rustc_borrowck/
universal_regions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//! Code to extract the universally quantified regions declared on a
//! function and the relationships between them. For example:
//!
//! ```
//! fn foo<'a, 'b, 'c: 'b>() { }
//! ```
//!
//! here we would return a map assigning each of `{'a, 'b, 'c}`
//! to an index, as well as the `FreeRegionMap` which can compute
//! relationships between them.
//!
//! The code in this file doesn't *do anything* with those results; it
//! just returns them for other code to use.

#![allow(rustc::diagnostic_outside_of_impl)]
#![allow(rustc::untranslatable_diagnostic)]

use std::cell::Cell;
use std::iter;

use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::Diag;
use rustc_hir::BodyOwnerKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::lang_items::LangItem;
use rustc_index::IndexVec;
use rustc_infer::infer::NllRegionVariableOrigin;
use rustc_macros::extension;
use rustc_middle::ty::fold::{TypeFoldable, fold_regions};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{
    self, GenericArgs, GenericArgsRef, InlineConstArgs, InlineConstArgsParts, RegionVid, Ty,
    TyCtxt, TypeVisitableExt,
};
use rustc_middle::{bug, span_bug};
use rustc_span::ErrorGuaranteed;
use rustc_span::symbol::{kw, sym};
use tracing::{debug, instrument};

use crate::BorrowckInferCtxt;
use crate::renumber::RegionCtxt;

#[derive(Debug)]
pub(crate) struct UniversalRegions<'tcx> {
    indices: UniversalRegionIndices<'tcx>,

    /// The vid assigned to `'static`
    pub fr_static: RegionVid,

    /// A special region vid created to represent the current MIR fn
    /// body. It will outlive the entire CFG but it will not outlive
    /// any other universal regions.
    pub fr_fn_body: RegionVid,

    /// We create region variables such that they are ordered by their
    /// `RegionClassification`. The first block are globals, then
    /// externals, then locals. So, things from:
    /// - `FIRST_GLOBAL_INDEX..first_extern_index` are global,
    /// - `first_extern_index..first_local_index` are external,
    /// - `first_local_index..num_universals` are local.
    first_extern_index: usize,

    /// See `first_extern_index`.
    first_local_index: usize,

    /// The total number of universal region variables instantiated.
    num_universals: usize,

    /// The "defining" type for this function, with all universal
    /// regions instantiated. For a closure or coroutine, this is the
    /// closure type, but for a top-level function it's the `FnDef`.
    pub defining_ty: DefiningTy<'tcx>,

    /// The return type of this function, with all regions replaced by
    /// their universal `RegionVid` equivalents.
    ///
    /// N.B., associated types in this type have not been normalized,
    /// as the name suggests. =)
    pub unnormalized_output_ty: Ty<'tcx>,

    /// The fully liberated input types of this function, with all
    /// regions replaced by their universal `RegionVid` equivalents.
    ///
    /// N.B., associated types in these types have not been normalized,
    /// as the name suggests. =)
    pub unnormalized_input_tys: &'tcx [Ty<'tcx>],

    pub yield_ty: Option<Ty<'tcx>>,

    pub resume_ty: Option<Ty<'tcx>>,
}

/// The "defining type" for this MIR. The key feature of the "defining
/// type" is that it contains the information needed to derive all the
/// universal regions that are in scope as well as the types of the
/// inputs/output from the MIR. In general, early-bound universal
/// regions appear free in the defining type and late-bound regions
/// appear bound in the signature.
#[derive(Copy, Clone, Debug)]
pub(crate) enum DefiningTy<'tcx> {
    /// The MIR is a closure. The signature is found via
    /// `ClosureArgs::closure_sig_ty`.
    Closure(DefId, GenericArgsRef<'tcx>),

    /// The MIR is a coroutine. The signature is that coroutines take
    /// no parameters and return the result of
    /// `ClosureArgs::coroutine_return_ty`.
    Coroutine(DefId, GenericArgsRef<'tcx>),

    /// The MIR is a special kind of closure that returns coroutines.
    ///
    /// See the documentation on `CoroutineClosureSignature` for details
    /// on how to construct the callable signature of the coroutine from
    /// its args.
    CoroutineClosure(DefId, GenericArgsRef<'tcx>),

    /// The MIR is a fn item with the given `DefId` and args. The signature
    /// of the function can be bound then with the `fn_sig` query.
    FnDef(DefId, GenericArgsRef<'tcx>),

