1.0.0[]Primitive Type i32

The 32-bit signed integer type.

See also the std::i32 module.

Methods

impl i32[src]

pub const fn min_value() -> i32[src]

Returns the smallest value that can be represented by this integer type.

Examples

Basic usage:

assert_eq!(i32::min_value(), -2147483648);Run

pub const fn max_value() -> i32[src]

Returns the largest value that can be represented by this integer type.

Examples

Basic usage:

assert_eq!(i32::max_value(), 2147483647);Run

pub fn from_str_radix(src: &str, radix: u32) -> Result<i32, ParseIntError>[src]

Converts a string slice in a given base to an integer.

The string is expected to be an optional + or - sign followed by digits. Leading and trailing whitespace represent an error. Digits are a subset of these characters, depending on radix:

  • 0-9
  • a-z
  • A-Z

Panics

This function panics if radix is not in the range from 2 to 36.

Examples

Basic usage:

assert_eq!(i32::from_str_radix("A", 16), Ok(10));Run

pub const fn count_ones(self) -> u32[src]

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

let n = 0b100_0000i32;

assert_eq!(n.count_ones(), 1);Run

pub const fn count_zeros(self) -> u32[src]

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

assert_eq!(i32::max_value().count_zeros(), 1);Run

pub const fn leading_zeros(self) -> u32[src]

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

let n = -1i32;

assert_eq!(n.leading_zeros(), 0);Run

pub const fn trailing_zeros(self) -> u32[src]

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

let n = -4i32;

assert_eq!(n.trailing_zeros(), 2);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn rotate_left(self, n: u32) -> i32[src]

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Please note this isn't the same operation as the << shifting operator!

Examples

Basic usage:

let n = 0x10000b3i32;
let m = 0xb301;

assert_eq!(n.rotate_left(8), m);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn rotate_right(self, n: u32) -> i32[src]

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Please note this isn't the same operation as the >> shifting operator!

Examples

Basic usage:

let n = 0xb301i32;
let m = 0x10000b3;

assert_eq!(n.rotate_right(8), m);Run

pub const fn swap_bytes(self) -> i32[src]

Reverses the byte order of the integer.

Examples

Basic usage:

let n = 0x12345678i32;

let m = n.swap_bytes();

assert_eq!(m, 0x78563412);Run

#[must_use] pub const fn reverse_bits(self) -> i321.37.0[src]

Reverses the bit pattern of the integer.

Examples

Basic usage:

let n = 0x12345678i32;
let m = n.reverse_bits();

assert_eq!(m, 0x1e6a2c48);Run

pub const fn from_be(x: i32) -> i32[src]

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai32;

if cfg!(target_endian = "big") {
    assert_eq!(i32::from_be(n), n)
} else {
    assert_eq!(i32::from_be(n), n.swap_bytes())
}Run

pub const fn from_le(x: i32) -> i32[src]

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai32;

if cfg!(target_endian = "little") {
    assert_eq!(i32::from_le(n), n)
} else {
    assert_eq!(i32::from_le(n), n.swap_bytes())
}Run

pub const fn to_be(self) -> i32[src]

Converts self to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai32;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}Run

pub const fn to_le(self) -> i32[src]

Converts self to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

let n = 0x1Ai32;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_add(self, rhs: i32) -> Option<i32>[src]

Checked integer addition. Computes self + rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!((i32::max_value() - 2).checked_add(1), Some(i32::max_value() - 1));
assert_eq!((i32::max_value() - 2).checked_add(3), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_sub(self, rhs: i32) -> Option<i32>[src]

Checked integer subtraction. Computes self - rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!((i32::min_value() + 2).checked_sub(1), Some(i32::min_value() + 1));
assert_eq!((i32::min_value() + 2).checked_sub(3), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_mul(self, rhs: i32) -> Option<i32>[src]

Checked integer multiplication. Computes self * rhs, returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(i32::max_value().checked_mul(1), Some(i32::max_value()));
assert_eq!(i32::max_value().checked_mul(2), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_div(self, rhs: i32) -> Option<i32>[src]

Checked integer division. Computes self / rhs, returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:

assert_eq!((i32::min_value() + 1).checked_div(-1), Some(2147483647));
assert_eq!(i32::min_value().checked_div(-1), None);
assert_eq!((1i32).checked_div(0), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_div_euclid(self, rhs: i32) -> Option<i32>1.38.0[src]

Checked Euclidean division. Computes self.div_euclid(rhs), returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:

assert_eq!((i32::min_value() + 1).checked_div_euclid(-1), Some(2147483647));
assert_eq!(i32::min_value().checked_div_euclid(-1), None);
assert_eq!((1i32).checked_div_euclid(0), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_rem(self, rhs: i32) -> Option<i32>1.7.0[src]

Checked integer remainder. Computes self % rhs, returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.checked_rem(2), Some(1));
assert_eq!(5i32.checked_rem(0), None);
assert_eq!(i32::MIN.checked_rem(-1), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_rem_euclid(self, rhs: i32) -> Option<i32>1.38.0[src]

