Primitive Type char
Expand description
A character type.
The char
type represents a single character. More specifically, since
‘character’ isn’t a well-defined concept in Unicode, char
is a ‘Unicode
scalar value’.
This documentation describes a number of methods and trait implementations on the
char
type. For technical reasons, there is additional, separate
documentation in the std::char
module as well.
§Validity and Layout
A char
is a ‘Unicode scalar value’, which is any ‘Unicode code point’
other than a surrogate code point. This has a fixed numerical definition:
code points are in the range 0 to 0x10FFFF, inclusive.
Surrogate code points, used by UTF-16, are in the range 0xD800 to 0xDFFF.
No char
may be constructed, whether as a literal or at runtime, that is not a
Unicode scalar value. Violating this rule causes undefined behavior.
Unicode scalar values are also the exact set of values that may be encoded in UTF-8. Because
char
values are Unicode scalar values and functions may assume incoming str
values are
valid UTF-8, it is safe to store any char
in a str
or read
any character from a str
as a char
.
The gap in valid char
values is understood by the compiler, so in the
below example the two ranges are understood to cover the whole range of
possible char
values and there is no error for a non-exhaustive match.
All Unicode scalar values are valid char
values, but not all of them represent a real
character. Many Unicode scalar values are not currently assigned to a character, but may be in
the future (“reserved”); some will never be a character (“noncharacters”); and some may be given
different meanings by different users (“private use”).
char
is guaranteed to have the same size, alignment, and function call ABI as u32
on all
platforms.
§Representation
char
is always four bytes in size. This is a different representation than
a given character would have as part of a String
. For example:
let v = vec!['h', 'e', 'l', 'l', 'o'];
// five elements times four bytes for each element
assert_eq!(20, v.len() * std::mem::size_of::<char>());
let s = String::from("hello");
// five elements times one byte per element
assert_eq!(5, s.len() * std::mem::size_of::<u8>());
As always, remember that a human intuition for ‘character’ might not map to Unicode’s definitions. For example, despite looking similar, the ‘é’ character is one Unicode code point while ‘é’ is two Unicode code points:
let mut chars = "é".chars();
// U+00e9: 'latin small letter e with acute'
assert_eq!(Some('\u{00e9}'), chars.next());
assert_eq!(None, chars.next());
let mut chars = "é".chars();
// U+0065: 'latin small letter e'
assert_eq!(Some('\u{0065}'), chars.next());
// U+0301: 'combining acute accent'
assert_eq!(Some('\u{0301}'), chars.next());
assert_eq!(None, chars.next());
This means that the contents of the first string above will fit into a
char
while the contents of the second string will not. Trying to create
a char
literal with the contents of the second string gives an error:
error: character literal may only contain one codepoint: 'é'
let c = 'é';
^^^
Another implication of the 4-byte fixed size of a char
is that
per-char
processing can end up using a lot more memory:
Implementations§
Source§impl char
impl char
1.83.0 · Sourcepub const MIN: char = '\0'
pub const MIN: char = '\0'
The lowest valid code point a char
can have, '\0'
.
Unlike integer types, char
actually has a gap in the middle,
meaning that the range of possible char
s is smaller than you
might expect. Ranges of char
will automatically hop this gap
for you:
let dist = u32::from(char::MAX) - u32::from(char::MIN);
let size = (char::MIN..=char::MAX).count() as u32;
assert!(size < dist);
Despite this gap, the MIN
and MAX
values can be used as bounds for
all char
values.
§Examples
1.52.0 · Sourcepub const MAX: char = '\u{10ffff}'
pub const MAX: char = '\u{10ffff}'
The highest valid code point a char
can have, '\u{10FFFF}'
.
Unlike integer types, char
actually has a gap in the middle,
meaning that the range of possible char
s is smaller than you
might expect. Ranges of char
will automatically hop this gap
for you:
let dist = u32::from(char::MAX) - u32::from(char::MIN);
let size = (char::MIN..=char::MAX).count() as u32;
assert!(size < dist);
Despite this gap, the MIN
and MAX
values can be used as bounds for
all char
values.
§Examples
1.52.0 · Sourcepub const REPLACEMENT_CHARACTER: char = '�'
pub const REPLACEMENT_CHARACTER: char = '�'
U+FFFD REPLACEMENT CHARACTER
(�) is used in Unicode to represent a
decoding error.
It can occur, for example, when giving ill-formed UTF-8 bytes to
String::from_utf8_lossy
.