    /// The MIR represents some form of constant. The signature then
    /// is that it has no inputs and a single return value, which is
    /// the value of the constant.
    Const(DefId, GenericArgsRef<'tcx>),

    /// The MIR represents an inline const. The signature has no inputs and a
    /// single return value found via `InlineConstArgs::ty`.
    InlineConst(DefId, GenericArgsRef<'tcx>),
}

impl<'tcx> DefiningTy<'tcx> {
    /// Returns a list of all the upvar types for this MIR. If this is
    /// not a closure or coroutine, there are no upvars, and hence it
    /// will be an empty list. The order of types in this list will
    /// match up with the upvar order in the HIR, typesystem, and MIR.
    pub(crate) fn upvar_tys(self) -> &'tcx ty::List<Ty<'tcx>> {
        match self {
            DefiningTy::Closure(_, args) => args.as_closure().upvar_tys(),
            DefiningTy::CoroutineClosure(_, args) => args.as_coroutine_closure().upvar_tys(),
            DefiningTy::Coroutine(_, args) => args.as_coroutine().upvar_tys(),
            DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => {
                ty::List::empty()
            }
        }
    }

    /// Number of implicit inputs -- notably the "environment"
    /// parameter for closures -- that appear in MIR but not in the
    /// user's code.
    pub(crate) fn implicit_inputs(self) -> usize {
        match self {
            DefiningTy::Closure(..)
            | DefiningTy::CoroutineClosure(..)
            | DefiningTy::Coroutine(..) => 1,
            DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => 0,
        }
    }

    pub(crate) fn is_fn_def(&self) -> bool {
        matches!(*self, DefiningTy::FnDef(..))
    }

    pub(crate) fn is_const(&self) -> bool {
        matches!(*self, DefiningTy::Const(..) | DefiningTy::InlineConst(..))
    }

    pub(crate) fn def_id(&self) -> DefId {
        match *self {
            DefiningTy::Closure(def_id, ..)
            | DefiningTy::CoroutineClosure(def_id, ..)
            | DefiningTy::Coroutine(def_id, ..)
            | DefiningTy::FnDef(def_id, ..)
            | DefiningTy::Const(def_id, ..)
            | DefiningTy::InlineConst(def_id, ..) => def_id,
        }
    }
}

#[derive(Debug)]
struct UniversalRegionIndices<'tcx> {
    /// For those regions that may appear in the parameter environment
    /// ('static and early-bound regions), we maintain a map from the
    /// `ty::Region` to the internal `RegionVid` we are using. This is
    /// used because trait matching and type-checking will feed us
    /// region constraints that reference those regions and we need to
    /// be able to map them to our internal `RegionVid`. This is
    /// basically equivalent to an `GenericArgs`, except that it also
    /// contains an entry for `ReStatic` -- it might be nice to just
    /// use an args, and then handle `ReStatic` another way.
    indices: FxIndexMap<ty::Region<'tcx>, RegionVid>,

    /// The vid assigned to `'static`. Used only for diagnostics.
    pub fr_static: RegionVid,

    /// Whether we've encountered an error region. If we have, cancel all
    /// outlives errors, as they are likely bogus.
    pub tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
}

#[derive(Debug, PartialEq)]
pub(crate) enum RegionClassification {
    /// A **global** region is one that can be named from
    /// anywhere. There is only one, `'static`.
    Global,

    /// An **external** region is only relevant for
    /// closures, coroutines, and inline consts. In that
    /// case, it refers to regions that are free in the type
    /// -- basically, something bound in the surrounding context.
    ///
    /// Consider this example:
    ///
    /// ```ignore (pseudo-rust)
    /// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) {
    ///   let closure = for<'x> |x: &'x u32| { .. };
    ///    //           ^^^^^^^ pretend this were legal syntax
    ///    //                   for declaring a late-bound region in
    ///    //                   a closure signature
    /// }
    /// ```
    ///
    /// Here, the lifetimes `'a` and `'b` would be **external** to the
    /// closure.
    ///
    /// If we are not analyzing a closure/coroutine/inline-const,
    /// there are no external lifetimes.
    External,