Checked Euclidean remainder. Computes self.rem_euclid(rhs), returning None if rhs == 0 or the division results in overflow.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.checked_rem_euclid(2), Some(1));
assert_eq!(5i32.checked_rem_euclid(0), None);
assert_eq!(i32::MIN.checked_rem_euclid(-1), None);Run

pub fn checked_neg(self) -> Option<i32>1.7.0[src]

Checked negation. Computes -self, returning None if self == MIN.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.checked_neg(), Some(-5));
assert_eq!(i32::MIN.checked_neg(), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_shl(self, rhs: u32) -> Option<i32>1.7.0[src]

Checked shift left. Computes self << rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(0x1i32.checked_shl(4), Some(0x10));
assert_eq!(0x1i32.checked_shl(129), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_shr(self, rhs: u32) -> Option<i32>1.7.0[src]

Checked shift right. Computes self >> rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

assert_eq!(0x10i32.checked_shr(4), Some(0x1));
assert_eq!(0x10i32.checked_shr(128), None);Run

pub fn checked_abs(self) -> Option<i32>1.13.0[src]

Checked absolute value. Computes self.abs(), returning None if self == MIN.

Examples

Basic usage:

use std::i32;

assert_eq!((-5i32).checked_abs(), Some(5));
assert_eq!(i32::MIN.checked_abs(), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn checked_pow(self, exp: u32) -> Option<i32>1.34.0[src]

Checked exponentiation. Computes self.pow(exp), returning None if overflow occurred.

Examples

Basic usage:

assert_eq!(8i32.checked_pow(2), Some(64));
assert_eq!(i32::max_value().checked_pow(2), None);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn saturating_add(self, rhs: i32) -> i32[src]

Saturating integer addition. Computes self + rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(100i32.saturating_add(1), 101);
assert_eq!(i32::max_value().saturating_add(100), i32::max_value());
assert_eq!(i32::min_value().saturating_add(-1), i32::min_value());Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn saturating_sub(self, rhs: i32) -> i32[src]

Saturating integer subtraction. Computes self - rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

assert_eq!(100i32.saturating_sub(127), -27);
assert_eq!(i32::min_value().saturating_sub(100), i32::min_value());
assert_eq!(i32::max_value().saturating_sub(-1), i32::max_value());Run

pub fn saturating_neg(self) -> i32[src]

🔬 This is a nightly-only experimental API. (saturating_neg #59983)

Saturating integer negation. Computes -self, returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_neg)]
assert_eq!(100i32.saturating_neg(), -100);
assert_eq!((-100i32).saturating_neg(), 100);
assert_eq!(i32::min_value().saturating_neg(), i32::max_value());
assert_eq!(i32::max_value().saturating_neg(), i32::min_value() + 1);Run

pub fn saturating_abs(self) -> i32[src]

🔬 This is a nightly-only experimental API. (saturating_neg #59983)

Saturating absolute value. Computes self.abs(), returning MAX if self == MIN instead of overflowing.

Examples

Basic usage:

#![feature(saturating_neg)]
assert_eq!(100i32.saturating_abs(), 100);
assert_eq!((-100i32).saturating_abs(), 100);
assert_eq!(i32::min_value().saturating_abs(), i32::max_value());
assert_eq!((i32::min_value() + 1).saturating_abs(), i32::max_value());Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn saturating_mul(self, rhs: i32) -> i321.7.0[src]

Saturating integer multiplication. Computes self * rhs, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

use std::i32;

assert_eq!(10i32.saturating_mul(12), 120);
assert_eq!(i32::MAX.saturating_mul(10), i32::MAX);
assert_eq!(i32::MIN.saturating_mul(10), i32::MIN);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn saturating_pow(self, exp: u32) -> i321.34.0[src]

Saturating integer exponentiation. Computes self.pow(exp), saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

use std::i32;

assert_eq!((-4i32).saturating_pow(3), -64);
assert_eq!(i32::MIN.saturating_pow(2), i32::MAX);
assert_eq!(i32::MIN.saturating_pow(3), i32::MIN);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn wrapping_add(self, rhs: i32) -> i32[src]

Wrapping (modular) addition. Computes self + rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(100i32.wrapping_add(27), 127);
assert_eq!(i32::max_value().wrapping_add(2), i32::min_value() + 1);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn wrapping_sub(self, rhs: i32) -> i32[src]

Wrapping (modular) subtraction. Computes self - rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(0i32.wrapping_sub(127), -127);
assert_eq!((-2i32).wrapping_sub(i32::max_value()), i32::max_value());Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn wrapping_mul(self, rhs: i32) -> i32[src]

Wrapping (modular) multiplication. Computes self * rhs, wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(10i32.wrapping_mul(12), 120);
assert_eq!(11i8.wrapping_mul(12), -124);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn wrapping_div(self, rhs: i32) -> i321.2.0[src]

Wrapping (modular) division. Computes self / rhs, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one divides MIN / -1 on a signed type (where MIN is the negative minimal value for the type); this is equivalent to -MIN, a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i32.wrapping_div(10), 10);
assert_eq!((-128i8).wrapping_div(-1), -128);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn wrapping_div_euclid(self, rhs: i32) -> i321.38.0[src]

Wrapping Euclidean division. Computes self.div_euclid(rhs), wrapping around at the boundary of the type.