1.52.0 · Sourcepub const UNICODE_VERSION: (u8, u8, u8) = crate::unicode::UNICODE_VERSION
pub const UNICODE_VERSION: (u8, u8, u8) = crate::unicode::UNICODE_VERSION
The version of Unicode that the Unicode parts of
char
and str
methods are based on.
New versions of Unicode are released regularly and subsequently all methods
in the standard library depending on Unicode are updated. Therefore the
behavior of some char
and str
methods and the value of this constant
changes over time. This is not considered to be a breaking change.
The version numbering scheme is explained in Unicode 11.0 or later, Section 3.1 Versions of the Unicode Standard.
1.52.0 · Sourcepub fn decode_utf16<I>(iter: I) -> DecodeUtf16<<I as IntoIterator>::IntoIter> ⓘwhere
I: IntoIterator<Item = u16>,
pub fn decode_utf16<I>(iter: I) -> DecodeUtf16<<I as IntoIterator>::IntoIter> ⓘwhere
I: IntoIterator<Item = u16>,
Creates an iterator over the UTF-16 encoded code points in iter
,
returning unpaired surrogates as Err
s.
§Examples
Basic usage:
// 𝄞mus<invalid>ic<invalid>
let v = [
0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
];
assert_eq!(
char::decode_utf16(v)
.map(|r| r.map_err(|e| e.unpaired_surrogate()))
.collect::<Vec<_>>(),
vec![
Ok('𝄞'),
Ok('m'), Ok('u'), Ok('s'),
Err(0xDD1E),
Ok('i'), Ok('c'),
Err(0xD834)
]
);
A lossy decoder can be obtained by replacing Err
results with the replacement character:
1.52.0 (const: 1.67.0) · Sourcepub const fn from_u32(i: u32) -> Option<char>
pub const fn from_u32(i: u32) -> Option<char>
Converts a u32
to a char
.
Note that all char
s are valid u32
s, and can be cast to one with
as
:
However, the reverse is not true: not all valid u32
s are valid
char
s. from_u32()
will return None
if the input is not a valid value
for a char
.
For an unsafe version of this function which ignores these checks, see
from_u32_unchecked
.
§Examples
Basic usage:
Returning None
when the input is not a valid char
:
1.52.0 (const: 1.81.0) · Sourcepub const unsafe fn from_u32_unchecked(i: u32) -> char
pub const unsafe fn from_u32_unchecked(i: u32) -> char
Converts a u32
to a char
, ignoring validity.
Note that all char
s are valid u32
s, and can be cast to one with
as
:
However, the reverse is not true: not all valid u32
s are valid
char
s. from_u32_unchecked()
will ignore this, and blindly cast to
char
, possibly creating an invalid one.
§Safety
This function is unsafe, as it may construct invalid char
values.
For a safe version of this function, see the from_u32
function.
§Examples
Basic usage:
1.52.0 (const: 1.67.0) · Sourcepub const fn from_digit(num: u32, radix: u32) -> Option<char>
pub const fn from_digit(num: u32, radix: u32) -> Option<char>
Converts a digit in the given radix to a char
.
A ‘radix’ here is sometimes also called a ‘base’. A radix of two indicates a binary number, a radix of ten, decimal, and a radix of sixteen, hexadecimal, to give some common values. Arbitrary radices are supported.
from_digit()
will return None
if the input is not a digit in
the given radix.
§Panics
Panics if given a radix larger than 36.
§Examples
Basic usage:
let c = char::from_digit(4, 10);
assert_eq!(Some('4'), c);
// Decimal 11 is a single digit in base 16
let c = char::from_digit(11, 16);
assert_eq!(Some('b'), c);
Returning None
when the input is not a digit:
Passing a large radix, causing a panic:
1.0.0 (const: unstable) · Sourcepub fn is_digit(self, radix: u32) -> bool
pub fn is_digit(self, radix: u32) -> bool
Checks if a char
is a digit in the given radix.
A ‘radix’ here is sometimes also called a ‘base’. A radix of two indicates a binary number, a radix of ten, decimal, and a radix of sixteen, hexadecimal, to give some common values. Arbitrary radices are supported.
Compared to is_numeric()
, this function only recognizes the characters
0-9
, a-z
and A-Z
.
‘Digit’ is defined to be only the following characters:
0-9
a-z
A-Z
For a more comprehensive understanding of ‘digit’, see is_numeric()
.
