rustc_borrowck/
universal_regions.rs

1//! Code to extract the universally quantified regions declared on a
2//! function. For example:
3//!
4//! ```
5//! fn foo<'a, 'b, 'c: 'b>() { }
6//! ```
7//!
8//! here we would return a map assigning each of `{'a, 'b, 'c}`
9//! to an index.
10//!
11//! The code in this file doesn't *do anything* with those results; it
12//! just returns them for other code to use.
13
14#![allow(rustc::diagnostic_outside_of_impl)]
15#![allow(rustc::untranslatable_diagnostic)]
16
17use std::cell::Cell;
18use std::iter;
19
20use rustc_data_structures::fx::FxIndexMap;
21use rustc_errors::Diag;
22use rustc_hir::BodyOwnerKind;
23use rustc_hir::def::DefKind;
24use rustc_hir::def_id::{DefId, LocalDefId};
25use rustc_hir::lang_items::LangItem;
26use rustc_index::IndexVec;
27use rustc_infer::infer::NllRegionVariableOrigin;
28use rustc_macros::extension;
29use rustc_middle::ty::print::with_no_trimmed_paths;
30use rustc_middle::ty::{
31    self, GenericArgs, GenericArgsRef, InlineConstArgs, InlineConstArgsParts, RegionVid, Ty,
32    TyCtxt, TypeFoldable, TypeVisitableExt, fold_regions,
33};
34use rustc_middle::{bug, span_bug};
35use rustc_span::{ErrorGuaranteed, kw, sym};
36use tracing::{debug, instrument};
37
38use crate::BorrowckInferCtxt;
39use crate::renumber::RegionCtxt;
40
41#[derive(Debug)]
42#[derive(Clone)] // FIXME(#146079)
43pub(crate) struct UniversalRegions<'tcx> {
44    indices: UniversalRegionIndices<'tcx>,
45
46    /// The vid assigned to `'static`
47    pub fr_static: RegionVid,
48
49    /// A special region vid created to represent the current MIR fn
50    /// body. It will outlive the entire CFG but it will not outlive
51    /// any other universal regions.
52    pub fr_fn_body: RegionVid,
53
54    /// We create region variables such that they are ordered by their
55    /// `RegionClassification`. The first block are globals, then
56    /// externals, then locals. So, things from:
57    /// - `FIRST_GLOBAL_INDEX..first_extern_index` are global,
58    /// - `first_extern_index..first_local_index` are external,
59    /// - `first_local_index..num_universals` are local.
60    first_extern_index: usize,
61
62    /// See `first_extern_index`.
63    first_local_index: usize,
64
65    /// The total number of universal region variables instantiated.
66    num_universals: usize,
67
68    /// The "defining" type for this function, with all universal
69    /// regions instantiated. For a closure or coroutine, this is the
70    /// closure type, but for a top-level function it's the `FnDef`.
71    pub defining_ty: DefiningTy<'tcx>,
72
73    /// The return type of this function, with all regions replaced by
74    /// their universal `RegionVid` equivalents.
75    ///
76    /// N.B., associated types in this type have not been normalized,
77    /// as the name suggests. =)
78    pub unnormalized_output_ty: Ty<'tcx>,
79
80    /// The fully liberated input types of this function, with all
81    /// regions replaced by their universal `RegionVid` equivalents.
82    ///
83    /// N.B., associated types in these types have not been normalized,
84    /// as the name suggests. =)
85    pub unnormalized_input_tys: &'tcx [Ty<'tcx>],
86
87    pub yield_ty: Option<Ty<'tcx>>,
88
89    pub resume_ty: Option<Ty<'tcx>>,
90}
91
92/// The "defining type" for this MIR. The key feature of the "defining
93/// type" is that it contains the information needed to derive all the
94/// universal regions that are in scope as well as the types of the
95/// inputs/output from the MIR. In general, early-bound universal
96/// regions appear free in the defining type and late-bound regions
97/// appear bound in the signature.
98#[derive(Copy, Clone, Debug)]
99pub(crate) enum DefiningTy<'tcx> {
100    /// The MIR is a closure. The signature is found via
101    /// `ClosureArgs::closure_sig_ty`.
102    Closure(DefId, GenericArgsRef<'tcx>),
103
104    /// The MIR is a coroutine. The signature is that coroutines take
105    /// no parameters and return the result of
106    /// `ClosureArgs::coroutine_return_ty`.
107    Coroutine(DefId, GenericArgsRef<'tcx>),
108
109    /// The MIR is a special kind of closure that returns coroutines.
110    ///
111    /// See the documentation on `CoroutineClosureSignature` for details
112    /// on how to construct the callable signature of the coroutine from
113    /// its args.
114    CoroutineClosure(DefId, GenericArgsRef<'tcx>),
115
116    /// The MIR is a fn item with the given `DefId` and args. The signature
117    /// of the function can be bound then with the `fn_sig` query.
118    FnDef(DefId, GenericArgsRef<'tcx>),
119
120    /// The MIR represents some form of constant. The signature then
121    /// is that it has no inputs and a single return value, which is
122    /// the value of the constant.