Wrapping will only occur in MIN / -1 on a signed type (where MIN is the negative minimal value for the type). This is equivalent to -MIN, a positive value that is too large to represent in the type. In this case, this method returns MIN itself.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i32.wrapping_div_euclid(10), 10);
assert_eq!((-128i8).wrapping_div_euclid(-1), -128);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn wrapping_rem(self, rhs: i32) -> i321.2.0[src]

Wrapping (modular) remainder. Computes self % rhs, wrapping around at the boundary of the type.

Such wrap-around never actually occurs mathematically; implementation artifacts make x % y invalid for MIN / -1 on a signed type (where MIN is the negative minimal value). In such a case, this function returns 0.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i32.wrapping_rem(10), 0);
assert_eq!((-128i8).wrapping_rem(-1), 0);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn wrapping_rem_euclid(self, rhs: i32) -> i321.38.0[src]

Wrapping Euclidean remainder. Computes self.rem_euclid(rhs), wrapping around at the boundary of the type.

Wrapping will only occur in MIN % -1 on a signed type (where MIN is the negative minimal value for the type). In this case, this method returns 0.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

assert_eq!(100i32.wrapping_rem_euclid(10), 0);
assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);Run

pub const fn wrapping_neg(self) -> i321.2.0[src]

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one negates MIN on a signed type (where MIN is the negative minimal value for the type); this is a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Examples

Basic usage:

assert_eq!(100i32.wrapping_neg(), -100);
assert_eq!(i32::min_value().wrapping_neg(), i32::min_value());Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn wrapping_shl(self, rhs: u32) -> i321.2.0[src]

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-left; the RHS of a wrapping shift-left is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_left function, which may be what you want instead.

Examples

Basic usage:

assert_eq!((-1i32).wrapping_shl(7), -128);
assert_eq!((-1i32).wrapping_shl(128), -1);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn wrapping_shr(self, rhs: u32) -> i321.2.0[src]

Panic-free bitwise shift-right; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Note that this is not the same as a rotate-right; the RHS of a wrapping shift-right is restricted to the range of the type, rather than the bits shifted out of the LHS being returned to the other end. The primitive integer types all implement a rotate_right function, which may be what you want instead.

Examples

Basic usage:

assert_eq!((-128i32).wrapping_shr(7), -1);
assert_eq!((-128i16).wrapping_shr(64), -128);Run

pub const fn wrapping_abs(self) -> i321.13.0[src]

Wrapping (modular) absolute value. Computes self.abs(), wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one takes the absolute value of the negative minimal value for the type this is a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Examples

Basic usage:

assert_eq!(100i32.wrapping_abs(), 100);
assert_eq!((-100i32).wrapping_abs(), 100);
assert_eq!(i32::min_value().wrapping_abs(), i32::min_value());
assert_eq!((-128i8).wrapping_abs() as u8, 128);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn wrapping_pow(self, exp: u32) -> i321.34.0[src]

Wrapping (modular) exponentiation. Computes self.pow(exp), wrapping around at the boundary of the type.

Examples

Basic usage:

assert_eq!(3i32.wrapping_pow(4), 81);
assert_eq!(3i8.wrapping_pow(5), -13);
assert_eq!(3i8.wrapping_pow(6), -39);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn overflowing_add(self, rhs: i32) -> (i32, bool)1.7.0[src]

Calculates self + rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.overflowing_add(2), (7, false));
assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn overflowing_sub(self, rhs: i32) -> (i32, bool)1.7.0[src]

Calculates self - rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.overflowing_sub(2), (3, false));
assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn overflowing_mul(self, rhs: i32) -> (i32, bool)1.7.0[src]

Calculates the multiplication of self and rhs.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage:

assert_eq!(5i32.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn overflowing_div(self, rhs: i32) -> (i32, bool)1.7.0[src]

Calculates the divisor when self is divided by rhs.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.overflowing_div(2), (2, false));
assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn overflowing_div_euclid(self, rhs: i32) -> (i32, bool)1.38.0[src]

Calculates the quotient of Euclidean division self.div_euclid(rhs).

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.overflowing_div_euclid(2), (2, false));
assert_eq!(i32::MIN.overflowing_div_euclid(-1), (i32::MIN, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn overflowing_rem(self, rhs: i32) -> (i32, bool)1.7.0[src]

Calculates the remainder when self is divided by rhs.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.overflowing_rem(2), (1, false));
assert_eq!(i32::MIN.overflowing_rem(-1), (0, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn overflowing_rem_euclid(self, rhs: i32) -> (i32, bool)1.38.0[src]

Overflowing Euclidean remainder. Calculates self.rem_euclid(rhs).

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

use std::i32;

assert_eq!(5i32.overflowing_rem_euclid(2), (1, false));
assert_eq!(i32::MIN.overflowing_rem_euclid(-1), (0, true));Run

pub const fn overflowing_neg(self) -> (i32, bool)1.7.0[src]

Negates self, overflowing if this is equal to the minimum value.

Returns a tuple of the negated version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., i32::MIN for values of type i32), then the minimum value will be returned again and true will be returned for an overflow happening.