§Panics
Panics if given a radix smaller than 2 or larger than 36.
§Examples
Basic usage:
Passing a large radix, causing a panic:
Passing a small radix, causing a panic:
1.0.0 (const: 1.67.0) · Sourcepub const fn to_digit(self, radix: u32) -> Option<u32>
pub const fn to_digit(self, radix: u32) -> Option<u32>
Converts a char
to a digit in the given radix.
A ‘radix’ here is sometimes also called a ‘base’. A radix of two indicates a binary number, a radix of ten, decimal, and a radix of sixteen, hexadecimal, to give some common values. Arbitrary radices are supported.
‘Digit’ is defined to be only the following characters:
0-9
a-z
A-Z
§Errors
Returns None
if the char
does not refer to a digit in the given radix.
§Panics
Panics if given a radix smaller than 2 or larger than 36.
§Examples
Basic usage:
Passing a non-digit results in failure:
Passing a large radix, causing a panic:
Passing a small radix, causing a panic:
1.0.0 · Sourcepub fn escape_unicode(self) -> EscapeUnicode ⓘ
pub fn escape_unicode(self) -> EscapeUnicode ⓘ
1.20.0 · Sourcepub fn escape_debug(self) -> EscapeDebug ⓘ
pub fn escape_debug(self) -> EscapeDebug ⓘ
1.0.0 · Sourcepub fn escape_default(self) -> EscapeDefault ⓘ
pub fn escape_default(self) -> EscapeDefault ⓘ
Returns an iterator that yields the literal escape code of a character
as char
s.
The default is chosen with a bias toward producing literals that are legal in a variety of languages, including C++11 and similar C-family languages. The exact rules are:
- Tab is escaped as
\t
. - Carriage return is escaped as
\r
. - Line feed is escaped as
\n
. - Single quote is escaped as
\'
. - Double quote is escaped as
\"
. - Backslash is escaped as
\\
. - Any character in the ‘printable ASCII’ range
0x20
..0x7e
inclusive is not escaped. - All other characters are given hexadecimal Unicode escapes; see
escape_unicode
.
§Examples
As an iterator:
Using println!
directly:
Both are equivalent to:
Using to_string
:
1.0.0 (const: 1.52.0) · Sourcepub const fn len_utf8(self) -> usize
pub const fn len_utf8(self) -> usize
Returns the number of bytes this char
would need if encoded in UTF-8.
That number of bytes is always between 1 and 4, inclusive.
§Examples
Basic usage:
let len = 'A'.len_utf8();
assert_eq!(len, 1);
let len = 'ß'.len_utf8();
assert_eq!(len, 2);
let len = 'ℝ'.len_utf8();
assert_eq!(len, 3);
let len = '💣'.len_utf8();
assert_eq!(len, 4);
The &str
type guarantees that its contents are UTF-8, and so we can compare the length it
would take if each code point was represented as a char
vs in the &str
itself:
// as chars
let eastern = '東';
let capital = '京';
// both can be represented as three bytes
assert_eq!(3, eastern.len_utf8());
assert_eq!(3, capital.len_utf8());
// as a &str, these two are encoded in UTF-8
let tokyo = "東京";
let len = eastern.len_utf8() + capital.len_utf8();
// we can see that they take six bytes total...
assert_eq!(6, tokyo.len());
// ... just like the &str
assert_eq!(len, tokyo.len());
1.0.0 (const: 1.52.0) · Sourcepub const fn len_utf16(self) -> usize
pub const fn len_utf16(self) -> usize
Returns the number of 16-bit code units this char
would need if
encoded in UTF-16.
That number of code units is always either 1 or 2, for unicode scalar values in the basic multilingual plane or supplementary planes respectively.
See the documentation for len_utf8()
for more explanation of this
concept. This function is a mirror, but for UTF-16 instead of UTF-8.
§Examples
Basic usage:
1.15.0 (const: 1.83.0) · Sourcepub const fn encode_utf8(self, dst: &mut [u8]) -> &mut str
pub const fn encode_utf8(self, dst: &mut [u8]) -> &mut str
Encodes this character as UTF-8 into the provided byte buffer, and then returns the subslice of the buffer that contains the encoded character.
§Panics
Panics if the buffer is not large enough.
A buffer of length four is large enough to encode any char
.