123    Const(DefId, GenericArgsRef<'tcx>),
124
125    /// The MIR represents an inline const. The signature has no inputs and a
126    /// single return value found via `InlineConstArgs::ty`.
127    InlineConst(DefId, GenericArgsRef<'tcx>),
128
129    // Fake body for a global asm. Not particularly useful or interesting,
130    // but we need it so we can properly store the typeck results of the asm
131    // operands, which aren't associated with a body otherwise.
132    GlobalAsm(DefId),
133}
134
135impl<'tcx> DefiningTy<'tcx> {
136    /// Returns a list of all the upvar types for this MIR. If this is
137    /// not a closure or coroutine, there are no upvars, and hence it
138    /// will be an empty list. The order of types in this list will
139    /// match up with the upvar order in the HIR, typesystem, and MIR.
140    pub(crate) fn upvar_tys(self) -> &'tcx ty::List<Ty<'tcx>> {
141        match self {
142            DefiningTy::Closure(_, args) => args.as_closure().upvar_tys(),
143            DefiningTy::CoroutineClosure(_, args) => args.as_coroutine_closure().upvar_tys(),
144            DefiningTy::Coroutine(_, args) => args.as_coroutine().upvar_tys(),
145            DefiningTy::FnDef(..)
146            | DefiningTy::Const(..)
147            | DefiningTy::InlineConst(..)
148            | DefiningTy::GlobalAsm(_) => ty::List::empty(),
149        }
150    }
151
152    /// Number of implicit inputs -- notably the "environment"
153    /// parameter for closures -- that appear in MIR but not in the
154    /// user's code.
155    pub(crate) fn implicit_inputs(self) -> usize {
156        match self {
157            DefiningTy::Closure(..)
158            | DefiningTy::CoroutineClosure(..)
159            | DefiningTy::Coroutine(..) => 1,
160            DefiningTy::FnDef(..)
161            | DefiningTy::Const(..)
162            | DefiningTy::InlineConst(..)
163            | DefiningTy::GlobalAsm(_) => 0,
164        }
165    }
166
167    pub(crate) fn is_fn_def(&self) -> bool {
168        matches!(*self, DefiningTy::FnDef(..))
169    }
170
171    pub(crate) fn is_const(&self) -> bool {
172        matches!(*self, DefiningTy::Const(..) | DefiningTy::InlineConst(..))
173    }
174
175    pub(crate) fn def_id(&self) -> DefId {
176        match *self {
177            DefiningTy::Closure(def_id, ..)
178            | DefiningTy::CoroutineClosure(def_id, ..)
179            | DefiningTy::Coroutine(def_id, ..)
180            | DefiningTy::FnDef(def_id, ..)
181            | DefiningTy::Const(def_id, ..)
182            | DefiningTy::InlineConst(def_id, ..)
183            | DefiningTy::GlobalAsm(def_id) => def_id,
184        }
185    }
186
187    /// Returns the args of the `DefiningTy`. These are equivalent to the identity
188    /// substs of the body, but replaced with region vids.
189    pub(crate) fn args(&self) -> ty::GenericArgsRef<'tcx> {
190        match *self {
191            DefiningTy::Closure(_, args)
192            | DefiningTy::Coroutine(_, args)
193            | DefiningTy::CoroutineClosure(_, args)
194            | DefiningTy::FnDef(_, args)
195            | DefiningTy::Const(_, args)
196            | DefiningTy::InlineConst(_, args) => args,
197            DefiningTy::GlobalAsm(_) => ty::List::empty(),
198        }
199    }
200}
201
202#[derive(Debug)]
203#[derive(Clone)] // FIXME(#146079)
204struct UniversalRegionIndices<'tcx> {
205    /// For those regions that may appear in the parameter environment
206    /// ('static and early-bound regions), we maintain a map from the
207    /// `ty::Region` to the internal `RegionVid` we are using. This is
208    /// used because trait matching and type-checking will feed us
209    /// region constraints that reference those regions and we need to
210    /// be able to map them to our internal `RegionVid`. This is
211    /// basically equivalent to an `GenericArgs`, except that it also
212    /// contains an entry for `ReStatic` -- it might be nice to just
213    /// use an args, and then handle `ReStatic` another way.
214    indices: FxIndexMap<ty::Region<'tcx>, RegionVid>,
215
216    /// The vid assigned to `'static`. Used only for diagnostics.
217    pub fr_static: RegionVid,
218
219    /// Whether we've encountered an error region. If we have, cancel all
220    /// outlives errors, as they are likely bogus.
221    pub encountered_re_error: Cell<Option<ErrorGuaranteed>>,
222}
223
224#[derive(Debug, PartialEq)]
225pub(crate) enum RegionClassification {
226    /// A **global** region is one that can be named from
227    /// anywhere. There is only one, `'static`.
228    Global,
229
230    /// An **external** region is only relevant for
231    /// closures, coroutines, and inline consts. In that
232    /// case, it refers to regions that are free in the type
233    /// -- basically, something bound in the surrounding context.