Examples

Basic usage:

use std::i32;

assert_eq!(2i32.overflowing_neg(), (-2, false));
assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn overflowing_shl(self, rhs: u32) -> (i32, bool)1.7.0[src]

Shifts self left by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage:

assert_eq!(0x1i32.overflowing_shl(4), (0x10, false));
assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub const fn overflowing_shr(self, rhs: u32) -> (i32, bool)1.7.0[src]

Shifts self right by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage:

assert_eq!(0x10i32.overflowing_shr(4), (0x1, false));
assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));Run

pub const fn overflowing_abs(self) -> (i32, bool)1.13.0[src]

Computes the absolute value of self.

Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., i32::MIN for values of type i32), then the minimum value will be returned again and true will be returned for an overflow happening.

Examples

Basic usage:

assert_eq!(10i32.overflowing_abs(), (10, false));
assert_eq!((-10i32).overflowing_abs(), (10, false));
assert_eq!((i32::min_value()).overflowing_abs(), (i32::min_value(), true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn overflowing_pow(self, exp: u32) -> (i32, bool)1.34.0[src]

Raises self to the power of exp, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

Examples

Basic usage:

assert_eq!(3i32.overflowing_pow(4), (81, false));
assert_eq!(3i8.overflowing_pow(5), (-13, true));Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn pow(self, exp: u32) -> i32[src]

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

let x: i32 = 2; // or any other integer type

assert_eq!(x.pow(5), 32);Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn div_euclid(self, rhs: i32) -> i321.38.0[src]

Calculates the quotient of Euclidean division of self by rhs.

This computes the integer n such that self = n * rhs + self.rem_euclid(rhs), with 0 <= self.rem_euclid(rhs) < rhs.

In other words, the result is self / rhs rounded to the integer n such that self >= n * rhs. If self > 0, this is equal to round towards zero (the default in Rust); if self < 0, this is equal to round towards +/- infinity.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

let a: i32 = 7; // or any other integer type
let b = 4;

assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2Run

#[must_use = "this returns the result of the operation, without modifying the original"] pub fn rem_euclid(self, rhs: i32) -> i321.38.0[src]

Calculates the least nonnegative remainder of self (mod rhs).

This is done as if by the Euclidean division algorithm -- given r = self.rem_euclid(rhs), self = rhs * self.div_euclid(rhs) + r, and 0 <= r < abs(rhs).

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

let a: i32 = 7; // or any other integer type
let b = 4;

assert_eq!(a.rem_euclid(b), 3);
assert_eq!((-a).rem_euclid(b), 1);
assert_eq!(a.rem_euclid(-b), 3);
assert_eq!((-a).rem_euclid(-b), 1);Run

pub const fn abs(self) -> i32[src]

Computes the absolute value of self.

Overflow behavior

The absolute value of i32::min_value() cannot be represented as an i32, and attempting to calculate it will cause an overflow. This means that code in debug mode will trigger a panic on this case and optimized code will return i32::min_value() without a panic.

Examples

Basic usage:

assert_eq!(10i32.abs(), 10);
assert_eq!((-10i32).abs(), 10);Run

pub fn signum(self) -> i32[src]

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative

Examples

Basic usage:

assert_eq!(10i32.signum(), 1);
assert_eq!(0i32.signum(), 0);
assert_eq!((-10i32).signum(), -1);Run

pub const fn is_positive(self) -> bool[src]

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

assert!(10i32.is_positive());
assert!(!(-10i32).is_positive());Run

pub const fn is_negative(self) -> bool[src]

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

assert!((-10i32).is_negative());
assert!(!10i32.is_negative());Run

pub fn to_be_bytes(self) -> [u8; 4]1.32.0[src]

Return the memory representation of this integer as a byte array in big-endian (network) byte order.

Examples

let bytes = 0x12345678i32.to_be_bytes();
assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78]);Run

pub fn to_le_bytes(self) -> [u8; 4]1.32.0[src]

Return the memory representation of this integer as a byte array in little-endian byte order.

Examples

let bytes = 0x12345678i32.to_le_bytes();
assert_eq!(bytes, [0x78, 0x56, 0x34, 0x12]);Run

pub fn to_ne_bytes(self) -> [u8; 4]1.32.0[src]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform's native endianness is used, portable code should use to_be_bytes or to_le_bytes, as appropriate, instead.

Examples

let bytes = 0x12345678i32.to_ne_bytes();
assert_eq!(
    bytes,
    if cfg!(target_endian = "big") {
        [0x12, 0x34, 0x56, 0x78]
    } else {
        [0x78, 0x56, 0x34, 0x12]
    }
);Run

pub fn from_be_bytes(bytes: [u8; 4]) -> i321.32.0[src]

Create an integer value from its representation as a byte array in big endian.

Examples

let value = i32::from_be_bytes([0x12, 0x34, 0x56, 0x78]);
assert_eq!(value, 0x12345678);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_be_i32(input: &mut &[u8]) -> i32 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>());
    *input = rest;
    i32::from_be_bytes(int_bytes.try_into().unwrap())
}Run

pub fn from_le_bytes(bytes: [u8; 4]) -> i321.32.0[src]

Create an integer value from its representation as a byte array in little endian.