    /// A **local** lifetime is one about which we know the full set
    /// of relevant constraints (that is, relationships to other named
    /// regions). For a closure, this includes any region bound in
    /// the closure's signature. For a fn item, this includes all
    /// regions other than global ones.
    ///
    /// Continuing with the example from `External`, if we were
    /// analyzing the closure, then `'x` would be local (and `'a` and
    /// `'b` are external). If we are analyzing the function item
    /// `foo`, then `'a` and `'b` are local (and `'x` is not in
    /// scope).
    Local,
}

const FIRST_GLOBAL_INDEX: usize = 0;

impl<'tcx> UniversalRegions<'tcx> {
    /// Creates a new and fully initialized `UniversalRegions` that
    /// contains indices for all the free regions found in the given
    /// MIR -- that is, all the regions that appear in the function's
    /// signature. This will also compute the relationships that are
    /// known between those regions.
    pub(crate) fn new(infcx: &BorrowckInferCtxt<'tcx>, mir_def: LocalDefId) -> Self {
        UniversalRegionsBuilder { infcx, mir_def }.build()
    }

    /// Given a reference to a closure type, extracts all the values
    /// from its free regions and returns a vector with them. This is
    /// used when the closure's creator checks that the
    /// `ClosureRegionRequirements` are met. The requirements from
    /// `ClosureRegionRequirements` are expressed in terms of
    /// `RegionVid` entries that map into the returned vector `V`: so
    /// if the `ClosureRegionRequirements` contains something like
    /// `'1: '2`, then the caller would impose the constraint that
    /// `V[1]: V[2]`.
    pub(crate) fn closure_mapping(
        tcx: TyCtxt<'tcx>,
        closure_args: GenericArgsRef<'tcx>,
        expected_num_vars: usize,
        closure_def_id: LocalDefId,
    ) -> IndexVec<RegionVid, ty::Region<'tcx>> {
        let mut region_mapping = IndexVec::with_capacity(expected_num_vars);
        region_mapping.push(tcx.lifetimes.re_static);
        tcx.for_each_free_region(&closure_args, |fr| {
            region_mapping.push(fr);
        });

        for_each_late_bound_region_in_recursive_scope(tcx, tcx.local_parent(closure_def_id), |r| {
            region_mapping.push(r);
        });

        assert_eq!(
            region_mapping.len(),
            expected_num_vars,
            "index vec had unexpected number of variables"
        );

        region_mapping
    }

    /// Returns `true` if `r` is a member of this set of universal regions.
    pub(crate) fn is_universal_region(&self, r: RegionVid) -> bool {
        (FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index())
    }

    /// Classifies `r` as a universal region, returning `None` if this
    /// is not a member of this set of universal regions.
    pub(crate) fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> {
        let index = r.index();
        if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) {
            Some(RegionClassification::Global)
        } else if (self.first_extern_index..self.first_local_index).contains(&index) {
            Some(RegionClassification::External)
        } else if (self.first_local_index..self.num_universals).contains(&index) {
            Some(RegionClassification::Local)
        } else {
            None
        }
    }

    /// Returns an iterator over all the RegionVids corresponding to
    /// universally quantified free regions.
    pub(crate) fn universal_regions_iter(&self) -> impl Iterator<Item = RegionVid> {
        (FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::from_usize)
    }

    /// Returns `true` if `r` is classified as a local region.
    pub(crate) fn is_local_free_region(&self, r: RegionVid) -> bool {
        self.region_classification(r) == Some(RegionClassification::Local)
    }

    /// Returns the number of universal regions created in any category.
    pub(crate) fn len(&self) -> usize {
        self.num_universals
    }

    /// Returns the number of global plus external universal regions.
    /// For closures, these are the regions that appear free in the
    /// closure type (versus those bound in the closure
    /// signature). They are therefore the regions between which the
    /// closure may impose constraints that its creator must verify.
    pub(crate) fn num_global_and_external_regions(&self) -> usize {
        self.first_local_index
    }

    /// Gets an iterator over all the early-bound regions that have names.
    pub(crate) fn named_universal_regions_iter<'s>(
        &'s self,
    ) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> + 's {
        self.indices.indices.iter().map(|(&r, &v)| (r, v))
    }

    /// See `UniversalRegionIndices::to_region_vid`.
    pub(crate) fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
        self.indices.to_region_vid(r)
    }

