# 1.0.0[−]Primitive Type f64

The 64-bit floating point type.

## Methods

`impl f64`

[src]

`impl f64`

`pub fn is_nan(self) -> bool`

[src]

`pub fn is_nan(self) -> bool`

Returns `true`

if this value is `NaN`

and false otherwise.

use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());Run

`pub fn is_infinite(self) -> bool`

[src]

`pub fn is_infinite(self) -> bool`

Returns `true`

if this value is positive infinity or negative infinity and
false otherwise.

use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run

`pub fn is_finite(self) -> bool`

[src]

`pub fn is_finite(self) -> bool`

Returns `true`

if this number is neither infinite nor `NaN`

.

use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run

`pub fn is_normal(self) -> bool`

[src]

`pub fn is_normal(self) -> bool`

Returns `true`

if the number is neither zero, infinite,
subnormal, or `NaN`

.

use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run

`pub fn classify(self) -> FpCategory`

[src]

`pub fn classify(self) -> FpCategory`

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run

`pub fn is_sign_positive(self) -> bool`

[src]

`pub fn is_sign_positive(self) -> bool`

Returns `true`

if and only if `self`

has a positive sign, including `+0.0`

, `NaN`

s with
positive sign bit and positive infinity.

let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());Run

`pub fn is_sign_negative(self) -> bool`

[src]

`pub fn is_sign_negative(self) -> bool`

Returns `true`

if and only if `self`

has a negative sign, including `-0.0`

, `NaN`

s with
negative sign bit and negative infinity.

let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());Run

`pub fn recip(self) -> f64`

[src]

`pub fn recip(self) -> f64`

Takes the reciprocal (inverse) of a number, `1/x`

.

let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);Run

`pub fn to_degrees(self) -> f64`

[src]

`pub fn to_degrees(self) -> f64`

Converts radians to degrees.

use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn to_radians(self) -> f64`

[src]

`pub fn to_radians(self) -> f64`

Converts degrees to radians.

use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);Run

`pub fn max(self, other: f64) -> f64`

[src]

`pub fn max(self, other: f64) -> f64`

Returns the maximum of the two numbers.

let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);Run

If one of the arguments is NaN, then the other argument is returned.

`pub fn min(self, other: f64) -> f64`

[src]

`pub fn min(self, other: f64) -> f64`

Returns the minimum of the two numbers.

let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);Run

If one of the arguments is NaN, then the other argument is returned.

`pub fn to_bits(self) -> u64`

1.20.0[src]

`pub fn to_bits(self) -> u64`

Raw transmutation to `u64`

.

This is currently identical to `transmute::<f64, u64>(self)`

on all platforms.

See `from_bits`

for some discussion of the portability of this operation
(there are almost no issues).

Note that this function is distinct from `as`

casting, which attempts to
preserve the *numeric* value, and not the bitwise value.

# Examples

assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! assert_eq!((12.5f64).to_bits(), 0x4029000000000000); Run

`pub fn from_bits(v: u64) -> f64`

1.20.0[src]

`pub fn from_bits(v: u64) -> f64`

Raw transmutation from `u64`

.

This is currently identical to `transmute::<u64, f64>(v)`

on all platforms.
It turns out this is incredibly portable, for two reasons:

- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.

However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.

Rather than trying to preserve signaling-ness cross-platform, this implementation favours preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.

If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.

If the input isn't NaN, then there is no portability concern.

If you don't care about signalingness (very likely), then there is no portability concern.

Note that this function is distinct from `as`

casting, which attempts to
preserve the *numeric* value, and not the bitwise value.

# Examples

use std::f64; let v = f64::from_bits(0x4029000000000000); let difference = (v - 12.5).abs(); assert!(difference <= 1e-5);Run

`impl f64`

[src]

`impl f64`

`pub fn floor(self) -> f64`

[src]

`pub fn floor(self) -> f64`

Returns the largest integer less than or equal to a number.

# Examples

let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);Run

`pub fn ceil(self) -> f64`

[src]

`pub fn ceil(self) -> f64`

Returns the smallest integer greater than or equal to a number.

# Examples

let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run

`pub fn round(self) -> f64`

[src]

`pub fn round(self) -> f64`

Returns the nearest integer to a number. Round half-way cases away from
`0.0`

.