234    ///
235    /// Consider this example:
236    ///
237    /// ```ignore (pseudo-rust)
238    /// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) {
239    ///   let closure = for<'x> |x: &'x u32| { .. };
240    ///    //           ^^^^^^^ pretend this were legal syntax
241    ///    //                   for declaring a late-bound region in
242    ///    //                   a closure signature
243    /// }
244    /// ```
245    ///
246    /// Here, the lifetimes `'a` and `'b` would be **external** to the
247    /// closure.
248    ///
249    /// If we are not analyzing a closure/coroutine/inline-const,
250    /// there are no external lifetimes.
251    External,
252
253    /// A **local** lifetime is one about which we know the full set
254    /// of relevant constraints (that is, relationships to other named
255    /// regions). For a closure, this includes any region bound in
256    /// the closure's signature. For a fn item, this includes all
257    /// regions other than global ones.
258    ///
259    /// Continuing with the example from `External`, if we were
260    /// analyzing the closure, then `'x` would be local (and `'a` and
261    /// `'b` are external). If we are analyzing the function item
262    /// `foo`, then `'a` and `'b` are local (and `'x` is not in
263    /// scope).
264    Local,
265}
266
267const FIRST_GLOBAL_INDEX: usize = 0;
268
269impl<'tcx> UniversalRegions<'tcx> {
270    /// Creates a new and fully initialized `UniversalRegions` that
271    /// contains indices for all the free regions found in the given
272    /// MIR -- that is, all the regions that appear in the function's
273    /// signature.
274    pub(crate) fn new(infcx: &BorrowckInferCtxt<'tcx>, mir_def: LocalDefId) -> Self {
275        UniversalRegionsBuilder { infcx, mir_def }.build()
276    }
277
278    /// Given a reference to a closure type, extracts all the values
279    /// from its free regions and returns a vector with them. This is
280    /// used when the closure's creator checks that the
281    /// `ClosureRegionRequirements` are met. The requirements from
282    /// `ClosureRegionRequirements` are expressed in terms of
283    /// `RegionVid` entries that map into the returned vector `V`: so
284    /// if the `ClosureRegionRequirements` contains something like
285    /// `'1: '2`, then the caller would impose the constraint that
286    /// `V[1]: V[2]`.
287    pub(crate) fn closure_mapping(
288        tcx: TyCtxt<'tcx>,
289        closure_args: GenericArgsRef<'tcx>,
290        expected_num_vars: usize,
291        closure_def_id: LocalDefId,
292    ) -> IndexVec<RegionVid, ty::Region<'tcx>> {
293        let mut region_mapping = IndexVec::with_capacity(expected_num_vars);
294        region_mapping.push(tcx.lifetimes.re_static);
295        tcx.for_each_free_region(&closure_args, |fr| {
296            region_mapping.push(fr);
297        });
298
299        for_each_late_bound_region_in_recursive_scope(tcx, tcx.local_parent(closure_def_id), |r| {
300            region_mapping.push(r);
301        });
302
303        assert_eq!(
304            region_mapping.len(),
305            expected_num_vars,
306            "index vec had unexpected number of variables"
307        );
308
309        region_mapping
310    }
311
312    /// Returns `true` if `r` is a member of this set of universal regions.
313    pub(crate) fn is_universal_region(&self, r: RegionVid) -> bool {
314        (FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index())
315    }
316
317    /// Classifies `r` as a universal region, returning `None` if this
318    /// is not a member of this set of universal regions.
319    pub(crate) fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> {
320        let index = r.index();
321        if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) {
322            Some(RegionClassification::Global)
323        } else if (self.first_extern_index..self.first_local_index).contains(&index) {
324            Some(RegionClassification::External)
325        } else if (self.first_local_index..self.num_universals).contains(&index) {
326            Some(RegionClassification::Local)
327        } else {
328            None
329        }
330    }
331
332    /// Returns an iterator over all the RegionVids corresponding to
333    /// universally quantified free regions.
334    pub(crate) fn universal_regions_iter(&self) -> impl Iterator<Item = RegionVid> + 'static {
335        (FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::from_usize)
336    }
337
338    /// Returns `true` if `r` is classified as a local region.
339    pub(crate) fn is_local_free_region(&self, r: RegionVid) -> bool {
340        self.region_classification(r) == Some(RegionClassification::Local)
341    }
342
343    /// Returns the number of universal regions created in any category.
344    pub(crate) fn len(&self) -> usize {
345        self.num_universals
346    }
347
348    /// Returns the number of global plus external universal regions.
349    /// For closures, these are the regions that appear free in the
350    /// closure type (versus those bound in the closure
351    /// signature). They are therefore the regions between which the
352    /// closure may impose constraints that its creator must verify.
353    pub(crate) fn num_global_and_external_regions(&self) -> usize {
354        self.first_local_index
355    }
356
357    /// Gets an iterator over all the early-bound regions that have names.
358    pub(crate) fn named_universal_regions_iter(
359        &self,
360    ) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> {
361        self.indices.indices.iter().map(|(&r, &v)| (r, v))
362    }
363
364    /// See [UniversalRegionIndices::to_region_vid].