    /// As part of the NLL unit tests, you can annotate a function with
    /// `#[rustc_regions]`, and we will emit information about the region
    /// inference context and -- in particular -- the external constraints
    /// that this region imposes on others. The methods in this file
    /// handle the part about dumping the inference context internal
    /// state.
    pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diag<'_, ()>) {
        match self.defining_ty {
            DefiningTy::Closure(def_id, args) => {
                let v = with_no_trimmed_paths!(
                    args[tcx.generics_of(def_id).parent_count..]
                        .iter()
                        .map(|arg| arg.to_string())
                        .collect::<Vec<_>>()
                );
                err.note(format!(
                    "defining type: {} with closure args [\n    {},\n]",
                    tcx.def_path_str_with_args(def_id, args),
                    v.join(",\n    "),
                ));

                // FIXME: It'd be nice to print the late-bound regions
                // here, but unfortunately these wind up stored into
                // tests, and the resulting print-outs include def-ids
                // and other things that are not stable across tests!
                // So we just include the region-vid. Annoying.
                for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
                    err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
                });
            }
            DefiningTy::CoroutineClosure(..) => {
                todo!()
            }
            DefiningTy::Coroutine(def_id, args) => {
                let v = with_no_trimmed_paths!(
                    args[tcx.generics_of(def_id).parent_count..]
                        .iter()
                        .map(|arg| arg.to_string())
                        .collect::<Vec<_>>()
                );
                err.note(format!(
                    "defining type: {} with coroutine args [\n    {},\n]",
                    tcx.def_path_str_with_args(def_id, args),
                    v.join(",\n    "),
                ));

                // FIXME: As above, we'd like to print out the region
                // `r` but doing so is not stable across architectures
                // and so forth.
                for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
                    err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
                });
            }
            DefiningTy::FnDef(def_id, args) => {
                err.note(format!("defining type: {}", tcx.def_path_str_with_args(def_id, args),));
            }
            DefiningTy::Const(def_id, args) => {
                err.note(format!(
                    "defining constant type: {}",
                    tcx.def_path_str_with_args(def_id, args),
                ));
            }
            DefiningTy::InlineConst(def_id, args) => {
                err.note(format!(
                    "defining inline constant type: {}",
                    tcx.def_path_str_with_args(def_id, args),
                ));
            }
        }
    }

    pub(crate) fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
        self.indices.tainted_by_errors.get()
    }
}

struct UniversalRegionsBuilder<'infcx, 'tcx> {
    infcx: &'infcx BorrowckInferCtxt<'tcx>,
    mir_def: LocalDefId,
}

const FR: NllRegionVariableOrigin = NllRegionVariableOrigin::FreeRegion;

impl<'cx, 'tcx> UniversalRegionsBuilder<'cx, 'tcx> {
    fn build(self) -> UniversalRegions<'tcx> {
        debug!("build(mir_def={:?})", self.mir_def);

        let param_env = self.infcx.param_env;
        debug!("build: param_env={:?}", param_env);

        assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars());

        // Create the "global" region that is always free in all contexts: 'static.
        let fr_static =
            self.infcx.next_nll_region_var(FR, || RegionCtxt::Free(kw::Static)).as_var();

        // We've now added all the global regions. The next ones we
        // add will be external.
        let first_extern_index = self.infcx.num_region_vars();

        let defining_ty = self.defining_ty();
        debug!("build: defining_ty={:?}", defining_ty);

        let mut indices = self.compute_indices(fr_static, defining_ty);
        debug!("build: indices={:?}", indices);

        let typeck_root_def_id = self.infcx.tcx.typeck_root_def_id(self.mir_def.to_def_id());

        // If this is a 'root' body (not a closure/coroutine/inline const), then
        // there are no extern regions, so the local regions start at the same
        // position as the (empty) sub-list of extern regions
        let first_local_index = if self.mir_def.to_def_id() == typeck_root_def_id {
            first_extern_index
        } else {
            // If this is a closure, coroutine, or inline-const, then the late-bound regions from the enclosing
            // function/closures are actually external regions to us. For example, here, 'a is not local
            // to the closure c (although it is local to the fn foo):
            // fn foo<'a>() {
            //     let c = || { let x: &'a u32 = ...; }
            // }
            for_each_late_bound_region_in_recursive_scope(
                self.infcx.tcx,
                self.infcx.tcx.local_parent(self.mir_def),
                |r| {
                    debug!(?r);
                    if !indices.indices.contains_key(&r) {
                        let region_vid = {
                            let name = r.get_name_or_anon();
                            self.infcx.next_nll_region_var(FR, || RegionCtxt::LateBound(name))
                        };