# Examples

let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run

`pub fn trunc(self) -> f64`

[src]

`pub fn trunc(self) -> f64`

Returns the integer part of a number.

# Examples

let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);Run

`pub fn fract(self) -> f64`

[src]

`pub fn fract(self) -> f64`

Returns the fractional part of a number.

# Examples

let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run

`pub fn abs(self) -> f64`

[src]

`pub fn abs(self) -> f64`

Computes the absolute value of `self`

. Returns `NAN`

if the
number is `NAN`

.

# Examples

use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());Run

`pub fn signum(self) -> f64`

[src]

`pub fn signum(self) -> f64`

Returns a number that represents the sign of `self`

.

`1.0`

if the number is positive,`+0.0`

or`INFINITY`

`-1.0`

if the number is negative,`-0.0`

or`NEG_INFINITY`

`NAN`

if the number is`NAN`

# Examples

use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());Run

`pub fn mul_add(self, a: f64, b: f64) -> f64`

[src]

`pub fn mul_add(self, a: f64, b: f64) -> f64`

Fused multiply-add. Computes `(self * a) + b`

with only one rounding
error, yielding a more accurate result than an unfused multiply-add.

Using `mul_add`

can be more performant than an unfused multiply-add if
the target architecture has a dedicated `fma`

CPU instruction.

# Examples

let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);Run

`pub fn div_euc(self, rhs: f64) -> f64`

[src]

`pub fn div_euc(self, rhs: f64) -> f64`

Calculates Euclidean division, the matching method for `mod_euc`

.

This computes the integer `n`

such that
`self = n * rhs + self.mod_euc(rhs)`

.
In other words, the result is `self / rhs`

rounded to the integer `n`

such that `self >= n * rhs`

.

# Examples

#![feature(euclidean_division)] let a: f64 = 7.0; let b = 4.0; assert_eq!(a.div_euc(b), 1.0); // 7.0 > 4.0 * 1.0 assert_eq!((-a).div_euc(b), -2.0); // -7.0 >= 4.0 * -2.0 assert_eq!(a.div_euc(-b), -1.0); // 7.0 >= -4.0 * -1.0 assert_eq!((-a).div_euc(-b), 2.0); // -7.0 >= -4.0 * 2.0Run

`pub fn mod_euc(self, rhs: f64) -> f64`

[src]

`pub fn mod_euc(self, rhs: f64) -> f64`

Calculates the Euclidean modulo (self mod rhs), which is never negative.

In particular, the return value `r`

satisfies `0.0 <= r < rhs.abs()`

in
most cases. However, due to a floating point round-off error it can
result in `r == rhs.abs()`

, violating the mathematical definition, if
`self`

is much smaller than `rhs.abs()`

in magnitude and `self < 0.0`

.
This result is not an element of the function's codomain, but it is the
closest floating point number in the real numbers and thus fulfills the
property `self == self.div_euc(rhs) * rhs + self.mod_euc(rhs)`

approximatively.

# Examples

#![feature(euclidean_division)] let a: f64 = 7.0; let b = 4.0; assert_eq!(a.mod_euc(b), 3.0); assert_eq!((-a).mod_euc(b), 1.0); assert_eq!(a.mod_euc(-b), 3.0); assert_eq!((-a).mod_euc(-b), 1.0); // limitation due to round-off error assert!((-std::f64::EPSILON).mod_euc(3.0) != 0.0);Run

`pub fn powi(self, n: i32) -> f64`

[src]

`pub fn powi(self, n: i32) -> f64`

Raises a number to an integer power.

Using this function is generally faster than using `powf`

# Examples

let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);Run

`pub fn powf(self, n: f64) -> f64`

[src]

`pub fn powf(self, n: f64) -> f64`

Raises a number to a floating point power.

# Examples

let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);Run

`pub fn sqrt(self) -> f64`

[src]

`pub fn sqrt(self) -> f64`

Takes the square root of a number.

Returns NaN if `self`

is a negative number.

# Examples

let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());Run

`pub fn exp(self) -> f64`

[src]

`pub fn exp(self) -> f64`

Returns `e^(self)`

, (the exponential function).