365    pub(crate) fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
366        self.indices.to_region_vid(r)
367    }
368
369    /// As part of the NLL unit tests, you can annotate a function with
370    /// `#[rustc_regions]`, and we will emit information about the region
371    /// inference context and -- in particular -- the external constraints
372    /// that this region imposes on others. The methods in this file
373    /// handle the part about dumping the inference context internal
374    /// state.
375    pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diag<'_, ()>) {
376        match self.defining_ty {
377            DefiningTy::Closure(def_id, args) => {
378                let v = with_no_trimmed_paths!(
379                    args[tcx.generics_of(def_id).parent_count..]
380                        .iter()
381                        .map(|arg| arg.to_string())
382                        .collect::<Vec<_>>()
383                );
384                err.note(format!(
385                    "defining type: {} with closure args [\n    {},\n]",
386                    tcx.def_path_str_with_args(def_id, args),
387                    v.join(",\n    "),
388                ));
389
390                // FIXME: It'd be nice to print the late-bound regions
391                // here, but unfortunately these wind up stored into
392                // tests, and the resulting print-outs include def-ids
393                // and other things that are not stable across tests!
394                // So we just include the region-vid. Annoying.
395                for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
396                    err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
397                });
398            }
399            DefiningTy::CoroutineClosure(..) => {
400                todo!()
401            }
402            DefiningTy::Coroutine(def_id, args) => {
403                let v = with_no_trimmed_paths!(
404                    args[tcx.generics_of(def_id).parent_count..]
405                        .iter()
406                        .map(|arg| arg.to_string())
407                        .collect::<Vec<_>>()
408                );
409                err.note(format!(
410                    "defining type: {} with coroutine args [\n    {},\n]",
411                    tcx.def_path_str_with_args(def_id, args),
412                    v.join(",\n    "),
413                ));
414
415                // FIXME: As above, we'd like to print out the region
416                // `r` but doing so is not stable across architectures
417                // and so forth.
418                for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
419                    err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
420                });
421            }
422            DefiningTy::FnDef(def_id, args) => {
423                err.note(format!("defining type: {}", tcx.def_path_str_with_args(def_id, args),));
424            }
425            DefiningTy::Const(def_id, args) => {
426                err.note(format!(
427                    "defining constant type: {}",
428                    tcx.def_path_str_with_args(def_id, args),
429                ));
430            }
431            DefiningTy::InlineConst(def_id, args) => {
432                err.note(format!(
433                    "defining inline constant type: {}",
434                    tcx.def_path_str_with_args(def_id, args),
435                ));
436            }
437            DefiningTy::GlobalAsm(_) => unreachable!(),
438        }
439    }
440
441    pub(crate) fn implicit_region_bound(&self) -> RegionVid {
442        self.fr_fn_body
443    }
444
445    pub(crate) fn encountered_re_error(&self) -> Option<ErrorGuaranteed> {
446        self.indices.encountered_re_error.get()
447    }
448}
449
450struct UniversalRegionsBuilder<'infcx, 'tcx> {
451    infcx: &'infcx BorrowckInferCtxt<'tcx>,
452    mir_def: LocalDefId,
453}
454
455impl<'cx, 'tcx> UniversalRegionsBuilder<'cx, 'tcx> {
456    fn build(self) -> UniversalRegions<'tcx> {
457        debug!("build(mir_def={:?})", self.mir_def);
458
459        let param_env = self.infcx.param_env;
460        debug!("build: param_env={:?}", param_env);
461
462        assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars());
463
464        // Create the "global" region that is always free in all contexts: 'static.
465        let fr_static = self
466            .infcx
467            .next_nll_region_var(NllRegionVariableOrigin::FreeRegion, || {
468                RegionCtxt::Free(kw::Static)
469            })
470            .as_var();
471
472        // We've now added all the global regions. The next ones we
473        // add will be external.
474        let first_extern_index = self.infcx.num_region_vars();
475
476        let defining_ty = self.defining_ty();
477        debug!("build: defining_ty={:?}", defining_ty);
478
479        let mut indices = self.compute_indices(fr_static, defining_ty);
480        debug!("build: indices={:?}", indices);
481
482        let typeck_root_def_id = self.infcx.tcx.typeck_root_def_id(self.mir_def.to_def_id());
483
484        // If this is a 'root' body (not a closure/coroutine/inline const), then
485        // there are no extern regions, so the local regions start at the same
486        // position as the (empty) sub-list of extern regions
487        let first_local_index = if self.mir_def.to_def_id() == typeck_root_def_id {
488            first_extern_index
489        } else {
490            // If this is a closure, coroutine, or inline-const, then the late-bound regions from the enclosing
491            // function/closures are actually external regions to us. For example, here, 'a is not local
492            // to the closure c (although it is local to the fn foo):
493            // fn foo<'a>() {
494            //     let c = || { let x: &'a u32 = ...; }
495            // }
496            for_each_late_bound_region_in_recursive_scope(
497                self.infcx.tcx,
498                self.infcx.tcx.local_parent(self.mir_def),
499                |r| {
500                    debug!(?r);
501                    let region_vid = {
502                        let name = r.get_name_or_anon(self.infcx.tcx);
503                        self.infcx.next_nll_region_var(NllRegionVariableOrigin::FreeRegion, || {
504                            RegionCtxt::LateBound(name)
505                        })
506                    };
507
508                    debug!(?region_vid);
509                    indices.insert_late_bound_region(r, region_vid.as_var());
510                },
511            );
512
513            // Any regions created during the execution of `defining_ty` or during the above
514            // late-bound region replacement are all considered 'extern' regions
515            self.infcx.num_region_vars()
516        };
517
518        // Converse of above, if this is a function/closure then the late-bound regions declared
519        // on its signature are local.