§Examples
In both of these examples, ‘ß’ takes two bytes to encode.
let mut b = [0; 2];
let result = 'ß'.encode_utf8(&mut b);
assert_eq!(result, "ß");
assert_eq!(result.len(), 2);
A buffer that’s too small:
1.15.0 (const: 1.84.0) · Sourcepub const fn encode_utf16(self, dst: &mut [u16]) -> &mut [u16]
pub const fn encode_utf16(self, dst: &mut [u16]) -> &mut [u16]
Encodes this character as UTF-16 into the provided u16
buffer,
and then returns the subslice of the buffer that contains the encoded character.
§Panics
Panics if the buffer is not large enough.
A buffer of length 2 is large enough to encode any char
.
§Examples
In both of these examples, ‘𝕊’ takes two u16
s to encode.
A buffer that’s too small:
1.0.0 · Sourcepub fn is_alphabetic(self) -> bool
pub fn is_alphabetic(self) -> bool
Returns true
if this char
has the Alphabetic
property.
Alphabetic
is described in Chapter 4 (Character Properties) of the Unicode Standard and
specified in the Unicode Character Database DerivedCoreProperties.txt
.
§Examples
Basic usage:
1.0.0 (const: 1.84.0) · Sourcepub const fn is_lowercase(self) -> bool
pub const fn is_lowercase(self) -> bool
Returns true
if this char
has the Lowercase
property.
Lowercase
is described in Chapter 4 (Character Properties) of the Unicode Standard and
specified in the Unicode Character Database DerivedCoreProperties.txt
.
§Examples
Basic usage:
assert!('a'.is_lowercase());
assert!('δ'.is_lowercase());
assert!(!'A'.is_lowercase());
assert!(!'Δ'.is_lowercase());
// The various Chinese scripts and punctuation do not have case, and so:
assert!(!'中'.is_lowercase());
assert!(!' '.is_lowercase());
In a const context:
1.0.0 (const: 1.84.0) · Sourcepub const fn is_uppercase(self) -> bool
pub const fn is_uppercase(self) -> bool
Returns true
if this char
has the Uppercase
property.
Uppercase
is described in Chapter 4 (Character Properties) of the Unicode Standard and
specified in the Unicode Character Database DerivedCoreProperties.txt
.
§Examples
Basic usage:
assert!(!'a'.is_uppercase());
assert!(!'δ'.is_uppercase());
assert!('A'.is_uppercase());
assert!('Δ'.is_uppercase());
// The various Chinese scripts and punctuation do not have case, and so:
assert!(!'中'.is_uppercase());
assert!(!' '.is_uppercase());
In a const context:
1.0.0 (const: unstable) · Sourcepub fn is_whitespace(self) -> bool
pub fn is_whitespace(self) -> bool
Returns true
if this char
has the White_Space
property.
White_Space
is specified in the Unicode Character Database PropList.txt
.
§Examples
Basic usage:
1.0.0 · Sourcepub fn is_alphanumeric(self) -> bool
pub fn is_alphanumeric(self) -> bool
1.0.0 · Sourcepub fn is_control(self) -> bool
pub fn is_control(self) -> bool
Returns true
if this char
has the general category for control codes.
Control codes (code points with the general category of Cc
) are described in Chapter 4
(Character Properties) of the Unicode Standard and specified in the Unicode Character
Database UnicodeData.txt
.
§Examples
Basic usage:
1.0.0 · Sourcepub fn is_numeric(self) -> bool
pub fn is_numeric(self) -> bool
Returns true
if this char
has one of the general categories for numbers.
The general categories for numbers (Nd
for decimal digits, Nl
for letter-like numeric
characters, and No
for other numeric characters) are specified in the Unicode Character
Database UnicodeData.txt
.
This method doesn’t cover everything that could be considered a number, e.g. ideographic numbers like ‘三’. If you want everything including characters with overlapping purposes then you might want to use a unicode or language-processing library that exposes the appropriate character properties instead of looking at the unicode categories.
If you want to parse ASCII decimal digits (0-9) or ASCII base-N, use
is_ascii_digit
or is_digit
instead.
§Examples
Basic usage:
1.0.0 · Sourcepub fn to_lowercase(self) -> ToLowercase ⓘ
pub fn to_lowercase(self) -> ToLowercase ⓘ
Returns an iterator that yields the lowercase mapping of this char
as one or more
char
s.
If this char
does not have a lowercase mapping, the iterator yields the same char
.
If this char
has a one-to-one lowercase mapping given by the Unicode Character
Database UnicodeData.txt
, the iterator yields that char
.