# Examples

let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn exp2(self) -> f64`

[src]

`pub fn exp2(self) -> f64`

Returns `2^(self)`

.

# Examples

let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn ln(self) -> f64`

[src]

`pub fn ln(self) -> f64`

Returns the natural logarithm of the number.

# Examples

let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn log(self, base: f64) -> f64`

[src]

`pub fn log(self, base: f64) -> f64`

Returns the logarithm of the number with respect to an arbitrary base.

The result may not be correctly rounded owing to implementation details;
`self.log2()`

can produce more accurate results for base 2, and
`self.log10()`

can produce more accurate results for base 10.

# Examples

let five = 5.0_f64; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn log2(self) -> f64`

[src]

`pub fn log2(self) -> f64`

Returns the base 2 logarithm of the number.

# Examples

let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn log10(self) -> f64`

[src]

`pub fn log10(self) -> f64`

Returns the base 10 logarithm of the number.

# Examples

let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn abs_sub(self, other: f64) -> f64`

[src]

`pub fn abs_sub(self, other: f64) -> f64`

: you probably meant `(self - other).abs()`

: this operation is `(self - other).max(0.0)`

(also known as `fdim`

in C). If you truly need the positive difference, consider using that expression or the C function `fdim`

, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).

The positive difference of two numbers.

- If
`self <= other`

:`0:0`

- Else:
`self - other`

# Examples

let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run

`pub fn cbrt(self) -> f64`

[src]

`pub fn cbrt(self) -> f64`

Takes the cubic root of a number.

# Examples

let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn hypot(self, other: f64) -> f64`

[src]

`pub fn hypot(self, other: f64) -> f64`

Calculates the length of the hypotenuse of a right-angle triangle given
legs of length `x`

and `y`

.

# Examples

let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);Run

`pub fn sin(self) -> f64`

[src]

`pub fn sin(self) -> f64`

Computes the sine of a number (in radians).

# Examples

use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn cos(self) -> f64`

[src]

`pub fn cos(self) -> f64`

Computes the cosine of a number (in radians).

# Examples

use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn tan(self) -> f64`

[src]

`pub fn tan(self) -> f64`

Computes the tangent of a number (in radians).

# Examples

use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);Run

`pub fn asin(self) -> f64`

[src]

`pub fn asin(self) -> f64`

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

# Examples

use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn acos(self) -> f64`

[src]

`pub fn acos(self) -> f64`

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

# Examples

use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn atan(self) -> f64`

[src]

`pub fn atan(self) -> f64`

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

# Examples

let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn atan2(self, other: f64) -> f64`

[src]

`pub fn atan2(self, other: f64) -> f64`

Computes the four quadrant arctangent of `self`

(`y`

) and `other`

(`x`

) in radians.

`x = 0`

,`y = 0`

:`0`

`x >= 0`

:`arctan(y/x)`

->`[-pi/2, pi/2]`

`y >= 0`

:`arctan(y/x) + pi`

->`(pi/2, pi]`

`y < 0`

:`arctan(y/x) - pi`

->`(-pi, -pi/2)`

# Examples

use std::f64; let pi = f64::consts::PI; // Positive angles measured counter-clockwise // from positive x axis // -pi/4 radians (45 deg clockwise) let x1 = 3.0_f64; let y1 = -3.0_f64; // 3pi/4 radians (135 deg counter-clockwise) let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);Run

`pub fn sin_cos(self) -> (f64, f64)`

[src]

`pub fn sin_cos(self) -> (f64, f64)`

Simultaneously computes the sine and cosine of the number, `x`

. Returns
`(sin(x), cos(x))`

.

# Examples

use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);Run

`pub fn exp_m1(self) -> f64`

[src]

`pub fn exp_m1(self) -> f64`

Returns `e^(self) - 1`

in a way that is accurate even if the
number is close to zero.

# Examples

let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn ln_1p(self) -> f64`

[src]

`pub fn ln_1p(self) -> f64`

Returns `ln(1+n)`

(natural logarithm) more accurately than if
the operations were performed separately.

# Examples

use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);Run

`pub fn sinh(self) -> f64`

[src]

`pub fn sinh(self) -> f64`

Hyperbolic sine function.