Examples

let value = i32::from_le_bytes([0x78, 0x56, 0x34, 0x12]);
assert_eq!(value, 0x12345678);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_le_i32(input: &mut &[u8]) -> i32 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>());
    *input = rest;
    i32::from_le_bytes(int_bytes.try_into().unwrap())
}Run

pub fn from_ne_bytes(bytes: [u8; 4]) -> i321.32.0[src]

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform's native endianness is used, portable code likely wants to use from_be_bytes or from_le_bytes, as appropriate instead.

Examples

let value = i32::from_ne_bytes(if cfg!(target_endian = "big") {
    [0x12, 0x34, 0x56, 0x78]
} else {
    [0x78, 0x56, 0x34, 0x12]
});
assert_eq!(value, 0x12345678);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto;

fn read_ne_i32(input: &mut &[u8]) -> i32 {
    let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>());
    *input = rest;
    i32::from_ne_bytes(int_bytes.try_into().unwrap())
}Run

Trait Implementations

impl BitOr<i32> for i32[src]

type Output = i32

The resulting type after applying the | operator.

impl<'_, '_> BitOr<&'_ i32> for &'_ i32[src]

type Output = <i32 as BitOr<i32>>::Output

The resulting type after applying the | operator.

impl<'a> BitOr<i32> for &'a i32[src]

type Output = <i32 as BitOr<i32>>::Output

The resulting type after applying the | operator.

impl<'_> BitOr<&'_ i32> for i32[src]

type Output = <i32 as BitOr<i32>>::Output

The resulting type after applying the | operator.

impl<'_> DivAssign<&'_ i32> for i321.22.0[src]

impl DivAssign<i32> for i321.8.0[src]

impl<'_> AddAssign<&'_ i32> for i321.22.0[src]

impl AddAssign<i32> for i321.8.0[src]

impl<'_> Neg for &'_ i32[src]

type Output = <i32 as Neg>::Output

The resulting type after applying the - operator.

impl Neg for i32[src]

type Output = i32

The resulting type after applying the - operator.

impl<'_, '_> Div<&'_ i32> for &'_ i32[src]

type Output = <i32 as Div<i32>>::Output

The resulting type after applying the / operator.

impl Div<i32> for i32[src]

This operation rounds towards zero, truncating any fractional part of the exact result.

type Output = i32

The resulting type after applying the / operator.

impl<'_> Div<&'_ i32> for i32[src]

type Output = <i32 as Div<i32>>::Output

The resulting type after applying the / operator.

impl<'a> Div<i32> for &'a i32[src]

type Output = <i32 as Div<i32>>::Output

The resulting type after applying the / operator.

impl LowerHex for i32[src]

impl Display for i32[src]

impl<'_, '_> Rem<&'_ i32> for &'_ i32[src]

type Output = <i32 as Rem<i32>>::Output

The resulting type after applying the % operator.

impl Rem<i32> for i32[src]

This operation satisfies n % d == n - (n / d) * d. The result has the same sign as the left operand.

type Output = i32

The resulting type after applying the % operator.

impl<'_> Rem<&'_ i32> for i32[src]

type Output = <i32 as Rem<i32>>::Output

The resulting type after applying the % operator.

impl<'a> Rem<i32> for &'a i32[src]

type Output = <i32 as Rem<i32>>::Output

The resulting type after applying the % operator.

impl BitAnd<i32> for i32[src]

type Output = i32

The resulting type after applying the & operator.

impl<'_, '_> BitAnd<&'_ i32> for &'_ i32[src]

type Output = <i32 as BitAnd<i32>>::Output

The resulting type after applying the & operator.

impl<'_> BitAnd<&'_ i32> for i32[src]

type Output = <i32 as BitAnd<i32>>::Output

The resulting type after applying the & operator.

impl<'a> BitAnd<i32> for &'a i32[src]

type Output = <i32 as BitAnd<i32>>::Output

The resulting type after applying the & operator.

impl BitOrAssign<i32> for i321.8.0[src]

impl<'_> BitOrAssign<&'_ i32> for i321.22.0[src]

impl Mul<i32> for i32[src]

type Output = i32

The resulting type after applying the * operator.

impl<'_> Mul<&'_ i32> for i32[src]

type Output = <i32 as Mul<i32>>::Output

The resulting type after applying the * operator.

impl<'_, '_> Mul<&'_ i32> for &'_ i32[src]

type Output = <i32 as Mul<i32>>::Output

The resulting type after applying the * operator.

impl<'a> Mul<i32> for &'a i32[src]

type Output = <i32 as Mul<i32>>::Output

The resulting type after applying the * operator.

impl Eq for i32[src]

impl Debug for i32[src]

impl From<u8> for i321.5.0[src]

Converts u8 to i32 losslessly.

impl From<u16> for i321.5.0[src]

Converts u16 to i32 losslessly.

impl From<NonZeroI32> for i321.31.0[src]

impl From<i8> for i321.5.0[src]

Converts i8 to i32 losslessly.

impl From<i16> for i321.5.0[src]

Converts i16 to i32 losslessly.

impl From<bool> for i321.28.0[src]

Converts a bool to a i32. The resulting value is 0 for false and 1 for true values.