                        debug!(?region_vid);
                        indices.insert_late_bound_region(r, region_vid.as_var());
                    }
                },
            );

            // Any regions created during the execution of `defining_ty` or during the above
            // late-bound region replacement are all considered 'extern' regions
            self.infcx.num_region_vars()
        };

        // "Liberate" the late-bound regions. These correspond to
        // "local" free regions.
        let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty);

        let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars(
            FR,
            self.mir_def,
            bound_inputs_and_output,
            &mut indices,
        );
        // Converse of above, if this is a function/closure then the late-bound regions declared on its
        // signature are local.
        for_each_late_bound_region_in_item(self.infcx.tcx, self.mir_def, |r| {
            debug!(?r);
            if !indices.indices.contains_key(&r) {
                let region_vid = {
                    let name = r.get_name_or_anon();
                    self.infcx.next_nll_region_var(FR, || RegionCtxt::LateBound(name))
                };

                debug!(?region_vid);
                indices.insert_late_bound_region(r, region_vid.as_var());
            }
        });

        let (unnormalized_output_ty, mut unnormalized_input_tys) =
            inputs_and_output.split_last().unwrap();

        // C-variadic fns also have a `VaList` input that's not listed in the signature
        // (as it's created inside the body itself, not passed in from outside).
        if let DefiningTy::FnDef(def_id, _) = defining_ty {
            if self.infcx.tcx.fn_sig(def_id).skip_binder().c_variadic() {
                let va_list_did = self.infcx.tcx.require_lang_item(
                    LangItem::VaList,
                    Some(self.infcx.tcx.def_span(self.mir_def)),
                );

                let reg_vid = self
                    .infcx
                    .next_nll_region_var(FR, || RegionCtxt::Free(sym::c_dash_variadic))
                    .as_var();

                let region = ty::Region::new_var(self.infcx.tcx, reg_vid);
                let va_list_ty = self
                    .infcx
                    .tcx
                    .type_of(va_list_did)
                    .instantiate(self.infcx.tcx, &[region.into()]);

                unnormalized_input_tys = self.infcx.tcx.mk_type_list_from_iter(
                    unnormalized_input_tys.iter().copied().chain(iter::once(va_list_ty)),
                );
            }
        }

        let fr_fn_body =
            self.infcx.next_nll_region_var(FR, || RegionCtxt::Free(sym::fn_body)).as_var();

        let num_universals = self.infcx.num_region_vars();

        debug!("build: global regions = {}..{}", FIRST_GLOBAL_INDEX, first_extern_index);
        debug!("build: extern regions = {}..{}", first_extern_index, first_local_index);
        debug!("build: local regions  = {}..{}", first_local_index, num_universals);

        let (resume_ty, yield_ty) = match defining_ty {
            DefiningTy::Coroutine(_, args) => {
                let tys = args.as_coroutine();
                (Some(tys.resume_ty()), Some(tys.yield_ty()))
            }
            _ => (None, None),
        };

        UniversalRegions {
            indices,
            fr_static,
            fr_fn_body,
            first_extern_index,
            first_local_index,
            num_universals,
            defining_ty,
            unnormalized_output_ty: *unnormalized_output_ty,
            unnormalized_input_tys,
            yield_ty,
            resume_ty,
        }
    }

    /// Returns the "defining type" of the current MIR;
    /// see `DefiningTy` for details.
    fn defining_ty(&self) -> DefiningTy<'tcx> {
        let tcx = self.infcx.tcx;
        let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());

        match tcx.hir().body_owner_kind(self.mir_def) {
            BodyOwnerKind::Closure | BodyOwnerKind::Fn => {
                let defining_ty = tcx.type_of(self.mir_def).instantiate_identity();

                debug!("defining_ty (pre-replacement): {:?}", defining_ty);

                let defining_ty =
                    self.infcx.replace_free_regions_with_nll_infer_vars(FR, defining_ty);

                match *defining_ty.kind() {
                    ty::Closure(def_id, args) => DefiningTy::Closure(def_id, args),
                    ty::Coroutine(def_id, args) => DefiningTy::Coroutine(def_id, args),
                    ty::CoroutineClosure(def_id, args) => {
                        DefiningTy::CoroutineClosure(def_id, args)
                    }
                    ty::FnDef(def_id, args) => DefiningTy::FnDef(def_id, args),
                    _ => span_bug!(
                        tcx.def_span(self.mir_def),
                        "expected defining type for `{:?}`: `{:?}`",
                        self.mir_def,
                        defining_ty
                    ),
                }
            }