# Examples

use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);Run

`pub fn cosh(self) -> f64`

[src]

`pub fn cosh(self) -> f64`

Hyperbolic cosine function.

# Examples

use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);Run

`pub fn tanh(self) -> f64`

[src]

`pub fn tanh(self) -> f64`

Hyperbolic tangent function.

# Examples

use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);Run

`pub fn asinh(self) -> f64`

[src]

`pub fn asinh(self) -> f64`

Inverse hyperbolic sine function.

# Examples

let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run

`pub fn acosh(self) -> f64`

[src]

`pub fn acosh(self) -> f64`

Inverse hyperbolic cosine function.

# Examples

let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run

`pub fn atanh(self) -> f64`

[src]

`pub fn atanh(self) -> f64`

## Trait Implementations

`impl FromStr for f64`

[src]

`impl FromStr for f64`

`type Err = ParseFloatError`

The associated error which can be returned from parsing.

`fn from_str(src: &str) -> Result<f64, ParseFloatError>`

[src]

`fn from_str(src: &str) -> Result<f64, ParseFloatError>`

Converts a string in base 10 to a float. Accepts an optional decimal exponent.

This function accepts strings such as

- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'

Leading and trailing whitespace represent an error.

# Arguments

- src - A string

# Return value

`Err(ParseFloatError)`

if the string did not represent a valid
number. Otherwise, `Ok(n)`

where `n`

is the floating-point
number represented by `src`

.

`impl<'a> RemAssign<&'a f64> for f64`

1.22.0[src]

`impl<'a> RemAssign<&'a f64> for f64`

`fn rem_assign(&mut self, other: &'a f64)`

[src]

`fn rem_assign(&mut self, other: &'a f64)`

Performs the `%=`

operation.

`impl RemAssign<f64> for f64`

1.8.0[src]

`impl RemAssign<f64> for f64`

`fn rem_assign(&mut self, other: f64)`

[src]

`fn rem_assign(&mut self, other: f64)`

Performs the `%=`

operation.

`impl<'a> DivAssign<&'a f64> for f64`

1.22.0[src]

`impl<'a> DivAssign<&'a f64> for f64`

`fn div_assign(&mut self, other: &'a f64)`

[src]

`fn div_assign(&mut self, other: &'a f64)`

Performs the `/=`

operation.

`impl DivAssign<f64> for f64`

1.8.0[src]

`impl DivAssign<f64> for f64`

`fn div_assign(&mut self, other: f64)`

[src]

`fn div_assign(&mut self, other: f64)`

Performs the `/=`

operation.

`impl<'a> MulAssign<&'a f64> for f64`

1.22.0[src]

`impl<'a> MulAssign<&'a f64> for f64`

`fn mul_assign(&mut self, other: &'a f64)`

[src]

`fn mul_assign(&mut self, other: &'a f64)`

Performs the `*=`

operation.

`impl MulAssign<f64> for f64`

1.8.0[src]

`impl MulAssign<f64> for f64`

`fn mul_assign(&mut self, other: f64)`

[src]

`fn mul_assign(&mut self, other: f64)`

Performs the `*=`

operation.

`impl SubAssign<f64> for f64`

1.8.0[src]

`impl SubAssign<f64> for f64`

`fn sub_assign(&mut self, other: f64)`

[src]

`fn sub_assign(&mut self, other: f64)`

Performs the `-=`

operation.

`impl<'a> SubAssign<&'a f64> for f64`

1.22.0[src]

`impl<'a> SubAssign<&'a f64> for f64`

`fn sub_assign(&mut self, other: &'a f64)`

[src]

`fn sub_assign(&mut self, other: &'a f64)`

Performs the `-=`

operation.

`impl AddAssign<f64> for f64`

1.8.0[src]

`impl AddAssign<f64> for f64`

`fn add_assign(&mut self, other: f64)`

[src]

`fn add_assign(&mut self, other: f64)`

Performs the `+=`

operation.

`impl<'a> AddAssign<&'a f64> for f64`

1.22.0[src]

`impl<'a> AddAssign<&'a f64> for f64`

`fn add_assign(&mut self, other: &'a f64)`

[src]

`fn add_assign(&mut self, other: &'a f64)`

Performs the `+=`

operation.