520        //
521        // We manually loop over `bound_inputs_and_output` instead of using
522        // `for_each_late_bound_region_in_item` as we may need to add the otherwise
523        // implicit `ClosureEnv` region.
524        let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty);
525        for (idx, bound_var) in bound_inputs_and_output.bound_vars().iter().enumerate() {
526            if let ty::BoundVariableKind::Region(kind) = bound_var {
527                let kind = ty::LateParamRegionKind::from_bound(ty::BoundVar::from_usize(idx), kind);
528                let r = ty::Region::new_late_param(self.infcx.tcx, self.mir_def.to_def_id(), kind);
529                let region_vid = {
530                    let name = r.get_name_or_anon(self.infcx.tcx);
531                    self.infcx.next_nll_region_var(NllRegionVariableOrigin::FreeRegion, || {
532                        RegionCtxt::LateBound(name)
533                    })
534                };
535
536                debug!(?region_vid);
537                indices.insert_late_bound_region(r, region_vid.as_var());
538            }
539        }
540        let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars(
541            self.mir_def,
542            bound_inputs_and_output,
543            &indices,
544        );
545
546        let (unnormalized_output_ty, unnormalized_input_tys) =
547            inputs_and_output.split_last().unwrap();
548
549        let fr_fn_body = self
550            .infcx
551            .next_nll_region_var(NllRegionVariableOrigin::FreeRegion, || {
552                RegionCtxt::Free(sym::fn_body)
553            })
554            .as_var();
555
556        let num_universals = self.infcx.num_region_vars();
557
558        debug!("build: global regions = {}..{}", FIRST_GLOBAL_INDEX, first_extern_index);
559        debug!("build: extern regions = {}..{}", first_extern_index, first_local_index);
560        debug!("build: local regions  = {}..{}", first_local_index, num_universals);
561
562        let (resume_ty, yield_ty) = match defining_ty {
563            DefiningTy::Coroutine(_, args) => {
564                let tys = args.as_coroutine();
565                (Some(tys.resume_ty()), Some(tys.yield_ty()))
566            }
567            _ => (None, None),
568        };
569
570        UniversalRegions {
571            indices,
572            fr_static,
573            fr_fn_body,
574            first_extern_index,
575            first_local_index,
576            num_universals,
577            defining_ty,
578            unnormalized_output_ty: *unnormalized_output_ty,
579            unnormalized_input_tys,
580            yield_ty,
581            resume_ty,
582        }
583    }
584
585    /// Returns the "defining type" of the current MIR;
586    /// see `DefiningTy` for details.
587    fn defining_ty(&self) -> DefiningTy<'tcx> {
588        let tcx = self.infcx.tcx;
589        let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());
590
591        match tcx.hir_body_owner_kind(self.mir_def) {
592            BodyOwnerKind::Closure | BodyOwnerKind::Fn => {
593                let defining_ty = tcx.type_of(self.mir_def).instantiate_identity();
594
595                debug!("defining_ty (pre-replacement): {:?}", defining_ty);
596
597                let defining_ty = self.infcx.replace_free_regions_with_nll_infer_vars(
598                    NllRegionVariableOrigin::FreeRegion,
599                    defining_ty,
600                );
601
602                match *defining_ty.kind() {
603                    ty::Closure(def_id, args) => DefiningTy::Closure(def_id, args),
604                    ty::Coroutine(def_id, args) => DefiningTy::Coroutine(def_id, args),
605                    ty::CoroutineClosure(def_id, args) => {
606                        DefiningTy::CoroutineClosure(def_id, args)
607                    }
608                    ty::FnDef(def_id, args) => DefiningTy::FnDef(def_id, args),
609                    _ => span_bug!(
610                        tcx.def_span(self.mir_def),
611                        "expected defining type for `{:?}`: `{:?}`",
612                        self.mir_def,
613                        defining_ty
614                    ),
615                }
616            }
617
618            BodyOwnerKind::Const { .. } | BodyOwnerKind::Static(..) => {
619                let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id);
620                if self.mir_def.to_def_id() == typeck_root_def_id {
621                    let args = self.infcx.replace_free_regions_with_nll_infer_vars(
622                        NllRegionVariableOrigin::FreeRegion,
623                        identity_args,
624                    );
625                    DefiningTy::Const(self.mir_def.to_def_id(), args)
626                } else {
627                    // FIXME: this line creates a query dependency between borrowck and typeck.
628                    //
629                    // This is required for `AscribeUserType` canonical query, which will call
630                    // `type_of(inline_const_def_id)`. That `type_of` would inject erased lifetimes
631                    // into borrowck, which is ICE #78174.
