/// are considered simple enough. Simple blocks are included since they are
2594/// necessary to disambiguate unit from the unit type.
2595/// This list might get extended in the future.
2596///
2597/// Without this censoring, in a lot of cases the output would get too large
2598/// and verbose. Consider `match` expressions, blocks and deeply nested ADTs.
2599/// Further, private and `doc(hidden)` fields of structs would get leaked
2600/// since HIR datatypes like the `body` parameter do not contain enough
2601/// semantic information for this function to be able to hide them –
2602/// at least not without significant performance overhead.
2603///
2604/// Whenever possible, prefer to evaluate the constant first and try to
2605/// use a different method for pretty-printing. Ideally this function
2606/// should only ever be used as a fallback.
2607pub fn rendered_const<'tcx>(tcx: TyCtxt<'tcx>, body: &hir::Body<'_>, def_id: LocalDefId) -> String {
2608    let value = body.value;
2609
2610    #[derive(PartialEq, Eq)]
2611    enum Classification {
2612        Literal,
2613        Simple,
2614        Complex,
2615    }
2616
2617    use Classification::*;
2618
2619    fn classify(expr: &hir::Expr<'_>) -> Classification {
2620        match &expr.kind {
2621            hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
2622                if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex }
2623            }
2624            hir::ExprKind::Lit(_) => Literal,
2625            hir::ExprKind::Tup([]) => Simple,
2626            hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => {
2627                if classify(expr) == Complex { Complex } else { Simple }
2628            }
2629            // Paths with a self-type or arguments are too “complex” following our measure since
2630            // they may leak private fields of structs (with feature `adt_const_params`).
2631            // Consider: `<Self as Trait<{ Struct { private: () } }>>::CONSTANT`.
2632            // Paths without arguments are definitely harmless though.
2633            hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => {
2634                if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex }
2635            }
2636            // FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty
2637            //        contains const arguments. Is there a *concise* way to check for this?
2638            hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple,
2639            _ => Complex,
2640        }
2641    }
2642
2643    match classify(value) {
2644        // For non-macro literals, we avoid invoking the pretty-printer and use the source snippet
2645        // instead to preserve certain stylistic choices the user likely made for the sake of
2646        // legibility, like:
2647        //
2648        // * hexadecimal notation
2649        // * underscores
2650        // * character escapes
2651        //
2652        // FIXME: This passes through `-/*spacer*/0` verbatim.
2653        Literal
2654            if !value.span.from_expansion()
2655                && let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) =>
2656        {
2657            snippet
2658        }
2659
2660        // Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and
2661        // other formatting artifacts.
2662        Literal | Simple => id_to_string(&tcx, body.id().hir_id),
2663
2664        // FIXME: Omit the curly braces if the enclosing expression is an array literal
2665        //        with a repeated element (an `ExprKind::Repeat`) as in such case it
2666        //        would not actually need any disambiguation.
2667        Complex => {
2668            if tcx.def_kind(def_id) == DefKind::AnonConst {
2669                "{ _ }".to_owned()
2670            } else {
2671                "_".to_owned()
2672            }
2673        }
2674    }
2675}