`impl Neg for f64`

[src]

`impl Neg for f64`

`type Output = f64`

The resulting type after applying the `-`

operator.

`fn neg(self) -> f64`

[src]

`fn neg(self) -> f64`

Performs the unary `-`

operation.

`impl<'a> Neg for &'a f64`

[src]

`impl<'a> Neg for &'a f64`

`type Output = <f64 as Neg>::Output`

The resulting type after applying the `-`

operator.

`fn neg(self) -> <f64 as Neg>::Output`

[src]

`fn neg(self) -> <f64 as Neg>::Output`

Performs the unary `-`

operation.

`impl Clone for f64`

[src]

`impl Clone for f64`

`fn clone(&self) -> f64`

[src]

`fn clone(&self) -> f64`

Returns a copy of the value. Read more

`fn clone_from(&mut self, source: &Self)`

[src]

`fn clone_from(&mut self, source: &Self)`

Performs copy-assignment from `source`

. Read more

`impl PartialOrd<f64> for f64`

[src]

`impl PartialOrd<f64> for f64`

`fn partial_cmp(&self, other: &f64) -> Option<Ordering>`

[src]

`fn partial_cmp(&self, other: &f64) -> Option<Ordering>`

This method returns an ordering between `self`

and `other`

values if one exists. Read more

`fn lt(&self, other: &f64) -> bool`

[src]

`fn lt(&self, other: &f64) -> bool`

This method tests less than (for `self`

and `other`

) and is used by the `<`

operator. Read more

`fn le(&self, other: &f64) -> bool`

[src]

`fn le(&self, other: &f64) -> bool`

This method tests less than or equal to (for `self`

and `other`

) and is used by the `<=`

operator. Read more

`fn ge(&self, other: &f64) -> bool`

[src]

`fn ge(&self, other: &f64) -> bool`

This method tests greater than or equal to (for `self`

and `other`

) and is used by the `>=`

operator. Read more

`fn gt(&self, other: &f64) -> bool`

[src]

`fn gt(&self, other: &f64) -> bool`

This method tests greater than (for `self`

and `other`

) and is used by the `>`

operator. Read more

`impl<'a> Sub<&'a f64> for f64`

[src]

`impl<'a> Sub<&'a f64> for f64`

`type Output = <f64 as Sub<f64>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output`

[src]

`fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output`

Performs the `-`

operation.

`impl<'a, 'b> Sub<&'a f64> for &'b f64`

[src]

`impl<'a, 'b> Sub<&'a f64> for &'b f64`

`type Output = <f64 as Sub<f64>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output`

[src]

`fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output`

Performs the `-`

operation.

`impl Sub<f64> for f64`

[src]

`impl Sub<f64> for f64`

`type Output = f64`

The resulting type after applying the `-`

operator.

`fn sub(self, other: f64) -> f64`

[src]

`fn sub(self, other: f64) -> f64`

Performs the `-`

operation.

`impl<'a> Sub<f64> for &'a f64`

[src]

`impl<'a> Sub<f64> for &'a f64`

`type Output = <f64 as Sub<f64>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: f64) -> <f64 as Sub<f64>>::Output`

[src]

`fn sub(self, other: f64) -> <f64 as Sub<f64>>::Output`

Performs the `-`

operation.

`impl<'a> Sum<&'a f64> for f64`

1.12.0[src]

`impl<'a> Sum<&'a f64> for f64`

`fn sum<I>(iter: I) -> f64 where`

I: Iterator<Item = &'a f64>,

[src]

`fn sum<I>(iter: I) -> f64 where`

I: Iterator<Item = &'a f64>,

Method which takes an iterator and generates `Self`

from the elements by "summing up" the items. Read more

`impl Sum<f64> for f64`

1.12.0[src]

`impl Sum<f64> for f64`

`fn sum<I>(iter: I) -> f64 where`

I: Iterator<Item = f64>,

[src]

`fn sum<I>(iter: I) -> f64 where`

I: Iterator<Item = f64>,

Method which takes an iterator and generates `Self`

from the elements by "summing up" the items. Read more

`impl Debug for f64`

[src]

`impl Debug for f64`

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

[src]

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

Formats the value using the given formatter. Read more

`impl PartialEq<f64> for f64`

[src]

`impl PartialEq<f64> for f64`

`fn eq(&self, other: &f64) -> bool`

[src]

`fn eq(&self, other: &f64) -> bool`

This method tests for `self`

and `other`

values to be equal, and is used by `==`

. Read more

`fn ne(&self, other: &f64) -> bool`

[src]

`fn ne(&self, other: &f64) -> bool`

This method tests for `!=`

.