632                    //
633                    // As a workaround, inline consts have an additional generic param (`ty`
634                    // below), so that `type_of(inline_const_def_id).args(args)` uses the
635                    // proper type with NLL infer vars.
636                    let ty = tcx
637                        .typeck(self.mir_def)
638                        .node_type(tcx.local_def_id_to_hir_id(self.mir_def));
639                    let args = InlineConstArgs::new(
640                        tcx,
641                        InlineConstArgsParts { parent_args: identity_args, ty },
642                    )
643                    .args;
644                    let args = self.infcx.replace_free_regions_with_nll_infer_vars(
645                        NllRegionVariableOrigin::FreeRegion,
646                        args,
647                    );
648                    DefiningTy::InlineConst(self.mir_def.to_def_id(), args)
649                }
650            }
651
652            BodyOwnerKind::GlobalAsm => DefiningTy::GlobalAsm(self.mir_def.to_def_id()),
653        }
654    }
655
656    /// Builds a hashmap that maps from the universal regions that are
657    /// in scope (as a `ty::Region<'tcx>`) to their indices (as a
658    /// `RegionVid`). The map returned by this function contains only
659    /// the early-bound regions.
660    fn compute_indices(
661        &self,
662        fr_static: RegionVid,
663        defining_ty: DefiningTy<'tcx>,
664    ) -> UniversalRegionIndices<'tcx> {
665        let tcx = self.infcx.tcx;
666        let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());
667        let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id);
668        let renumbered_args = defining_ty.args();
669
670        let global_mapping = iter::once((tcx.lifetimes.re_static, fr_static));
671        // This relies on typeck roots being generics_of parents with their
672        // parameters at the start of nested bodies' generics.
673        assert!(renumbered_args.len() >= identity_args.len());
674        let arg_mapping =
675            iter::zip(identity_args.regions(), renumbered_args.regions().map(|r| r.as_var()));
676
677        UniversalRegionIndices {
678            indices: global_mapping.chain(arg_mapping).collect(),
679            fr_static,
680            encountered_re_error: Cell::new(None),
681        }
682    }
683
684    fn compute_inputs_and_output(
685        &self,
686        indices: &UniversalRegionIndices<'tcx>,
687        defining_ty: DefiningTy<'tcx>,
688    ) -> ty::Binder<'tcx, &'tcx ty::List<Ty<'tcx>>> {
689        let tcx = self.infcx.tcx;
690
691        let inputs_and_output = match defining_ty {
692            DefiningTy::Closure(def_id, args) => {
693                assert_eq!(self.mir_def.to_def_id(), def_id);
694                let closure_sig = args.as_closure().sig();
695                let inputs_and_output = closure_sig.inputs_and_output();
696                let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
697                    inputs_and_output.bound_vars().iter().chain(iter::once(
698                        ty::BoundVariableKind::Region(ty::BoundRegionKind::ClosureEnv),
699                    )),
700                );
701                let br = ty::BoundRegion {
702                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
703                    kind: ty::BoundRegionKind::ClosureEnv,
704                };
705                let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
706                let closure_ty = tcx.closure_env_ty(
707                    Ty::new_closure(tcx, def_id, args),
708                    args.as_closure().kind(),
709                    env_region,
710                );
711
712                // The "inputs" of the closure in the
713                // signature appear as a tuple. The MIR side
714                // flattens this tuple.
715                let (&output, tuplized_inputs) =
716                    inputs_and_output.skip_binder().split_last().unwrap();
717                assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs");
718                let &ty::Tuple(inputs) = tuplized_inputs[0].kind() else {
719                    bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]);
720                };
721
722                ty::Binder::bind_with_vars(
723                    tcx.mk_type_list_from_iter(
724                        iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
725                    ),
726                    bound_vars,
727                )
728            }
729
730            DefiningTy::Coroutine(def_id, args) => {
731                assert_eq!(self.mir_def.to_def_id(), def_id);
732                let resume_ty = args.as_coroutine().resume_ty();
733                let output = args.as_coroutine().return_ty();
734                let coroutine_ty = Ty::new_coroutine(tcx, def_id, args);
735                let inputs_and_output =
736                    self.infcx.tcx.mk_type_list(&[coroutine_ty, resume_ty, output]);
737                ty::Binder::dummy(inputs_and_output)
738            }
739
740            // Construct the signature of the CoroutineClosure for the purposes of borrowck.
741            // This is pretty straightforward -- we:
742            // 1. first grab the `coroutine_closure_sig`,
743            // 2. compute the self type (`&`/`&mut`/no borrow),
744            // 3. flatten the tupled_input_tys,
745            // 4. construct the correct generator type to return with
746            //    `CoroutineClosureSignature::to_coroutine_given_kind_and_upvars`.
747            // Then we wrap it all up into a list of inputs and output.