If this char
requires special considerations (e.g. multiple char
s) the iterator yields
the char
(s) given by SpecialCasing.txt
.
This operation performs an unconditional mapping without tailoring. That is, the conversion is independent of context and language.
In the Unicode Standard, Chapter 4 (Character Properties) discusses case mapping in general and Chapter 3 (Conformance) discusses the default algorithm for case conversion.
§Examples
As an iterator:
Using println!
directly:
Both are equivalent to:
Using to_string
:
1.0.0 · Sourcepub fn to_uppercase(self) -> ToUppercase ⓘ
pub fn to_uppercase(self) -> ToUppercase ⓘ
Returns an iterator that yields the uppercase mapping of this char
as one or more
char
s.
If this char
does not have an uppercase mapping, the iterator yields the same char
.
If this char
has a one-to-one uppercase mapping given by the Unicode Character
Database UnicodeData.txt
, the iterator yields that char
.
If this char
requires special considerations (e.g. multiple char
s) the iterator yields
the char
(s) given by SpecialCasing.txt
.
This operation performs an unconditional mapping without tailoring. That is, the conversion is independent of context and language.
In the Unicode Standard, Chapter 4 (Character Properties) discusses case mapping in general and Chapter 3 (Conformance) discusses the default algorithm for case conversion.
§Examples
As an iterator:
Using println!
directly:
Both are equivalent to:
Using to_string
:
assert_eq!('c'.to_uppercase().to_string(), "C");
// Sometimes the result is more than one character:
assert_eq!('ß'.to_uppercase().to_string(), "SS");
// Characters that do not have both uppercase and lowercase
// convert into themselves.
assert_eq!('山'.to_uppercase().to_string(), "山");
§Note on locale
In Turkish, the equivalent of ‘i’ in Latin has five forms instead of two:
- ‘Dotless’: I / ı, sometimes written ï
- ‘Dotted’: İ / i
Note that the lowercase dotted ‘i’ is the same as the Latin. Therefore:
The value of upper_i
here relies on the language of the text: if we’re
in en-US
, it should be "I"
, but if we’re in tr_TR
, it should
be "İ"
. to_uppercase()
does not take this into account, and so:
holds across languages.
1.23.0 (const: 1.32.0) · Sourcepub const fn is_ascii(&self) -> bool
pub const fn is_ascii(&self) -> bool
Checks if the value is within the ASCII range.
§Examples
Sourcepub const fn as_ascii(&self) -> Option<AsciiChar>
🔬This is a nightly-only experimental API. (ascii_char
#110998)
pub const fn as_ascii(&self) -> Option<AsciiChar>
ascii_char
#110998)Returns Some
if the value is within the ASCII range,
or None
if it’s not.
This is preferred to Self::is_ascii
when you’re passing the value
along to something else that can take ascii::Char
rather than
needing to check again for itself whether the value is in ASCII.
1.23.0 (const: 1.52.0) · Sourcepub const fn to_ascii_uppercase(&self) -> char
pub const fn to_ascii_uppercase(&self) -> char
Makes a copy of the value in its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase()
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase()
.
§Examples
1.23.0 (const: 1.52.0) · Sourcepub const fn to_ascii_lowercase(&self) -> char
pub const fn to_ascii_lowercase(&self) -> char
Makes a copy of the value in its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase()
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase()
.
§Examples
1.23.0 (const: 1.52.0) · Sourcepub const fn eq_ignore_ascii_case(&self, other: &char) -> bool
pub const fn eq_ignore_ascii_case(&self, other: &char) -> bool
Checks that two values are an ASCII case-insensitive match.
Equivalent to to_ascii_lowercase(a) == to_ascii_lowercase(b)
.
§Examples
1.23.0 (const: 1.84.0) · Sourcepub const fn make_ascii_uppercase(&mut self)
pub const fn make_ascii_uppercase(&mut self)
Converts this type to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase()
.
§Examples
1.23.0 (const: 1.84.0) · Sourcepub const fn make_ascii_lowercase(&mut self)
pub const fn make_ascii_lowercase(&mut self)
Converts this type to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase()
.