`impl From<u32> for f64`

1.6.0[src]

`impl From<u32> for f64`

Converts `u32`

to `f64`

losslessly.

`impl From<u8> for f64`

1.6.0[src]

`impl From<u8> for f64`

Converts `u8`

to `f64`

losslessly.

`impl From<i8> for f64`

1.6.0[src]

`impl From<i8> for f64`

Converts `i8`

to `f64`

losslessly.

`impl From<i32> for f64`

1.6.0[src]

`impl From<i32> for f64`

Converts `i32`

to `f64`

losslessly.

`impl From<f32> for f64`

1.6.0[src]

`impl From<f32> for f64`

Converts `f32`

to `f64`

losslessly.

`impl From<u16> for f64`

1.6.0[src]

`impl From<u16> for f64`

Converts `u16`

to `f64`

losslessly.

`impl From<i16> for f64`

1.6.0[src]

`impl From<i16> for f64`

Converts `i16`

to `f64`

losslessly.

`impl Copy for f64`

[src]

`impl Copy for f64`

`impl<'a> Rem<&'a f64> for f64`

[src]

`impl<'a> Rem<&'a f64> for f64`

`type Output = <f64 as Rem<f64>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output`

[src]

`fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output`

Performs the `%`

operation.

`impl Rem<f64> for f64`

[src]

`impl Rem<f64> for f64`

`type Output = f64`

The resulting type after applying the `%`

operator.

`fn rem(self, other: f64) -> f64`

[src]

`fn rem(self, other: f64) -> f64`

Performs the `%`

operation.

`impl<'a, 'b> Rem<&'a f64> for &'b f64`

[src]

`impl<'a, 'b> Rem<&'a f64> for &'b f64`

`type Output = <f64 as Rem<f64>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output`

[src]

`fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output`

Performs the `%`

operation.

`impl<'a> Rem<f64> for &'a f64`

[src]

`impl<'a> Rem<f64> for &'a f64`

`type Output = <f64 as Rem<f64>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: f64) -> <f64 as Rem<f64>>::Output`

[src]

`fn rem(self, other: f64) -> <f64 as Rem<f64>>::Output`

Performs the `%`

operation.

`impl<'a> Mul<f64> for &'a f64`

[src]

`impl<'a> Mul<f64> for &'a f64`

`type Output = <f64 as Mul<f64>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: f64) -> <f64 as Mul<f64>>::Output`

[src]

`fn mul(self, other: f64) -> <f64 as Mul<f64>>::Output`

Performs the `*`

operation.

`impl<'a> Mul<&'a f64> for f64`

[src]

`impl<'a> Mul<&'a f64> for f64`

`type Output = <f64 as Mul<f64>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output`

[src]

`fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output`

Performs the `*`

operation.

`impl Mul<f64> for f64`

[src]

`impl Mul<f64> for f64`

`type Output = f64`

The resulting type after applying the `*`

operator.

`fn mul(self, other: f64) -> f64`

[src]

`fn mul(self, other: f64) -> f64`

Performs the `*`

operation.

`impl<'a, 'b> Mul<&'a f64> for &'b f64`

[src]

`impl<'a, 'b> Mul<&'a f64> for &'b f64`

`type Output = <f64 as Mul<f64>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output`

[src]

`fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output`

Performs the `*`

operation.

`impl UpperExp for f64`

[src]

`impl UpperExp for f64`

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

[src]

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

Formats the value using the given formatter.

`impl Default for f64`

[src]

`impl Default for f64`

`impl<'a> Div<f64> for &'a f64`

[src]

`impl<'a> Div<f64> for &'a f64`

`type Output = <f64 as Div<f64>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: f64) -> <f64 as Div<f64>>::Output`

[src]

`fn div(self, other: f64) -> <f64 as Div<f64>>::Output`

Performs the `/`

operation.