Examples

assert_eq!(i32::from(true), 1);
assert_eq!(i32::from(false), 0);Run

impl<'_> MulAssign<&'_ i32> for i321.22.0[src]

impl MulAssign<i32> for i321.8.0[src]

impl<'_> ShrAssign<&'_ usize> for i321.22.0[src]

impl ShrAssign<u128> for i321.8.0[src]

impl<'_> ShrAssign<&'_ u8> for i321.22.0[src]

impl ShrAssign<usize> for i321.8.0[src]

impl<'_> ShrAssign<&'_ i8> for i321.22.0[src]

impl<'_> ShrAssign<&'_ u128> for i321.22.0[src]

impl ShrAssign<i8> for i321.8.0[src]

impl ShrAssign<u16> for i321.8.0[src]

impl ShrAssign<i32> for i321.8.0[src]

impl ShrAssign<isize> for i321.8.0[src]

impl<'_> ShrAssign<&'_ i128> for i321.22.0[src]

impl<'_> ShrAssign<&'_ isize> for i321.22.0[src]

impl<'_> ShrAssign<&'_ u64> for i321.22.0[src]

impl<'_> ShrAssign<&'_ i64> for i321.22.0[src]

impl<'_> ShrAssign<&'_ u16> for i321.22.0[src]

impl<'_> ShrAssign<&'_ u32> for i321.22.0[src]

impl ShrAssign<i64> for i321.8.0[src]

impl ShrAssign<u8> for i321.8.0[src]

impl ShrAssign<u32> for i321.8.0[src]

impl<'_> ShrAssign<&'_ i16> for i321.22.0[src]

impl ShrAssign<i16> for i321.8.0[src]

impl ShrAssign<u64> for i321.8.0[src]

impl<'_> ShrAssign<&'_ i32> for i321.22.0[src]

impl ShrAssign<i128> for i321.8.0[src]

impl FromStr for i32[src]

type Err = ParseIntError

The associated error which can be returned from parsing.

impl Octal for i32[src]

impl PartialEq<i32> for i32[src]

impl<'a> Product<&'a i32> for i321.12.0[src]

impl Product<i32> for i321.12.0[src]

impl Clone for i32[src]

impl Not for i32[src]

type Output = i32

The resulting type after applying the ! operator.

impl<'_> Not for &'_ i32[src]

type Output = <i32 as Not>::Output

The resulting type after applying the ! operator.

impl TryFrom<usize> for i321.34.0[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

fn try_from(u: usize) -> Result<i32, TryFromIntError>[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

impl TryFrom<u128> for i321.34.0[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

fn try_from(u: u128) -> Result<i32, TryFromIntError>[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

impl TryFrom<u32> for i321.34.0[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

fn try_from(u: u32) -> Result<i32, TryFromIntError>[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

impl TryFrom<u64> for i321.34.0[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

fn try_from(u: u64) -> Result<i32, TryFromIntError>[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

impl TryFrom<isize> for i321.34.0[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

fn try_from(u: isize) -> Result<i32, TryFromIntError>[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

impl TryFrom<i128> for i321.34.0[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

fn try_from(u: i128) -> Result<i32, TryFromIntError>[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

impl TryFrom<i64> for i321.34.0[src]

type Error = TryFromIntError

The type returned in the event of a conversion error.

fn try_from(u: i64) -> Result<i32, TryFromIntError>[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

impl<'_> Sub<&'_ i32> for i32[src]

type Output = <i32 as Sub<i32>>::Output

The resulting type after applying the - operator.

impl<'_, '_> Sub<&'_ i32> for &'_ i32[src]

type Output = <i32 as Sub<i32>>::Output

The resulting type after applying the - operator.

impl<'a> Sub<i32> for &'a i32[src]

type Output = <i32 as Sub<i32>>::Output

The resulting type after applying the - operator.

impl Sub<i32> for i32[src]

type Output = i32

The resulting type after applying the - operator.

impl<'_> ShlAssign<&'_ i32> for i321.22.0[src]

impl ShlAssign<i16> for i321.8.0[src]

impl ShlAssign<isize> for i321.8.0[src]

impl<'_> ShlAssign<&'_ i64> for i321.22.0[src]

impl<'_> ShlAssign<&'_ u8> for i321.22.0[src]

impl<'_> ShlAssign<&'_ usize> for i321.22.0[src]

impl<'_> ShlAssign<&'_ u64> for i321.22.0[src]

impl ShlAssign<i8> for i321.8.0[src]

impl ShlAssign<i128> for i321.8.0[src]

impl<'_> ShlAssign<&'_ u16> for i321.22.0[src]

impl ShlAssign<u64> for i321.8.0[src]

impl<'_> ShlAssign<&'_ u128> for i321.22.0[src]

impl ShlAssign<i32> for i321.8.0[src]

impl ShlAssign<u8> for i321.8.0[src]

impl<'_> ShlAssign<&'_ i128> for i321.22.0[src]

impl ShlAssign<u16> for i321.8.0[src]

impl<'_> ShlAssign<&'_ isize> for i321.22.0[src]

impl<'_> ShlAssign<&'_ i8> for i321.22.0[src]

impl ShlAssign<u128> for i321.8.0[src]

impl ShlAssign<u32> for i321.8.0[src]

impl<'_> ShlAssign<&'_ i16> for i321.22.0[src]

impl ShlAssign<i64> for i321.8.0[src]

impl ShlAssign<usize> for i321.8.0[src]

impl<'_> ShlAssign<&'_ u32> for i321.22.0[src]

impl Default for i32[src]

fn default() -> i32[src]