§Examples
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_alphabetic(&self) -> bool
pub const fn is_ascii_alphabetic(&self) -> bool
Checks if the value is an ASCII alphabetic character:
- U+0041 ‘A’ ..= U+005A ‘Z’, or
- U+0061 ‘a’ ..= U+007A ‘z’.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_alphabetic());
assert!(uppercase_g.is_ascii_alphabetic());
assert!(a.is_ascii_alphabetic());
assert!(g.is_ascii_alphabetic());
assert!(!zero.is_ascii_alphabetic());
assert!(!percent.is_ascii_alphabetic());
assert!(!space.is_ascii_alphabetic());
assert!(!lf.is_ascii_alphabetic());
assert!(!esc.is_ascii_alphabetic());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_uppercase(&self) -> bool
pub const fn is_ascii_uppercase(&self) -> bool
Checks if the value is an ASCII uppercase character: U+0041 ‘A’ ..= U+005A ‘Z’.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_uppercase());
assert!(uppercase_g.is_ascii_uppercase());
assert!(!a.is_ascii_uppercase());
assert!(!g.is_ascii_uppercase());
assert!(!zero.is_ascii_uppercase());
assert!(!percent.is_ascii_uppercase());
assert!(!space.is_ascii_uppercase());
assert!(!lf.is_ascii_uppercase());
assert!(!esc.is_ascii_uppercase());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_lowercase(&self) -> bool
pub const fn is_ascii_lowercase(&self) -> bool
Checks if the value is an ASCII lowercase character: U+0061 ‘a’ ..= U+007A ‘z’.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_lowercase());
assert!(!uppercase_g.is_ascii_lowercase());
assert!(a.is_ascii_lowercase());
assert!(g.is_ascii_lowercase());
assert!(!zero.is_ascii_lowercase());
assert!(!percent.is_ascii_lowercase());
assert!(!space.is_ascii_lowercase());
assert!(!lf.is_ascii_lowercase());
assert!(!esc.is_ascii_lowercase());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_alphanumeric(&self) -> bool
pub const fn is_ascii_alphanumeric(&self) -> bool
Checks if the value is an ASCII alphanumeric character:
- U+0041 ‘A’ ..= U+005A ‘Z’, or
- U+0061 ‘a’ ..= U+007A ‘z’, or
- U+0030 ‘0’ ..= U+0039 ‘9’.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_alphanumeric());
assert!(uppercase_g.is_ascii_alphanumeric());
assert!(a.is_ascii_alphanumeric());
assert!(g.is_ascii_alphanumeric());
assert!(zero.is_ascii_alphanumeric());
assert!(!percent.is_ascii_alphanumeric());
assert!(!space.is_ascii_alphanumeric());
assert!(!lf.is_ascii_alphanumeric());
assert!(!esc.is_ascii_alphanumeric());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_digit(&self) -> bool
pub const fn is_ascii_digit(&self) -> bool
Checks if the value is an ASCII decimal digit: U+0030 ‘0’ ..= U+0039 ‘9’.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_digit());
assert!(!uppercase_g.is_ascii_digit());
assert!(!a.is_ascii_digit());
assert!(!g.is_ascii_digit());
assert!(zero.is_ascii_digit());
assert!(!percent.is_ascii_digit());
assert!(!space.is_ascii_digit());
assert!(!lf.is_ascii_digit());
assert!(!esc.is_ascii_digit());
Sourcepub const fn is_ascii_octdigit(&self) -> bool
🔬This is a nightly-only experimental API. (is_ascii_octdigit
#101288)
pub const fn is_ascii_octdigit(&self) -> bool
is_ascii_octdigit
#101288)Checks if the value is an ASCII octal digit: U+0030 ‘0’ ..= U+0037 ‘7’.