`impl<'a, 'b> Div<&'a f64> for &'b f64`

[src]

`impl<'a, 'b> Div<&'a f64> for &'b f64`

`type Output = <f64 as Div<f64>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output`

[src]

`fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output`

Performs the `/`

operation.

`impl Div<f64> for f64`

[src]

`impl Div<f64> for f64`

`type Output = f64`

The resulting type after applying the `/`

operator.

`fn div(self, other: f64) -> f64`

[src]

`fn div(self, other: f64) -> f64`

Performs the `/`

operation.

`impl<'a> Div<&'a f64> for f64`

[src]

`impl<'a> Div<&'a f64> for f64`

`type Output = <f64 as Div<f64>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output`

[src]

`fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output`

Performs the `/`

operation.

`impl LowerExp for f64`

[src]

`impl LowerExp for f64`

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

[src]

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

Formats the value using the given formatter.

`impl<'a> Add<f64> for &'a f64`

[src]

`impl<'a> Add<f64> for &'a f64`

`type Output = <f64 as Add<f64>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: f64) -> <f64 as Add<f64>>::Output`

[src]

`fn add(self, other: f64) -> <f64 as Add<f64>>::Output`

Performs the `+`

operation.

`impl<'a, 'b> Add<&'a f64> for &'b f64`

[src]

`impl<'a, 'b> Add<&'a f64> for &'b f64`

`type Output = <f64 as Add<f64>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output`

[src]

`fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output`

Performs the `+`

operation.

`impl<'a> Add<&'a f64> for f64`

[src]

`impl<'a> Add<&'a f64> for f64`

`type Output = <f64 as Add<f64>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output`

[src]

`fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output`

Performs the `+`

operation.

`impl Add<f64> for f64`

[src]

`impl Add<f64> for f64`

`type Output = f64`

The resulting type after applying the `+`

operator.

`fn add(self, other: f64) -> f64`

[src]

`fn add(self, other: f64) -> f64`

Performs the `+`

operation.

`impl Product<f64> for f64`

1.12.0[src]

`impl Product<f64> for f64`

`fn product<I>(iter: I) -> f64 where`

I: Iterator<Item = f64>,

[src]

`fn product<I>(iter: I) -> f64 where`

I: Iterator<Item = f64>,

Method which takes an iterator and generates `Self`

from the elements by multiplying the items. Read more

`impl<'a> Product<&'a f64> for f64`

1.12.0[src]

`impl<'a> Product<&'a f64> for f64`

`fn product<I>(iter: I) -> f64 where`

I: Iterator<Item = &'a f64>,

[src]

`fn product<I>(iter: I) -> f64 where`

I: Iterator<Item = &'a f64>,

Method which takes an iterator and generates `Self`

from the elements by multiplying the items. Read more

`impl Display for f64`

[src]

`impl Display for f64`

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

[src]

`fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>`

Formats the value using the given formatter. Read more

`impl Float for f64`

[src]

`impl Float for f64`

`type Int = u64`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

A uint of the same with as the float

`type SignedInt = i64`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

A int of the same with as the float

`const `**ZERO**: f64

[src]

**ZERO**: f64

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

`const `**ONE**: f64

[src]

**ONE**: f64

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

`const `**BITS**: u32

[src]

**BITS**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The bitwidth of the float type

`const `**SIGNIFICAND_BITS**: u32

[src]

**SIGNIFICAND_BITS**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The bitwidth of the significand

`const `**SIGN_MASK**: <f64 as Float>::Int

[src]

**SIGN_MASK**: <f64 as Float>::Int

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

A mask for the sign bit

`const `**SIGNIFICAND_MASK**: <f64 as Float>::Int

[src]

**SIGNIFICAND_MASK**: <f64 as Float>::Int

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

A mask for the significand

`const `**IMPLICIT_BIT**: <f64 as Float>::Int

[src]

**IMPLICIT_BIT**: <f64 as Float>::Int

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

`const `**EXPONENT_MASK**: <f64 as Float>::Int

[src]