Returns the default value of 0

impl Hash for i32[src]

impl Step for i32[src]

impl Shr<i64> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ isize> for &'_ i32[src]

type Output = <i32 as Shr<isize>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ isize> for i32[src]

type Output = <i32 as Shr<isize>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<i8> for &'a i32[src]

type Output = <i32 as Shr<i8>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i128> for &'_ i32[src]

type Output = <i32 as Shr<i128>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<u16> for &'a i32[src]

type Output = <i32 as Shr<u16>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<u64> for &'a i32[src]

type Output = <i32 as Shr<u64>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<i64> for &'a i32[src]

type Output = <i32 as Shr<i64>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i16> for i32[src]

type Output = <i32 as Shr<i16>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u32> for &'_ i32[src]

type Output = <i32 as Shr<u32>>::Output

The resulting type after applying the >> operator.

impl Shr<u8> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl Shr<i32> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'a> Shr<i128> for &'a i32[src]

type Output = <i32 as Shr<i128>>::Output

The resulting type after applying the >> operator.

impl Shr<i16> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl Shr<usize> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u64> for i32[src]

type Output = <i32 as Shr<u64>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i64> for &'_ i32[src]

type Output = <i32 as Shr<i64>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u16> for &'_ i32[src]

type Output = <i32 as Shr<u16>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u8> for i32[src]

type Output = <i32 as Shr<u8>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<isize> for &'a i32[src]

type Output = <i32 as Shr<isize>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i32> for &'_ i32[src]

type Output = <i32 as Shr<i32>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u32> for i32[src]

type Output = <i32 as Shr<u32>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u128> for &'_ i32[src]

type Output = <i32 as Shr<u128>>::Output

The resulting type after applying the >> operator.

impl Shr<i8> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ usize> for &'_ i32[src]

type Output = <i32 as Shr<usize>>::Output

The resulting type after applying the >> operator.

impl Shr<u128> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i32> for i32[src]

type Output = <i32 as Shr<i32>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i128> for i32[src]

type Output = <i32 as Shr<i128>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<u128> for &'a i32[src]

type Output = <i32 as Shr<u128>>::Output

The resulting type after applying the >> operator.

impl Shr<isize> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl Shr<u64> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'a> Shr<usize> for &'a i32[src]

type Output = <i32 as Shr<usize>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i64> for i32[src]

type Output = <i32 as Shr<i64>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<u8> for &'a i32[src]

type Output = <i32 as Shr<u8>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u8> for &'_ i32[src]

type Output = <i32 as Shr<u8>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i8> for &'_ i32[src]

type Output = <i32 as Shr<i8>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ u64> for &'_ i32[src]

type Output = <i32 as Shr<u64>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<i32> for &'a i32[src]

type Output = <i32 as Shr<i32>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ i8> for i32[src]

type Output = <i32 as Shr<i8>>::Output

The resulting type after applying the >> operator.

impl<'_, '_> Shr<&'_ i16> for &'_ i32[src]

type Output = <i32 as Shr<i16>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u16> for i32[src]

type Output = <i32 as Shr<u16>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ u128> for i32[src]

type Output = <i32 as Shr<u128>>::Output

The resulting type after applying the >> operator.

impl Shr<u16> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl Shr<u32> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'a> Shr<u32> for &'a i32[src]

type Output = <i32 as Shr<u32>>::Output

The resulting type after applying the >> operator.

impl<'_> Shr<&'_ usize> for i32[src]

type Output = <i32 as Shr<usize>>::Output

The resulting type after applying the >> operator.

impl<'a> Shr<i16> for &'a i32[src]

type Output = <i32 as Shr<i16>>::Output

The resulting type after applying the >> operator.

impl Shr<i128> for i32[src]

type Output = i32

The resulting type after applying the >> operator.

impl<'a> Shl<u32> for &'a i32[src]

type Output = <i32 as Shl<u32>>::Output

The resulting type after applying the << operator.

impl Shl<u32> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl Shl<i128> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl Shl<u8> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl Shl<usize> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u8> for i32[src]

type Output = <i32 as Shl<u8>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i16> for &'_ i32[src]

type Output = <i32 as Shl<i16>>::Output

The resulting type after applying the << operator.

impl Shl<u16> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i32> for &'_ i32[src]

type Output = <i32 as Shl<i32>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ usize> for i32[src]

type Output = <i32 as Shl<usize>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u128> for i32[src]

type Output = <i32 as Shl<u128>>::Output

The resulting type after applying the << operator.

impl<'a> Shl<u128> for &'a i32[src]

type Output = <i32 as Shl<u128>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u64> for i32[src]

type Output = <i32 as Shl<u64>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i128> for i32[src]

type Output = <i32 as Shl<i128>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u64> for &'_ i32[src]

type Output = <i32 as Shl<u64>>::Output

The resulting type after applying the << operator.