§Examples
#![feature(is_ascii_octdigit)]
let uppercase_a = 'A';
let a = 'a';
let zero = '0';
let seven = '7';
let nine = '9';
let percent = '%';
let lf = '\n';
assert!(!uppercase_a.is_ascii_octdigit());
assert!(!a.is_ascii_octdigit());
assert!(zero.is_ascii_octdigit());
assert!(seven.is_ascii_octdigit());
assert!(!nine.is_ascii_octdigit());
assert!(!percent.is_ascii_octdigit());
assert!(!lf.is_ascii_octdigit());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_hexdigit(&self) -> bool
pub const fn is_ascii_hexdigit(&self) -> bool
Checks if the value is an ASCII hexadecimal digit:
- U+0030 ‘0’ ..= U+0039 ‘9’, or
- U+0041 ‘A’ ..= U+0046 ‘F’, or
- U+0061 ‘a’ ..= U+0066 ‘f’.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_hexdigit());
assert!(!uppercase_g.is_ascii_hexdigit());
assert!(a.is_ascii_hexdigit());
assert!(!g.is_ascii_hexdigit());
assert!(zero.is_ascii_hexdigit());
assert!(!percent.is_ascii_hexdigit());
assert!(!space.is_ascii_hexdigit());
assert!(!lf.is_ascii_hexdigit());
assert!(!esc.is_ascii_hexdigit());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_punctuation(&self) -> bool
pub const fn is_ascii_punctuation(&self) -> bool
Checks if the value is an ASCII punctuation character:
- U+0021 ..= U+002F
! " # $ % & ' ( ) * + , - . /
, or - U+003A ..= U+0040
: ; < = > ? @
, or - U+005B ..= U+0060
[ \ ] ^ _ `
, or - U+007B ..= U+007E
{ | } ~
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_punctuation());
assert!(!uppercase_g.is_ascii_punctuation());
assert!(!a.is_ascii_punctuation());
assert!(!g.is_ascii_punctuation());
assert!(!zero.is_ascii_punctuation());
assert!(percent.is_ascii_punctuation());
assert!(!space.is_ascii_punctuation());
assert!(!lf.is_ascii_punctuation());
assert!(!esc.is_ascii_punctuation());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_graphic(&self) -> bool
pub const fn is_ascii_graphic(&self) -> bool
Checks if the value is an ASCII graphic character: U+0021 ‘!’ ..= U+007E ‘~’.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(uppercase_a.is_ascii_graphic());
assert!(uppercase_g.is_ascii_graphic());
assert!(a.is_ascii_graphic());
assert!(g.is_ascii_graphic());
assert!(zero.is_ascii_graphic());
assert!(percent.is_ascii_graphic());
assert!(!space.is_ascii_graphic());
assert!(!lf.is_ascii_graphic());
assert!(!esc.is_ascii_graphic());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_whitespace(&self) -> bool
pub const fn is_ascii_whitespace(&self) -> bool
Checks if the value is an ASCII whitespace character: U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, U+000C FORM FEED, or U+000D CARRIAGE RETURN.
Rust uses the WhatWG Infra Standard’s definition of ASCII whitespace. There are several other definitions in wide use. For instance, the POSIX locale includes U+000B VERTICAL TAB as well as all the above characters, but—from the very same specification—the default rule for “field splitting” in the Bourne shell considers only SPACE, HORIZONTAL TAB, and LINE FEED as whitespace.
If you are writing a program that will process an existing file format, check what that format’s definition of whitespace is before using this function.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_whitespace());
assert!(!uppercase_g.is_ascii_whitespace());
assert!(!a.is_ascii_whitespace());
assert!(!g.is_ascii_whitespace());
assert!(!zero.is_ascii_whitespace());
assert!(!percent.is_ascii_whitespace());
assert!(space.is_ascii_whitespace());
assert!(lf.is_ascii_whitespace());
assert!(!esc.is_ascii_whitespace());
1.24.0 (const: 1.47.0) · Sourcepub const fn is_ascii_control(&self) -> bool
pub const fn is_ascii_control(&self) -> bool
Checks if the value is an ASCII control character: U+0000 NUL ..= U+001F UNIT SEPARATOR, or U+007F DELETE. Note that most ASCII whitespace characters are control characters, but SPACE is not.
§Examples
let uppercase_a = 'A';
let uppercase_g = 'G';
let a = 'a';
let g = 'g';
let zero = '0';
let percent = '%';
let space = ' ';
let lf = '\n';
let esc = '\x1b';
assert!(!uppercase_a.is_ascii_control());
assert!(!uppercase_g.is_ascii_control());
assert!(!a.is_ascii_control());
assert!(!g.is_ascii_control());
assert!(!zero.is_ascii_control());
assert!(!percent.is_ascii_control());
assert!(!space.is_ascii_control());
assert!(lf.is_ascii_control());
assert!(esc.is_ascii_control());
Trait Implementations§
1.0.0 · Source§impl AsciiExt for char
impl AsciiExt for char
Source§type Owned = char
type Owned = char
Source§fn is_ascii(&self) -> bool
fn is_ascii(&self) -> bool
Source§fn to_ascii_uppercase(&self) -> Self::Owned
fn to_ascii_uppercase(&self) -> Self::Owned
Source§fn to_ascii_lowercase(&self) -> Self::Owned
fn to_ascii_lowercase(&self) -> Self::Owned
Source§fn eq_ignore_ascii_case(&self, o: &Self) -> bool
fn eq_ignore_ascii_case(&self, o: &Self) -> bool
Source§fn make_ascii_uppercase(&mut self)
fn make_ascii_uppercase(&mut self)
Source§fn make_ascii_lowercase(&mut self)
fn make_ascii_lowercase(&mut self)
1.2.0 · Source§impl<'a> Extend<&'a char> for String
impl<'a> Extend<&'a char> for String
1.0.0 · Source§impl Extend<char> for String
impl Extend<char> for String
1.13.0 · Source§impl From<u8> for char
impl From<u8> for char
Maps a byte in 0x00..=0xFF to a char
whose code point has the same value, in U+0000..=U+00FF.