            BodyOwnerKind::Const { .. } | BodyOwnerKind::Static(..) => {
                let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id);
                if self.mir_def.to_def_id() == typeck_root_def_id {
                    let args =
                        self.infcx.replace_free_regions_with_nll_infer_vars(FR, identity_args);
                    DefiningTy::Const(self.mir_def.to_def_id(), args)
                } else {
                    // FIXME this line creates a dependency between borrowck and typeck.
                    //
                    // This is required for `AscribeUserType` canonical query, which will call
                    // `type_of(inline_const_def_id)`. That `type_of` would inject erased lifetimes
                    // into borrowck, which is ICE #78174.
                    //
                    // As a workaround, inline consts have an additional generic param (`ty`
                    // below), so that `type_of(inline_const_def_id).args(args)` uses the
                    // proper type with NLL infer vars.
                    let ty = tcx
                        .typeck(self.mir_def)
                        .node_type(tcx.local_def_id_to_hir_id(self.mir_def));
                    let args = InlineConstArgs::new(tcx, InlineConstArgsParts {
                        parent_args: identity_args,
                        ty,
                    })
                    .args;
                    let args = self.infcx.replace_free_regions_with_nll_infer_vars(FR, args);
                    DefiningTy::InlineConst(self.mir_def.to_def_id(), args)
                }
            }
        }
    }

    /// Builds a hashmap that maps from the universal regions that are
    /// in scope (as a `ty::Region<'tcx>`) to their indices (as a
    /// `RegionVid`). The map returned by this function contains only
    /// the early-bound regions.
    fn compute_indices(
        &self,
        fr_static: RegionVid,
        defining_ty: DefiningTy<'tcx>,
    ) -> UniversalRegionIndices<'tcx> {
        let tcx = self.infcx.tcx;
        let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());
        let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id);
        let fr_args = match defining_ty {
            DefiningTy::Closure(_, args)
            | DefiningTy::CoroutineClosure(_, args)
            | DefiningTy::Coroutine(_, args)
            | DefiningTy::InlineConst(_, args) => {
                // In the case of closures, we rely on the fact that
                // the first N elements in the ClosureArgs are
                // inherited from the `typeck_root_def_id`.
                // Therefore, when we zip together (below) with
                // `identity_args`, we will get only those regions
                // that correspond to early-bound regions declared on
                // the `typeck_root_def_id`.
                assert!(args.len() >= identity_args.len());
                assert_eq!(args.regions().count(), identity_args.regions().count());
                args
            }

            DefiningTy::FnDef(_, args) | DefiningTy::Const(_, args) => args,
        };

        let global_mapping = iter::once((tcx.lifetimes.re_static, fr_static));
        let arg_mapping = iter::zip(identity_args.regions(), fr_args.regions().map(|r| r.as_var()));

        UniversalRegionIndices {
            indices: global_mapping.chain(arg_mapping).collect(),
            fr_static,
            tainted_by_errors: Cell::new(None),
        }
    }

    fn compute_inputs_and_output(
        &self,
        indices: &UniversalRegionIndices<'tcx>,
        defining_ty: DefiningTy<'tcx>,
    ) -> ty::Binder<'tcx, &'tcx ty::List<Ty<'tcx>>> {
        let tcx = self.infcx.tcx;

        let inputs_and_output = match defining_ty {
            DefiningTy::Closure(def_id, args) => {
                assert_eq!(self.mir_def.to_def_id(), def_id);
                let closure_sig = args.as_closure().sig();
                let inputs_and_output = closure_sig.inputs_and_output();
                let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
                    inputs_and_output.bound_vars().iter().chain(iter::once(
                        ty::BoundVariableKind::Region(ty::BoundRegionKind::ClosureEnv),
                    )),
                );
                let br = ty::BoundRegion {
                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                    kind: ty::BoundRegionKind::ClosureEnv,
                };
                let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
                let closure_ty = tcx.closure_env_ty(
                    Ty::new_closure(tcx, def_id, args),
                    args.as_closure().kind(),
                    env_region,
                );