748            DefiningTy::CoroutineClosure(def_id, args) => {
749                assert_eq!(self.mir_def.to_def_id(), def_id);
750                let closure_sig = args.as_coroutine_closure().coroutine_closure_sig();
751                let bound_vars =
752                    tcx.mk_bound_variable_kinds_from_iter(closure_sig.bound_vars().iter().chain(
753                        iter::once(ty::BoundVariableKind::Region(ty::BoundRegionKind::ClosureEnv)),
754                    ));
755                let br = ty::BoundRegion {
756                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
757                    kind: ty::BoundRegionKind::ClosureEnv,
758                };
759                let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
760                let closure_kind = args.as_coroutine_closure().kind();
761
762                let closure_ty = tcx.closure_env_ty(
763                    Ty::new_coroutine_closure(tcx, def_id, args),
764                    closure_kind,
765                    env_region,
766                );
767
768                let inputs = closure_sig.skip_binder().tupled_inputs_ty.tuple_fields();
769                let output = closure_sig.skip_binder().to_coroutine_given_kind_and_upvars(
770                    tcx,
771                    args.as_coroutine_closure().parent_args(),
772                    tcx.coroutine_for_closure(def_id),
773                    closure_kind,
774                    env_region,
775                    args.as_coroutine_closure().tupled_upvars_ty(),
776                    args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
777                );
778
779                ty::Binder::bind_with_vars(
780                    tcx.mk_type_list_from_iter(
781                        iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
782                    ),
783                    bound_vars,
784                )
785            }
786
787            DefiningTy::FnDef(def_id, _) => {
788                let sig = tcx.fn_sig(def_id).instantiate_identity();
789                let sig = indices.fold_to_region_vids(tcx, sig);
790                let inputs_and_output = sig.inputs_and_output();
791
792                // C-variadic fns also have a `VaList` input that's not listed in the signature
793                // (as it's created inside the body itself, not passed in from outside).
794                if self.infcx.tcx.fn_sig(def_id).skip_binder().c_variadic() {
795                    let va_list_did = self
796                        .infcx
797                        .tcx
798                        .require_lang_item(LangItem::VaList, self.infcx.tcx.def_span(self.mir_def));
799
800                    let reg_vid = self
801                        .infcx
802                        .next_nll_region_var(NllRegionVariableOrigin::FreeRegion, || {
803                            RegionCtxt::Free(sym::c_dash_variadic)
804                        })
805                        .as_var();
806
807                    let region = ty::Region::new_var(self.infcx.tcx, reg_vid);
808                    let va_list_ty = self
809                        .infcx
810                        .tcx
811                        .type_of(va_list_did)
812                        .instantiate(self.infcx.tcx, &[region.into()]);
813
814                    // The signature needs to follow the order [input_tys, va_list_ty, output_ty]
815                    return inputs_and_output.map_bound(|tys| {
816                        let (output_ty, input_tys) = tys.split_last().unwrap();
817                        tcx.mk_type_list_from_iter(
818                            input_tys.iter().copied().chain([va_list_ty, *output_ty]),
819                        )
820                    });
821                }
822
823                inputs_and_output
824            }
825
826            DefiningTy::Const(def_id, _) => {
827                // For a constant body, there are no inputs, and one
828                // "output" (the type of the constant).
829                assert_eq!(self.mir_def.to_def_id(), def_id);
830                let ty = tcx.type_of(self.mir_def).instantiate_identity();
831
832                let ty = indices.fold_to_region_vids(tcx, ty);
833                ty::Binder::dummy(tcx.mk_type_list(&[ty]))
834            }
835
836            DefiningTy::InlineConst(def_id, args) => {
837                assert_eq!(self.mir_def.to_def_id(), def_id);
838                let ty = args.as_inline_const().ty();
839                ty::Binder::dummy(tcx.mk_type_list(&[ty]))
840            }
841
842            DefiningTy::GlobalAsm(def_id) => {
843                ty::Binder::dummy(tcx.mk_type_list(&[tcx.type_of(def_id).instantiate_identity()]))
844            }
845        };
846
847        // FIXME(#129952): We probably want a more principled approach here.
848        if let Err(e) = inputs_and_output.error_reported() {
849            self.infcx.set_tainted_by_errors(e);
850        }
851
852        inputs_and_output
853    }
854}
855
856#[extension(trait InferCtxtExt<'tcx>)]
857impl<'tcx> BorrowckInferCtxt<'tcx> {
858    #[instrument(skip(self), level = "debug")]
859    fn replace_free_regions_with_nll_infer_vars<T>(
860        &self,
861        origin: NllRegionVariableOrigin<'tcx>,
862        value: T,
863    ) -> T
864    where
865        T: TypeFoldable<TyCtxt<'tcx>>,
866    {
867        fold_regions(self.infcx.tcx, value, |region, _depth| {
868            let name = region.get_name_or_anon(self.infcx.tcx);
869            debug!(?region, ?name);
870
871            self.next_nll_region_var(origin, || RegionCtxt::Free(name))
872        })
873    }
874
875    #[instrument(level = "debug", skip(self, indices))]
876    fn replace_bound_regions_with_nll_infer_vars<T>(
877        &self,
878        all_outlive_scope: LocalDefId,
879        value: ty::Binder<'tcx, T>,
880        indices: &UniversalRegionIndices<'tcx>,
881    ) -> T
882    where
883        T: TypeFoldable<TyCtxt<'tcx>>,
884    {
885        let (value, _map) = self.tcx.instantiate_bound_regions(value, |br| {
886            debug!(?br);
887            let kind = ty::LateParamRegionKind::from_bound(br.var, br.kind);
888            let liberated_region =
889                ty::Region::new_late_param(self.tcx, all_outlive_scope.to_def_id(), kind);
890            ty::Region::new_var(self.tcx, indices.to_region_vid(liberated_region))
891        });
892        value
893    }
894}
895
896impl<'tcx> UniversalRegionIndices<'tcx> {
897    /// Initially, the `UniversalRegionIndices` map contains only the
898    /// early-bound regions in scope. Once that is all setup, we come
899    /// in later and instantiate the late-bound regions, and then we
900    /// insert the `ReLateParam` version of those into the map as
901    /// well. These are used for error reporting.