Unicode is designed such that this effectively decodes bytes with the character encoding that IANA calls ISO-8859-1. This encoding is compatible with ASCII.
Note that this is different from ISO/IEC 8859-1 a.k.a. ISO 8859-1 (with one less hyphen), which leaves some “blanks”, byte values that are not assigned to any character. ISO-8859-1 (the IANA one) assigns them to the C0 and C1 control codes.
Note that this is also different from Windows-1252 a.k.a. code page 1252, which is a superset ISO/IEC 8859-1 that assigns some (not all!) blanks to punctuation and various Latin characters.
To confuse things further, on the Web
ascii
, iso-8859-1
, and windows-1252
are all aliases
for a superset of Windows-1252 that fills the remaining blanks with corresponding
C0 and C1 control codes.
1.17.0 · Source§impl<'a> FromIterator<&'a char> for String
impl<'a> FromIterator<&'a char> for String
1.0.0 · Source§impl FromIterator<char> for String
impl FromIterator<char> for String
1.0.0 · Source§impl Ord for char
impl Ord for char
1.0.0 · Source§impl PartialOrd for char
impl PartialOrd for char
Source§impl Pattern for char
impl Pattern for char
Source§type Searcher<'a> = CharSearcher<'a>
type Searcher<'a> = CharSearcher<'a>
pattern
#27721)Source§fn into_searcher(self, haystack: &str) -> <char as Pattern>::Searcher<'_>
fn into_searcher(self, haystack: &str) -> <char as Pattern>::Searcher<'_>
pattern
#27721)self
and the haystack
to search in.Source§fn is_contained_in(self, haystack: &str) -> bool
fn is_contained_in(self, haystack: &str) -> bool
pattern
#27721)Source§fn is_prefix_of(self, haystack: &str) -> bool
fn is_prefix_of(self, haystack: &str) -> bool
pattern
#27721)Source§fn strip_prefix_of(self, haystack: &str) -> Option<&str>
fn strip_prefix_of(self, haystack: &str) -> Option<&str>
pattern
#27721)Source§fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
pattern
#27721)Source§fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
pattern
#27721)Source§fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>>
fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>>
pattern
#27721)Source§impl Step for char
impl Step for char
Source§fn steps_between(_: &char, _: &char) -> (usize, Option<usize>)
fn steps_between(_: &char, _: &char) -> (usize, Option<usize>)
step_trait
#42168)start
to end
like Iterator::size_hint()
. Read moreSource§fn forward_checked(start: char, count: usize) -> Option<char>
fn forward_checked(start: char, count: usize) -> Option<char>
step_trait
#42168)Source§fn backward_checked(start: char, count: usize) -> Option<char>
fn backward_checked(start: char, count: usize) -> Option<char>
step_trait
#42168)Source§unsafe fn forward_unchecked(start: char, count: usize) -> char
unsafe fn forward_unchecked(start: char, count: usize) -> char
step_trait
#42168)Source§unsafe fn backward_unchecked(start: char, count: usize) -> char
unsafe fn backward_unchecked(start: char, count: usize) -> char
step_trait
#42168)1.74.0 · Source§impl TryFrom<char> for u16
impl TryFrom<char> for u16
Maps a char
with code point in U+0000..=U+FFFF to a u16
in 0x0000..=0xFFFF with same value,
failing if the code point is greater than U+FFFF.
This corresponds to the UCS-2 encoding, as specified in ISO/IEC 10646:2003.
1.59.0 · Source§impl TryFrom<char> for u8
impl TryFrom<char> for u8
Maps a char
with code point in U+0000..=U+00FF to a byte in 0x00..=0xFF with same value,
failing if the code point is greater than U+00FF.
See impl From<u8> for char
for details on the encoding.