                // The "inputs" of the closure in the
                // signature appear as a tuple. The MIR side
                // flattens this tuple.
                let (&output, tuplized_inputs) =
                    inputs_and_output.skip_binder().split_last().unwrap();
                assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs");
                let &ty::Tuple(inputs) = tuplized_inputs[0].kind() else {
                    bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]);
                };

                ty::Binder::bind_with_vars(
                    tcx.mk_type_list_from_iter(
                        iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
                    ),
                    bound_vars,
                )
            }

            DefiningTy::Coroutine(def_id, args) => {
                assert_eq!(self.mir_def.to_def_id(), def_id);
                let resume_ty = args.as_coroutine().resume_ty();
                let output = args.as_coroutine().return_ty();
                let coroutine_ty = Ty::new_coroutine(tcx, def_id, args);
                let inputs_and_output =
                    self.infcx.tcx.mk_type_list(&[coroutine_ty, resume_ty, output]);
                ty::Binder::dummy(inputs_and_output)
            }

            // Construct the signature of the CoroutineClosure for the purposes of borrowck.
            // This is pretty straightforward -- we:
            // 1. first grab the `coroutine_closure_sig`,
            // 2. compute the self type (`&`/`&mut`/no borrow),
            // 3. flatten the tupled_input_tys,
            // 4. construct the correct generator type to return with
            //    `CoroutineClosureSignature::to_coroutine_given_kind_and_upvars`.
            // Then we wrap it all up into a list of inputs and output.
            DefiningTy::CoroutineClosure(def_id, args) => {
                assert_eq!(self.mir_def.to_def_id(), def_id);
                let closure_sig = args.as_coroutine_closure().coroutine_closure_sig();
                let bound_vars =
                    tcx.mk_bound_variable_kinds_from_iter(closure_sig.bound_vars().iter().chain(
                        iter::once(ty::BoundVariableKind::Region(ty::BoundRegionKind::ClosureEnv)),
                    ));
                let br = ty::BoundRegion {
                    var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                    kind: ty::BoundRegionKind::ClosureEnv,
                };
                let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
                let closure_kind = args.as_coroutine_closure().kind();

                let closure_ty = tcx.closure_env_ty(
                    Ty::new_coroutine_closure(tcx, def_id, args),
                    closure_kind,
                    env_region,
                );

                let inputs = closure_sig.skip_binder().tupled_inputs_ty.tuple_fields();
                let output = closure_sig.skip_binder().to_coroutine_given_kind_and_upvars(
                    tcx,
                    args.as_coroutine_closure().parent_args(),
                    tcx.coroutine_for_closure(def_id),
                    closure_kind,
                    env_region,
                    args.as_coroutine_closure().tupled_upvars_ty(),
                    args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
                );

                ty::Binder::bind_with_vars(
                    tcx.mk_type_list_from_iter(
                        iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
                    ),
                    bound_vars,
                )
            }

            DefiningTy::FnDef(def_id, _) => {
                let sig = tcx.fn_sig(def_id).instantiate_identity();
                let sig = indices.fold_to_region_vids(tcx, sig);
                sig.inputs_and_output()
            }

            DefiningTy::Const(def_id, _) => {
                // For a constant body, there are no inputs, and one
                // "output" (the type of the constant).
                assert_eq!(self.mir_def.to_def_id(), def_id);
                let ty = tcx.type_of(self.mir_def).instantiate_identity();

                let ty = indices.fold_to_region_vids(tcx, ty);
                ty::Binder::dummy(tcx.mk_type_list(&[ty]))
            }

            DefiningTy::InlineConst(def_id, args) => {
                assert_eq!(self.mir_def.to_def_id(), def_id);
                let ty = args.as_inline_const().ty();
                ty::Binder::dummy(tcx.mk_type_list(&[ty]))
            }
        };

        // FIXME(#129952): We probably want a more principled approach here.
        if let Err(terr) = inputs_and_output.skip_binder().error_reported() {
            self.infcx.set_tainted_by_errors(terr);
        }

        inputs_and_output
    }
}

#[extension(trait InferCtxtExt<'tcx>)]
impl<'tcx> BorrowckInferCtxt<'tcx> {
    #[instrument(skip(self), level = "debug")]
    fn replace_free_regions_with_nll_infer_vars<T>(
        &self,
        origin: NllRegionVariableOrigin,
        value: T,
    ) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        fold_regions(self.infcx.tcx, value, |region, _depth| {
            let name = region.get_name_or_anon();
            debug!(?region, ?name);