impl<'a> Shl<usize> for &'a i32[src]

type Output = <i32 as Shl<usize>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u16> for &'_ i32[src]

type Output = <i32 as Shl<u16>>::Output

The resulting type after applying the << operator.

impl Shl<u64> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'a> Shl<u64> for &'a i32[src]

type Output = <i32 as Shl<u64>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i64> for i32[src]

type Output = <i32 as Shl<i64>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i128> for &'_ i32[src]

type Output = <i32 as Shl<i128>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ usize> for &'_ i32[src]

type Output = <i32 as Shl<usize>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u32> for &'_ i32[src]

type Output = <i32 as Shl<u32>>::Output

The resulting type after applying the << operator.

impl<'a> Shl<i8> for &'a i32[src]

type Output = <i32 as Shl<i8>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i32> for i32[src]

type Output = <i32 as Shl<i32>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u8> for &'_ i32[src]

type Output = <i32 as Shl<u8>>::Output

The resulting type after applying the << operator.

impl<'a> Shl<i16> for &'a i32[src]

type Output = <i32 as Shl<i16>>::Output

The resulting type after applying the << operator.

impl Shl<i8> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ u128> for &'_ i32[src]

type Output = <i32 as Shl<u128>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i8> for i32[src]

type Output = <i32 as Shl<i8>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ isize> for &'_ i32[src]

type Output = <i32 as Shl<isize>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i8> for &'_ i32[src]

type Output = <i32 as Shl<i8>>::Output

The resulting type after applying the << operator.

impl Shl<i16> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl Shl<u128> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'a> Shl<isize> for &'a i32[src]

type Output = <i32 as Shl<isize>>::Output

The resulting type after applying the << operator.

impl<'a> Shl<i64> for &'a i32[src]

type Output = <i32 as Shl<i64>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ isize> for i32[src]

type Output = <i32 as Shl<isize>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u16> for i32[src]

type Output = <i32 as Shl<u16>>::Output

The resulting type after applying the << operator.

impl Shl<i32> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'a> Shl<u8> for &'a i32[src]

type Output = <i32 as Shl<u8>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ u32> for i32[src]

type Output = <i32 as Shl<u32>>::Output

The resulting type after applying the << operator.

impl Shl<isize> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'a> Shl<u16> for &'a i32[src]

type Output = <i32 as Shl<u16>>::Output

The resulting type after applying the << operator.

impl Shl<i64> for i32[src]

type Output = i32

The resulting type after applying the << operator.

impl<'a> Shl<i128> for &'a i32[src]

type Output = <i32 as Shl<i128>>::Output

The resulting type after applying the << operator.

impl<'_, '_> Shl<&'_ i64> for &'_ i32[src]

type Output = <i32 as Shl<i64>>::Output

The resulting type after applying the << operator.

impl<'a> Shl<i32> for &'a i32[src]

type Output = <i32 as Shl<i32>>::Output

The resulting type after applying the << operator.

impl<'_> Shl<&'_ i16> for i32[src]

type Output = <i32 as Shl<i16>>::Output

The resulting type after applying the << operator.

impl PartialOrd<i32> for i32[src]

impl<'_, '_> Add<&'_ i32> for &'_ i32[src]

type Output = <i32 as Add<i32>>::Output

The resulting type after applying the + operator.

impl<'a> Add<i32> for &'a i32[src]

type Output = <i32 as Add<i32>>::Output

The resulting type after applying the + operator.

impl<'_> Add<&'_ i32> for i32[src]

type Output = <i32 as Add<i32>>::Output

The resulting type after applying the + operator.

impl Add<i32> for i32[src]

type Output = i32

The resulting type after applying the + operator.

impl BitAndAssign<i32> for i321.8.0[src]

impl<'_> BitAndAssign<&'_ i32> for i321.22.0[src]

impl<'_> RemAssign<&'_ i32> for i321.22.0[src]

impl RemAssign<i32> for i321.8.0[src]

impl SubAssign<i32> for i321.8.0[src]

impl<'_> SubAssign<&'_ i32> for i321.22.0[src]

impl Ord for i32[src]

impl Binary for i32[src]

impl<'_, '_> BitXor<&'_ i32> for &'_ i32[src]

type Output = <i32 as BitXor<i32>>::Output

The resulting type after applying the ^ operator.

impl BitXor<i32> for i32[src]

type Output = i32

The resulting type after applying the ^ operator.

impl<'_> BitXor<&'_ i32> for i32[src]

type Output = <i32 as BitXor<i32>>::Output

The resulting type after applying the ^ operator.

impl<'a> BitXor<i32> for &'a i32[src]

type Output = <i32 as BitXor<i32>>::Output

The resulting type after applying the ^ operator.

impl Sum<i32> for i321.12.0[src]

impl<'a> Sum<&'a i32> for i321.12.0[src]

impl UpperHex for i32[src]

impl<'_> BitXorAssign<&'_ i32> for i321.22.0[src]

impl BitXorAssign<i32> for i321.8.0[src]

impl Copy for i32[src]

Auto Trait Implementations

impl UnwindSafe for i32

impl RefUnwindSafe for i32

impl Unpin for i32

impl Send for i32

impl Sync for i32

Blanket Implementations

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]