902    fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid) {
903        debug!("insert_late_bound_region({:?}, {:?})", r, vid);
904        assert_eq!(self.indices.insert(r, vid), None);
905    }
906
907    /// Converts `r` into a local inference variable: `r` can either
908    /// be a `ReVar` (i.e., already a reference to an inference
909    /// variable) or it can be `'static` or some early-bound
910    /// region. This is useful when taking the results from
911    /// type-checking and trait-matching, which may sometimes
912    /// reference those regions from the `ParamEnv`. It is also used
913    /// during initialization. Relies on the `indices` map having been
914    /// fully initialized.
915    ///
916    /// Panics if `r` is not a registered universal region, most notably
917    /// if it is a placeholder. Handling placeholders requires access to the
918    /// `MirTypeckRegionConstraints`.
919    fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
920        match r.kind() {
921            ty::ReVar(..) => r.as_var(),
922            ty::ReError(guar) => {
923                self.encountered_re_error.set(Some(guar));
924                // We use the `'static` `RegionVid` because `ReError` doesn't actually exist in the
925                // `UniversalRegionIndices`. This is fine because 1) it is a fallback only used if
926                // errors are being emitted and 2) it leaves the happy path unaffected.
927                self.fr_static
928            }
929            _ => *self
930                .indices
931                .get(&r)
932                .unwrap_or_else(|| bug!("cannot convert `{:?}` to a region vid", r)),
933        }
934    }
935
936    /// Replaces all free regions in `value` with region vids, as
937    /// returned by `to_region_vid`.
938    fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
939    where
940        T: TypeFoldable<TyCtxt<'tcx>>,
941    {
942        fold_regions(tcx, value, |region, _| ty::Region::new_var(tcx, self.to_region_vid(region)))
943    }
944}
945
946/// Iterates over the late-bound regions defined on `mir_def_id` and all of its
947/// parents, up to the typeck root, and invokes `f` with the liberated form
948/// of each one.
949fn for_each_late_bound_region_in_recursive_scope<'tcx>(
950    tcx: TyCtxt<'tcx>,
951    mut mir_def_id: LocalDefId,
952    mut f: impl FnMut(ty::Region<'tcx>),
953) {
954    let typeck_root_def_id = tcx.typeck_root_def_id(mir_def_id.to_def_id());
955
956    // Walk up the tree, collecting late-bound regions until we hit the typeck root
957    loop {
958        for_each_late_bound_region_in_item(tcx, mir_def_id, &mut f);
959
960        if mir_def_id.to_def_id() == typeck_root_def_id {
961            break;
962        } else {
963            mir_def_id = tcx.local_parent(mir_def_id);
964        }
965    }
966}
967
968/// Iterates over the late-bound regions defined on `mir_def_id` and all of its
969/// parents, up to the typeck root, and invokes `f` with the liberated form
970/// of each one.
971fn for_each_late_bound_region_in_item<'tcx>(
972    tcx: TyCtxt<'tcx>,
973    mir_def_id: LocalDefId,
974    mut f: impl FnMut(ty::Region<'tcx>),
975) {
976    let bound_vars = match tcx.def_kind(mir_def_id) {
977        DefKind::Fn | DefKind::AssocFn => {
978            tcx.late_bound_vars(tcx.local_def_id_to_hir_id(mir_def_id))
979        }
980        // We extract the bound vars from the deduced closure signature, since we may have
981        // only deduced that a param in the closure signature is late-bound from a constraint
982        // that we discover during typeck.
983        DefKind::Closure => {
984            let ty = tcx.type_of(mir_def_id).instantiate_identity();
985            match *ty.kind() {
986                ty::Closure(_, args) => args.as_closure().sig().bound_vars(),
987                ty::CoroutineClosure(_, args) => {
988                    args.as_coroutine_closure().coroutine_closure_sig().bound_vars()
989                }
990                ty::Coroutine(_, _) | ty::Error(_) => return,
991                _ => unreachable!("unexpected type for closure: {ty}"),
992            }
993        }
994        _ => return,
995    };
996
997    for (idx, bound_var) in bound_vars.iter().enumerate() {
998        if let ty::BoundVariableKind::Region(kind) = bound_var {
999            let kind = ty::LateParamRegionKind::from_bound(ty::BoundVar::from_usize(idx), kind);
1000            let liberated_region = ty::Region::new_late_param(tcx, mir_def_id.to_def_id(), kind);
1001            f(liberated_region);
1002        }
1003    }
1004}