            self.next_nll_region_var(origin, || RegionCtxt::Free(name))
        })
    }

    #[instrument(level = "debug", skip(self, indices))]
    fn replace_bound_regions_with_nll_infer_vars<T>(
        &self,
        origin: NllRegionVariableOrigin,
        all_outlive_scope: LocalDefId,
        value: ty::Binder<'tcx, T>,
        indices: &mut UniversalRegionIndices<'tcx>,
    ) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        let (value, _map) = self.tcx.instantiate_bound_regions(value, |br| {
            debug!(?br);
            let liberated_region =
                ty::Region::new_late_param(self.tcx, all_outlive_scope.to_def_id(), br.kind);
            let region_vid = {
                let name = match br.kind.get_name() {
                    Some(name) => name,
                    _ => sym::anon,
                };

                self.next_nll_region_var(origin, || RegionCtxt::Bound(name))
            };

            indices.insert_late_bound_region(liberated_region, region_vid.as_var());
            debug!(?liberated_region, ?region_vid);
            region_vid
        });
        value
    }
}

impl<'tcx> UniversalRegionIndices<'tcx> {
    /// Initially, the `UniversalRegionIndices` map contains only the
    /// early-bound regions in scope. Once that is all setup, we come
    /// in later and instantiate the late-bound regions, and then we
    /// insert the `ReLateParam` version of those into the map as
    /// well. These are used for error reporting.
    fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid) {
        debug!("insert_late_bound_region({:?}, {:?})", r, vid);
        self.indices.insert(r, vid);
    }

    /// Converts `r` into a local inference variable: `r` can either
    /// be a `ReVar` (i.e., already a reference to an inference
    /// variable) or it can be `'static` or some early-bound
    /// region. This is useful when taking the results from
    /// type-checking and trait-matching, which may sometimes
    /// reference those regions from the `ParamEnv`. It is also used
    /// during initialization. Relies on the `indices` map having been
    /// fully initialized.
    fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
        if let ty::ReVar(..) = *r {
            r.as_var()
        } else if let ty::ReError(guar) = *r {
            self.tainted_by_errors.set(Some(guar));
            // We use the `'static` `RegionVid` because `ReError` doesn't actually exist in the
            // `UniversalRegionIndices`. This is fine because 1) it is a fallback only used if
            // errors are being emitted and 2) it leaves the happy path unaffected.
            self.fr_static
        } else {
            *self
                .indices
                .get(&r)
                .unwrap_or_else(|| bug!("cannot convert `{:?}` to a region vid", r))
        }
    }

    /// Replaces all free regions in `value` with region vids, as
    /// returned by `to_region_vid`.
    fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        fold_regions(tcx, value, |region, _| ty::Region::new_var(tcx, self.to_region_vid(region)))
    }
}

/// Iterates over the late-bound regions defined on `mir_def_id` and all of its
/// parents, up to the typeck root, and invokes `f` with the liberated form
/// of each one.
fn for_each_late_bound_region_in_recursive_scope<'tcx>(
    tcx: TyCtxt<'tcx>,
    mut mir_def_id: LocalDefId,
    mut f: impl FnMut(ty::Region<'tcx>),
) {
    let typeck_root_def_id = tcx.typeck_root_def_id(mir_def_id.to_def_id());

    // Walk up the tree, collecting late-bound regions until we hit the typeck root
    loop {
        for_each_late_bound_region_in_item(tcx, mir_def_id, &mut f);

        if mir_def_id.to_def_id() == typeck_root_def_id {
            break;
        } else {
            mir_def_id = tcx.local_parent(mir_def_id);
        }
    }
}

/// Iterates over the late-bound regions defined on `mir_def_id` and all of its
/// parents, up to the typeck root, and invokes `f` with the liberated form
/// of each one.
fn for_each_late_bound_region_in_item<'tcx>(
    tcx: TyCtxt<'tcx>,
    mir_def_id: LocalDefId,
    mut f: impl FnMut(ty::Region<'tcx>),
) {
    if !tcx.def_kind(mir_def_id).is_fn_like() {
        return;
    }

    for bound_var in tcx.late_bound_vars(tcx.local_def_id_to_hir_id(mir_def_id)) {
        let ty::BoundVariableKind::Region(bound_region) = bound_var else {
            continue;
        };
        let liberated_region =
            ty::Region::new_late_param(tcx, mir_def_id.to_def_id(), bound_region);
        f(liberated_region);
    }
}