**EXPONENT_MASK**: <f64 as Float>::Int

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

A mask for the exponent

`fn repr(self) -> <f64 as Float>::Int`

[src]

`fn repr(self) -> <f64 as Float>::Int`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

Returns `self`

transmuted to `Self::Int`

`fn signed_repr(self) -> <f64 as Float>::SignedInt`

[src]

`fn signed_repr(self) -> <f64 as Float>::SignedInt`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

Returns `self`

transmuted to `Self::SignedInt`

`fn from_repr(a: <f64 as Float>::Int) -> f64`

[src]

`fn from_repr(a: <f64 as Float>::Int) -> f64`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

Returns a `Self::Int`

transmuted back to `Self`

`fn from_parts(`

sign: bool,

exponent: <f64 as Float>::Int,

significand: <f64 as Float>::Int

) -> f64

[src]

`fn from_parts(`

sign: bool,

exponent: <f64 as Float>::Int,

significand: <f64 as Float>::Int

) -> f64

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

Constructs a `Self`

from its parts. Inputs are treated as bits and shifted into position.

`fn normalize(significand: <f64 as Float>::Int) -> (i32, <f64 as Float>::Int)`

[src]

`fn normalize(significand: <f64 as Float>::Int) -> (i32, <f64 as Float>::Int)`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

Returns (normalized exponent, normalized significand)

`const `**EXPONENT_BITS**: u32

[src]

**EXPONENT_BITS**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The bitwidth of the exponent

`const `**EXPONENT_MAX**: u32

[src]

**EXPONENT_MAX**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The maximum value of the exponent

`const `**EXPONENT_BIAS**: u32

[src]

**EXPONENT_BIAS**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The exponent bias value

## Auto Trait Implementations

## Blanket Implementations

`impl<T, U> TryFrom for T where`

T: From<U>,

[src]

`impl<T, U> TryFrom for T where`

T: From<U>,

`type Error = !`

The type returned in the event of a conversion error.

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

[src]

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

Performs the conversion.

`impl<T> From for T`

[src]

`impl<T> From for T`

`impl<T, U> TryInto for T where`

U: TryFrom<T>,

[src]

`impl<T, U> TryInto for T where`

U: TryFrom<T>,

`type Error = <U as TryFrom<T>>::Error`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>`

[src]

`fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>`

Performs the conversion.

`impl<T, U> Into for T where`

U: From<T>,

[src]

`impl<T, U> Into for T where`

U: From<T>,

`impl<T> Borrow for T where`

T: ?Sized,

[src]

`impl<T> Borrow for T where`

T: ?Sized,

#### ⓘImportant traits for &'a mut I`fn borrow(&self) -> &T`

[src]

`fn borrow(&self) -> &T`

Immutably borrows from an owned value. Read more

`impl<T> BorrowMut for T where`

T: ?Sized,

[src]

`impl<T> BorrowMut for T where`

T: ?Sized,

#### ⓘImportant traits for &'a mut I`fn borrow_mut(&mut self) -> &mut T`

[src]

`fn borrow_mut(&mut self) -> &mut T`

Mutably borrows from an owned value. Read more

`impl<T> Any for T where`

T: 'static + ?Sized,

[src]

`impl<T> Any for T where`

T: 'static + ?Sized,

`fn get_type_id(&self) -> TypeId`

[src]

`fn get_type_id(&self) -> TypeId`

## 🔬 This is a nightly-only experimental API. (`get_type_id `

#27745)

this method will likely be replaced by an associated static

Gets the `TypeId`

of `self`

. Read more

`impl<T> ToOwned for T where`

T: Clone,

[src]

`impl<T> ToOwned for T where`

T: Clone,

`type Owned = T`

`fn to_owned(&self) -> T`

[src]

`fn to_owned(&self) -> T`

Creates owned data from borrowed data, usually by cloning. Read more

`fn clone_into(&self, target: &mut T)`

[src]

`fn clone_into(&self, target: &mut T)`

## 🔬 This is a nightly-only experimental API. (`toowned_clone_into `

#41263)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

`impl<T> ToString for T where`

T: Display + ?Sized,

[src]

`impl<T> ToString for T where`

T: Display + ?Sized,